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PREFACE TO THE SECOND EDITION

IN preparing this second edition the earlier portions of the book
have been partly re-written, while the chapters on recent mathematics
are greatly enlarged and almost wholly new. The desirability of
having a reliable one-volume history for the use of readers who cannot
devote themselves to an intensive study of the history of mathematics
is generally recognized. On the other hand, it is a difficult task to
give an adequate bird’s-eye-view of the development of mathematics
from its earliest beginnings to the present time. In compiling this
history the endeavor has been to use only the most reliable sources.
Nevertheless, in covering such a wide territory, mistakes are sure to
have crept in. References to the sources used in the revision are
given as fully as the limitations of space would permit. These ref-
erences will assist the reader in following into greater detail the his-
tory of any special subject. Frequent use without acknowledgment
has been made of the following publications: Annuario Biografico del
Circolo Matematico di Palermo, 1914; Jahrbuch uber die Forischrilie der
Mathematik, Berlin; J. C. Poggendorff’s Biographisch-Literarisches
Handwbrterbuch, Leipzig; Gedenkéagebuch fiir Mathematiker, von Felix
Miiller, 3. Aufl., Leipzig und Berlin, 1912; Revue Semestrielle des Pub-
lications Mathématiques, Amsterdam. »

The author is indebted to Miss Falka M. Gibson of Oakland, Cal.
for assistance in the reading of the proofs.

FLORIAN CAJORI.

University of California,

March, 1919.
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A HISTORY OF MATHEMATICS

INTRODUCTION

TRE contemplation of the various steps by which mankind has
come into possession of the vast stock of mathematical knowledge
can hardly fail to interest the mathematician. He takes pride in the
fact that his science, more than any other, is an exact science, and
that hardly anything ever done in mathematics has proved to be use-
less. The chemist smiles at the childish efforts of alchemists, but the
mathematician finds the geometry of the Greeks and the arithmetic
of the Hindus as useful and admirable as any research of to-day. He
is pleased to notice that though, in course of its development, mathe-
matics has had periods of slow growth, yet in the main it has been
pre-eminently a progressive science.

The history of mathematics may be instructive as well as agreeable;
it may not only remind us of what we have, but may also teach us
how to increase our store. Says A. De Morgan, “The early history
of the mind of men with regard to mathematics leads us to point out
our own errors; and in this respect it is well to pay attention to the
history of mathematics.” It warns us against hasty conclusions; it
points out the importance of a good notation upon the progress of the
science; it discourages excessive specialisation on the part of investi-
gators, by showing how apparently distinct branches have been found
to possess unexpected connecting links; it saves the student from
wasting time and energy upon problems which were, perhaps, solved
long since; it discourages him from attacking an unsolved problem by
the same method which has led other mathematicians to failure; it
teaches that fortifications can be taken in other ways than by direct
attack, that when repulsed from a direct assault it is well to recon-
noitre and occupy the surrounding ground and to discover the secret
paths by which the apparently unconquerable position can be taken.!
The importance of this strategic rule may be emphasised by citing a
case in which it has been violated. An untold amount of intellectual
energy has been expended on the quadrature of the circle, yet no con-
quest has been made by direct assault. The circle-squarers have
existed in crowds ever since the period of Archimedes. After in-
numerable failures to solve the problem at a time, even, when in-

1S, Giinther, Zicle und Resultate der neueren M athematisch-historischen Forschung.
Erlangen, 1876.
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vestigators possessed that most powerful tool, the differential calculus,

‘persons versed in mathematics dropped the subject, while those who
still persisted were completely ignorant of its history and generally
misunderstood the conditions of the problem. ‘Our problem,” says
A. De Morgan, ‘‘is to square the circle with the old allowance of means:
Euclid’s postulates and nothing more. We cannot remember an
instance in which a question to be solved by a definite method was
tried by the best heads, and answered at last, by ¢hat method, after
thousands of complete failures.” But progress was made on this
problem by approaching it from a different direction and by newly
discovered paths. J. H. Lambert proved in 1761 that the ratio of the
circumference of a circle to its diameter is irrational. Some years
ago, F. Lindemann demonstrated that this ratio is also transcendental
and that the quadrature of the circle, by means of the ruler and com-
passes only, is impossible. He thus showed by actual proof that which
keen-minded mathematicians had long suspected; namely, that the
great army of circle-squarers have, for two thousand years, been
assaulting a fortification which is as indestructible as the firmament
of heaven.

Another reason for the desirability of historical study is the value
of historical knowledge to the teacher of mathematics. The interest
which pupils take in their studies may be greatly increased if the
solution of problems and the cold logic of geometrical demonstrations
are interspersed with historical remarks and anecdotes. A class in
arithmetic will be pleased to hear about the Babylonians and Hindus
and their invention of the “Arabic notation”; they will marvel at
the thousands of years which elapsed before people had even thought
of introducing into the numeral notation that Columbus-egg—the
zero; they will find it astounding that it should have taken so long
to invent a notation which they themselves can now learn in a month.
After the pupils have learned how to bisect a given angle, surprise
them by telling of the many futile attempts which have been made
to solve, by elementary geometry, the apparently very simple problem
of the trisection of an angle. When they know how to construct a
square whose area is double the area of a given square, tell them about
the duplication of the cube, of its mythical origin—how the wrath of
Apollo could be appeased only by the construction of a cubical altar
double the given altar, and how mathematicians long wrestled with
this problem. After the class have exhausted their energies on the
theorem of the right triangle, tell them the legend about its discov-
erer—how Pythagoras, jubilant over his great accomplishment,
sacrificed a hecatomb to the Muses who inspired him. When the
value of mathematical training is called in question, quote the in-
scription over the entrance into the academy of Plato, the philosopher:
“Let no one who is unacquainted with geometry enter here.” Students
in analytical geometry should know something of Descartes, and,
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after taking up the differential and integral calculus, they sbould
become familiar with the parts that Newton, Leibniz, and Lagrange
played in creating that science. In his historical talk it is possible
for the teacher to make it plain to the student that mathematics is
not a dead science, but a living one in which steady progress is made.!

A similar point of view is taken by Henry S. White: 2 “The ac-
cepted truths of to-day, even the commonplace truths of any science,
were the doubtful or the novel theories of yesterday. Some indeed
of prime importance were long esteemed of slight importance and
almost forgotten. The first effect of reading in the history of science
is a naive astonishment at the darkness of past centuries, but the
ultimate effect is a fervent admiration for the progress achieved by
former generations, for the triumphs of persistence and of genius.
The easy credulity with which a young student supposes that of
course every algebraic equation must have a root gives place finally
to a delight in the slow conquest of the realm of imaginary numbers,
and in the youthful genius of a Gauss who could demonstrate this
once obscure fundamental proposition.”

The history of mathematics is important also as a valuable con-
tribution to the history of civilisation. Human progress is closely
identified with scientific thought. Mathematical and physical re-
searches are a reliable record of intellectual progress. The history
of mathematics is one of the large windows through which the philo-
sophic eye looks into past ages and traces the line of intellectual de-
velopment.

1 Cajori, F., The Teaching and History of Mathematics in the United States. Wash-
ington, 1890, p. 236.
32 Bull. Am. Math. Soc., Vol. 15, 1909, p. 325.



THE BABYLONIANS

THrE fertile valley of the Euphrates and Tigris was one of the
rimeval seats of human society. Authentic history of the peoples
inhabiting this region begins only with the foundation, in Chald=a
and Babylonia, of a united kingdom out of the previously disunited
tribes. Much light has been thrown on their history by the discovery
of the art of reading the cuneiform or wedge-shaped system of writing.
In the study of Babylonian mathematics we begin with the notation
of numbers. A vertical wedge | stood for 1, while the characters <
and Y»= signified 10 and 100 respectively. Grotefend believes the

character for 10 originally to have been the picture of two hands, as
held in prayer, the palms being pressed together, the fingers close to
each other, but the thumbs thrust out. In the Babylonian notation
two principles were employed—the additive and multiplicative. Num-
bers below 100 were expressed by symbols whose respective values

had to be added. Thus, Y Y stood for 2, | | for 3, g for 4, S%w
for 23, { €  for 30. Here the symbols of higher order appear

always to the left of those of lower order. In writing the hun-
dreds, on the other hand, a smaller symbol was placed to the left of

100, and was, in that case, to be multiplied by 100. Thus, Y| ==

signified 10 times 100, or 1000. But this symbol for 1000 was itself
taken for a new unit, which could take smaller coefficients to its left.

Thus, ( Y = denoted, not 20 times 100, but 10 times 1000. Some

of the cuneiform numbers found on tablets in the ancient temple
library at Nippur excecd a million; morcover, some of these Nippur
tablets exhibit the subtractive principle (20-1), similar to that shown
in the Roman notation, “XIX.”

If, as is believed by most specialists, the early Sumerians were the
inventors of the cuneiform writing, then they were, in all probability,
also the inventors of the notation of numbers. Most surprising, 1n
this connection, is the fact that Sumerian inscriptions disclose the usz,
not only of the above decimal system, but also of a sexagesimal one.
The latter was used chiefly in constructing tables for weights and
measures. It is full of historical interest. Its consequential develop-
ment, both for integers and fractions, reveals a high degree of mathe-
matical insight. We possess two Babylonian tablets which exhibit
its use. One of them, probably written between 2300 and 1600 B. C.,
contains a table of square numbers up to 60®.. The numbers 1, 4, 9,
16, 25, 36, 49, are given as the squares of the first seven integers re-

4
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spectively. We have next 1.4=8% 1.21=9?, 1.40=10% 2.1=11? etc.
This remains unintelligible, unless we assume the sexagesimal scale,
which makes 1.4=60+4, 1.21=60+21, 2.1=2.60+1. The second
tablet records the magnitude of the illuminated portion of the moon’s
disc for every day from new to full moon, the whole disc being assumed
to consist of 240 parts. The illuminated parts during the first five
days are the series s, 10, 20, 40, 1.20 (=80), which is a geometrical
progression. From here on the series becomes an arithmetical progres-
sion, the numbers from the fifth to the fifteenth day being respectively
1.20, 1.36, 1.52, 2.8, 2.24, 2.40, 2.56, 3.12, 3.28, 3.44, 4. This table
not only exhibits the use of the sexagesimal system, but also indicates
the acquaintance of the Babylonians with progressions. Not to be
overlooked is the fact that in the sexagesimal notation of integers
the “principle of position” was employed. Thus, in 1.4 (=64), the
1 is made to stand for 60, the unit of the second order, by virtue of
its position with respect to the 4. The introduction of this principle
at so early a date is the more remarkable, because in the decimal no-
tation it was not regularly introduced till about the ninth century
after Christ. The principle of position, in its general and systematic
application, requires a symbol for zero. We ask, Did the Babylonians
possess one? Had they already taken the gigantic step of representing
by a symbol the absence of units? Neither of the above tables answers
this question, for they happen to contain no number in which there
was occasion to use a zero. Babylonian records of many centuries
later—of about 200 B. C.—give a symbol for zero which denoted the
absence of a figure but apparently was not used in calculation. It
consisted of two angular marks & one above the other, roughly re-
sembling two dots, hastily written. About 130 A. D., Ptolemy in
Alexandria used in his Almagest the Babylonian sexagesimal fractions,
and also the omicron o to represent blanks in the sexagesimal numbers.
This o was not uscd as a regular zero. It appears therefore that the
Babylonians had the principle of local value, and also a symbol for
zero, to indicate the absence of a figure, but did not use this zero in
computation. Their sexagesimal fractions were introduced into India
and with these fractions probably passed the principle of local value
and the restricted use of the zero.
"~ The sexagesimal system was used also in fractions. Thus, in the
Babylonian inscriptions, } and } are designated by 30 and 20, the
reader being expected, in his mind, to supply the word *sixtieths.”
The astronomer Hipparchus, the geometer Hypsicles and the as-
tronomer Ptolemy borrowed the sexagesimal notation of fractions
from the Babylonians and introduced it into Greece. From that time
sexagesimal fractions held almost full sway in astronomical and mathe-
matical calculations until the sixteenth century, when they finally
ielded their place to the decimal fractions. It may be asked, What
ed to the invention of the sexagesimal system? Why was it that 6o
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parts were selected? To this we have no positive answer. Ten was
chosen, in the decimal system, because it represents the number of
- fingers. But nothing of the human body could have suggested 6o.
Did the system have an astronomical origin? It was supposed that
the early Babylonians reckoned the year at 360 days, that this led
to the division of the circle into 360 degrees, each degree representing
the daily amount of the supposed yearly revolution of the sun around
the earth. Now they were, very probably, familiar with the fact
that the radius can be applied to its circumference as a chord 6 times,
and that each of these chords subtends an arc measuring exactly 6o
degrees. Fixing their attention upon these degrees, the division into
60 parts may have suggested itself to them. Thus, when greater pre-
cision necessitated a subdivision of the degree, it was partitioned into
60 minutes. In this way the sexagesimal notation was at one time
supposed to have originated. But it now appears that the Babylonians
very early knew that the year exceeded 360 days. Moreover, it is
highly improbatle that a higher unit of 360 was chosen first, and a
lower unit of 6o afterward. The normal development of a number
system is from lower to higher units. Another guess is that the
sexagesimal system arose as a mixture of two earlier systems of the
bases 6 and 10.! Certain it is that the sexagesimal system became
closely interwoven with astronomical and geometrical science. The
division of the day into 24 hours, and of the hour into minutes and
seconds on the scale of 6o, is attributed to the Babylonians. There is
strong evidence for the belief that they had also a division of the day
into 60 hours. The employment of a sexagesimal division in numeral
notation, in fractions, in angular as well as in time measurement, in-
dicated a beautiful harmony which was not disturbed for thousands
of years until Hindu and Arabic astronomers began to use sines and
cosines in place of parts of chords, thereby forcing the right angie to
the front as a new angular unit, which, for consistency, should have
been subdivided sexagesimally, but was not actually so divided.

It appears that the people in the Tigro-Euphrates basin had made
very creditable advance in arithmetic. Their knowledge of .arith-
metical and geometrical progressions has already been alluded to.
Tamblichus attributes to them also a knowledge of proportion, and
even the invention of the so-called musical proportion. Though we

1 M. Cantor, Vorlesungen tiber Geschichte der Mathematik, 1. Bd., 3. Aufl., Leipzig,
1907, p. 37. This work appeared in four large volumes and carries the history
down to 1799. The fourth volume (19o8) was written with the codperation of nine
scholars from Germany, Italy, Russia and the United States. Morilz Candor (1829~

) ranks as the foremost general writer of the nineteenth century on the history
of mathematics. Born in Mannheim, a student at Heidelberg, at Géttingen under
Gauss and Weber, at Berlin under Dirichlet, he lectured at Heidelberg where in
1877 he became ordinary honorary professor. His first historical article was
brought out in 1856, but not until 1880 did the first volume of his well-known history

appear.
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possess no conclusive proof, we have nevertheless reason to believe
that in practical calculation they used the abacus. Among the races
of middle Asia, even as far as China, the abacus is as old as fable.
Now, Babylon was once a great commercial centre,—the metropolis of
many nations,—and it is, therefore, not unreasonable to suppose that
her merchants employed this most improved aid to calculation.

In 1889 H. V. Hilprecht began to make excavations at Nuffar (the
ancient Nippur) and found brick tablets containing multiplication and
division tables, tables of squares and square roots, a geometric progres-
sion and‘ a few computations. He published an account of his findings
in 1906.

The divisions in one tablet contain results like these: “60* divided
by 2=6,480,000 each,” “60* divided by 3=4,320,000 each,” and
so on, using the divisors 2, 3, 4, §, 6, 8, 9, 10, 12, 15, 16, 18. The very
first division on the tablet is interpreted to be “60* divided by 115 =
8,640,000.” This strange appearance of § as a divisor is difficult to
explain. Perhaps there is here a use of § corresponding to the Egyptian
use of § as found in the Ahmes papyrus at a, perhaps, contemporaneous
period. It is noteworthy that 60*= 12,960,000, which Hilprecht found
in the Nippur brick text-books, is nothing less than the mystic ‘ Platonic
number,” the “lord of better and worse births,” mentioned in Plato’s
Republic. Most probably, Plato received the number from the
Pythagoreans, and the Pythagoreans from the Babylonians.?

In geometry the Babylonians accomplished little. Besides the divi-
sion of the circumference into 6 parts by its radius, and into 360 de-
grees, they had some knowledge of geometrical figures, such as the
triangle and quadrangle, which they used in their auguries. Like the
Hebrews (1 Kin. 7:23), they took w=3. Of geometrical demonstra-
tions there is, of course, no trace. “As a rule, in the Oriental mind
the intuitive powers eclipse the severely rational and logical.”

Hilprecht concluded from his studies that the Babylonians pos-
sessed the rules for finding the areas of squares, rectangles, right tri-
angles, and trapezoids.

The astronomy of the Babylonians has attracted much attention.
They worshipped the heavenly bodies from the earliest historic times.
When Alexander the Great, after the battle of Arbela (331 B. c.), took
possession of Babylon, Callisthenes found there on burned brick as-
tronomical records reaching back as far as 2234 B. c. Porphyrius says
that these were sent to Aristotle. Ptolemy, the Alexandrian astrono-
mer, possessed a Babylonian record of eclipses going back to 747 . c.

1 Mathematical, Metrological and Chronological Tablets from the Temple Library
of Nippur, by H. V. Hilprecht. Vol. XX, part I, Series A, Cuneiform Texts, pub-
lished by the Babylonian Expedition of the University of Pennsylvania, 19o6. Con-
sult also D. E. Smith in Bull. Am. Math. Soc., Vol. 13, 1907, p. 302.

20n the “Platonic number” consult P. Tanncry in Revue philosophigue, Vol. I,

1876, p. 170; Vol. XIII, 1881, p. 210; Vol. XV, 1883, p. 573. Also G. Loria in Le
scienze esalte nell’antica grecia, 2 Ed., Milano, 1914, Appendice.
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Epping and Strassmaier ! have thrown considerable light on Babylon-
ian chronology and astronomy by explaining two calendars of the
years 123 B. C. and 111 B. C., taken from cuneiform tablets coming,
presumably, from an old observatory These scholars have succeeded
in giving an account of the Babylonian calculation of the new and
full moon, and have identified by calculations the Babylonian names
of the planets, and of the twelve zodiacal signs and twenty-eight
normal stars which correspond to some extent with the twenty-eight
nakshatras of the Hindus. We append part of an Assyrian astronomical
report, as translated by Oppert:—

“To the King, my lord, thy faithful servant, Mar-Istar.”

‘. . . On the first day, as the new moon’s day of the month Thammuz
declined, the moon was again visible over the planet Mercury, as I had
already predicted to my master the King. I erred not.”

1 Eppmg .y Astronomisches aus Babylon. Unier Mitwirkung von P. J. R. Strass-
Freiburg, 1889.




THE EGYPTIANS

Though there is difference of opinion regarding the antiquity of
Egyptian civilisation, yet all authorities agree in the statement that,
however far back they go, they find no uncivilised state of society.
“Menes, the first king, changes the course of the Nile, makes a great
reservoir, and builds the temple of Phthah at Memphis.” The Egyp-
tians built the pyramids at a very early period. Surely a people en-
gaging in enterprises of such magnitude must have known something
of mathematics—at least of practical mathematics.

All Greek writers are unanimous in ascribing, without envy, to
Egypt the priority of invention in the mathematical sciences. Plato
in Phedrus says: “At the Egyptian city of Naucratis there was a
famous old god whose name was Theuth; the bird which is called the
Ibis was sacred to him, and he was the inventor of many arts, such
as arithmetic and calculation and geometry and astronomy and
draughts and dice, but his great discovery was the use of letters.”

Aristotle says that mathematics had its birth in Egypt, because
there the priestly class had the leisure needful for the study of it.
Geometry, in particular, is said by Herodotus, Diodorus, Diogenes
Laertius, Iamblichus, and other ancient writers to have originated in
Egypt.! In Herodotus we find this (II. c. 109): “They said also that
this king [Sesostris] divided the land among all Egyptians so as to
give each one a quadrangle of equal size and to draw from each his
revenues, by imposing a tax to be levied yearly. But every one from
whose part the river tore away anything, had to go to him and notify
what had happened; he then sent the overseers, who had to measure
out by how much the land had become smaller, in order that the
owner might pay on what was left, in proportion to the entire tax
imposed. In this way, lt appears to me, geometry originated, which
passed thence to Hellas.”

We abstain from introducing additional Greek opinion regarding
Egyptian mathematics, or from indulging in wild conjectures. We
rest our account on documentary evidence. A hieratic papyrus, in-
cluded in the Rhind collection of the British Museum, was deciphered
by Eisenlohr in 1877, and found to be a mathematical manual con-
taining problems in arithmetic and geometry. It was written by

- Ahmes some time before 1700 B. c., and was founded on an older work
believed by Birch to date back as far as 3400 B. c.! This curious

1C. A. Bretschneider Die Geometrie und die Geometer vor Euklides. Leipzig, 1870,
. 6-8. Carl Anton Bretschneider (1808-1878) was professor at the Realgymna-
sium at Gotha in Thuringia.

9



10 A HISTORY OF MATHEMATICS

papyrus—the most ancient mathematical handbook known to us—
puts us at once in contact with the mathematical thought in Egypt of
three or five thousand years ago. It is entitled ‘“Directions for ob-
taining the Knowledge of all Dark Things.” We see from it that the
Egyptians cared but little for theoretical results. Theorems are not
found in it at all. It contains “hardly any general rules of procedure,
but chiefly mere statements of results intended possibly to be ex-
plained by a teacher to his pupils.” ! In geometry the forte of the
Egyptians lay in making constructions and determining areas. The
area of an isosceles triangle, of which the sides measure 10 khets (a
unit of length equal to 16.6 m. by one guess and about thrice that
amount by another guess %) and the base 4 khets, was erroneously given
as 20 square khels, or half the product of the base by one side. The
area of an isosceles trapezoid is found, similarly, by multiplying half
the sum of the parallel sides by one of the non-parallel sides. The
area of a circle is found by deducting from the diameter b of its length
and squaring the remainder. Here 7 is taken= (4%)?=3.1604..., a
very fair approximation. The papyrus explains also such problems
as these,—To mark out in the field a right triangle whose sides are
10 and 4 units; or a trapezoid whose parallel sides are 6 and 4, and
the non-parallel sides each 20 units.

Some problems in this papyrus seem to imply a rudimentary knowl-
edge of proportion.

The base-lines of the pyramids run north and south, and east and
west, but probably only the lines running north and south were deter-
mined by astronomical observations. This, coupled with the fact
that the word harpedonapte, applied to Egyptian geometers, means
“rope-stretchers,” would point to the conclusion that the Egyptian,
like the Indian and Chinese geometers, constructed a right triangle
upon a given line, by stretching around three pegs a rope conmstmg
of three parts in the ratios 3 : 4 : 5, and thus forming a right triangle.?
If this explanation is correct, then the Egyptians were familiar, 2000
years B. C., with the well-known property of the right triangle, for
the special case at least when the sides are in the ratio 3: 4: 5.

On the walls of the celebrated temple of Horus at Edfu have been
found hieroglyphics, written about 100 B. C., which enumerate the
pieces of land owned by the priesthood, and give their areas. The
area of any quadrilateral, however irregular, is there found by the
formula 2% <f4 Thus, for a quadrangle whose opposite sides
are 5 and 8 20 and 15, is given the area 113} }.* The incorrect for-

1 James Gow, A Short History of Greck Mathematics. Cambridge, 1884, p.

2 A. Eisenlohr, Ein mathematisches Handbuch der allen Aegypter, 2. Ausgabe, Leip-
zig, 1897, p- 103; F. L. Griffith in Proceedings of the Society of Biblical Archaology,
1891, 1894.

iM. Cantor, 0p. cit. Vol. I, 3. Aufl,, 1907, p. 10

4 H. Hankel, Zur Geschichte der M athematik in Altcrllmm und Mittelalter, Leipzig,

1874, p. 86.
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mule of Ahmes of 3000 years B. C. yield generally closer approxima-
Lionf than those of the Edfu inscriptions, written 200 years after
Euclid!

The fact that the geometry of the Egyptians consists chiefly of
constructions, goes far to explain certain of its great defects. The
Egyptians failed in two essential points without which a science of
geometry, in the true sense of the word, cannot exist. In the first
place, they failed to construct a rigorously logical system of geometry,
resting upon a few axioms and postulates. A great many of their
rules, especially those in solid geometry, had probably not been proved
at all, but were known to be true merely from observation or as mat-
ters of fact. The second great defect was their inability to bring the
numerous special cases under a more general view, and thereby to
arrive at broader and more fundamental theorems. Some of the
simplest geometrical truths were divided into numberless special cases
of which each was supposed to require separate treatment.

Some particulars about Egyptian geometry can be mentioned more
advantageously in connection with the early Greek mathematicians
who came to the Egyptian priests for instruction.

An insight into Egyptian methods of numeration was obtained
through the ingenious deciphering of the hieroglyphics by Champol-
lion, Young, and their successors. The symbols used were the fol-
lowing: | for 1, ) for 10, @ for 100, & for 1000, [ for 10,000, %>
for 100,000, W for 1,000,000, () for 10,000,000.! The symbol for

1 represents a vertical staff; that for 10,000 a pointing finger; that
for 100,000 a burbot; that for 1,000,000, a man in astonishment. The
significance of the remaining symbols is very doubtful. The writing
of numbers with these hieroglyphics was very cumbrous. The unit
symbol of each order was repeated as many times as there were units
in that order. The principle employed was the additive. Thus, 23

was written ) ) | | |

Besides the hieroglyphics, Egypt possesses the hieratic and demotic
writings, but for want of space we pass them by.

Herodotus makes an important statement concerning the mode of
computing among the Egyptians. He says that they “calculate with
pebbles by moving the hand from right to left, while the Hellenes
move it from left to right.” Herein we recognise again that insiru-
mental method of figuring so extensively used by peoples of antiquity.
The Egyptians used the decimal scale. Since, in figuring, they moved
their hands horizontally, it seems probable that they used ciphering-
boards with vertical columns. In each column there must have been
not more than nine pebbles, for ten pebbles would be equal to one
pebble in the column next to the left.

¥ M. Cantor, op. cil. Vol. I, 3. Aufl,, 1907, p. 82.
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The Ahmes papyrus contains interesting information on the way
in which the Egyptians employed fractions. Their methods of opera-
tion were, of course, radically different from ours. Fractions were a
subject of very great difficulty with the ancients. Simultaneous
changes in both numerator and denominator were usually avoided.
In manipulating fractions the Babylonians kept the denominators (60)
constant. The Romans likewise kept them constant, but equal to 12.
The Egyptians and Greeks, on the other hand, kept the numerators
constant, and dealt with variable denominators. Ahmes used the
term “fraction” in a restricted sense, for he applied it only to unié-
fractions, or fractions having unity for the numerator. It was desig-
nated by writing the denominator and then placing over it a dot.
Fractional values which could not be expressed by any one unit-
fraction were expressed as the sum of two or more of them. Thus, he
wrote § 4 in place of §. While Ahmes knows  to be equal to } 1, he
curiously allows § to appear often among the unit-fractions and adopts
a special symbol for it. The first important problem naturally arising
was, how to represent any fractional value as the sum of unit-fractions.
This was solved by aid of a table, given in the papyrus, in which all

fractions of the form —— b (where n designates successively all the

numbers up to 49) are reduced to the sum of unit-fractions. Thus,
3=14%; ds=vs 155+ When, by whom, and how this table was cal-
culated we do not know. Probably it was compiled empirically at
dxﬁerent times, by different persons. It will be seen that by repeated
application of this table, a fraction whose numerator exceeds two can
be expressed in the desired form, provided that there is a fraction in
the table having the same denominator that ## has. Take, for ex-
ample, the problem, to divide 5 by 21. In the first place, =142+ 2.
From the table we get iy =1 #5. Then f =21t 4 (L )+ )=
#r+ (& &) =dr b dr=4 A=} f &5 The papyrus contains prob-
lems in which it is required that fractions be raised by addition or multi-
plication to given whole numbers or to other fractions. For example,
itis required to increase } I { o 5 to 1. The common denominator
taken appears to be 45, for the numbers are stated as 114, 53 3, 43,
1}, 1. The sum of these is 23} § & forty-fiftths. Add to this } L, and
the sum is§- Add }, a.nd we have 1. Hence the quantity to be added
to the given fraction is 3 L&

Ahmes gives the following example involving an arithmetical
progression: “Divide 100 loaves among 5 persons; 7 of what the first
three get is what the last two get. What is the difference?” Ahmes
gives the solution: “Make the difference s3; 23, 173, 12, 6§, I
Multiply by 13; 381, 294, 20, 10% £, 13.” How did Ahmes come upon
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54? Perhaps thus: ! Let ¢ and —d be the first term and the differ-
ence in the required arithmetical progression, then ,,[a+ (a—a)+
(a—zd)l = (6—3d)+(6—ad), whence d=5}(s—4d), i. e. the dif-
ference d is 54 times the last term. Assuming the last term 1, he
gets his first progression. The sum is 6o, but should be 100; hence
multiply by 13, for 6oxX13=100. We have here a method of solution
which appears again later among the Hindus, Arabs and modern
Europeans—the famous method of false position.

Ahmes speaks of a ladder consisting of the numbers 7, 49, 343,
2401, 16807. Adjacent to these powers of 7 are the words picture,
cai, mouse, barley, measure. What is the meaning of these mysterious
data? Upon the consideration of the problem given by Leonardo of
Pisa in his Liber abaci, 3000 years later: “7 old women go t.o Rome,
each woman has 7 mules, each mule carries 7 sacks, etc.”, Moritz
Cantor offers the following solution to the Ahmes riddle: 7 persons
have each 7 cats, each cat eats 7 mice, each mouse eats 7 ears of
barley, from each ear 7 measures of corn may grow. How many
persons, cats, mice, ears of barley, and measures of corn, altogether?
Ahmes gives 19607 as the sum of the geometric progression. Thus,
the Ahmes papyrus discloses a knowledge of both arithmetical and
geometrical progression.

Ahmes proceeds to the solution of equations of one unknown quan-
tity. The unknown quantity is called ‘hau’ or heap. Thus the

problem, “heap, its 1, its whole, it makes 19,” 7. e. $+x= 19. In

this case, the solution is as follows: & 19; 2= 2} §; x=16} L. But

in other problems, the solutions are effected by various other methods.
It thus appears that the beginnings of algebra are as ancient as those
of geometry.

That the period of Ahmes was a flowering time for Egyptian mathe-
matics appears from the fact that there exist other papyri (more re-
cently discovered) of the same period. They were found at Kahun,
south of the pyramid of Illahun. These documents bear close re4
semblance to Ahmes. They contain, moreover, examples of quadratic
equatlons, the earliest of which we have a record. One of them is: 2

A given surface of, say, 100 units of area, shall be represented as
the sum of two squares, whose sides are to each other as 1:3. In
modern symbols, the problem is, to find x and y, such that 2*+y*=
100 and x:y=1:4. The solution rests upon the method of false
position. Try z=1 and y=3%, then 2*4y*=3% and /}§=35. But
v/100=10 and 10+3=8. The rest of the solution cannot be made

! M. Cantor, 0. cit., Vol. I, 3. Aufl., 1907, p. 78.
2 Cantor, 0p. cit. Vol. I, 1907, pp. 95, 96.
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out, but probably was x=8X1, y=8X32=6. This solution leads to
the relation 62482=10% The symbol J* was used to designate
square root.

In some ways similar to the Ahmes papyrus is also the Akhmim
papyrus,! written over 2000 years later at Akhmim, a city on the
Nile in Upper Egypt. It is in Greek and is supposed to have been
written at some time between 500 and 8oo, A. D. It contains, besides
arithmetical examples, a table for finding “unit-fractions,” like that
of Ahmes. Unlike Ahmes, it tells how the table was constructed. The
rule, expressed in modern symbols, is as follows: J,=—"- -}-? e

Ly e
For z=2, this formula reproduces part of the table in Ahmes.

The principal defect of Egyptian arithmetic was the lack of a
simple, comprehensive symbolism—a defect which not even the Greeks
were able to remove.

The Ahmes papyrus and the other papyri of the same period repre-
sent the most advanced attainments of the Egyptians in arithmetic
and geometry. It is remarkable that they should have reached so
great proficiency in mathematics at so remote a period of antiquity.
But strange, indeed, is the fact that, during the next two thousand
years, they should have made no progress whatsoever in it. The con-
clusion forces itself upon us, that they resemble the Chinese in the
stationary character, not only of their government, but also of their
learning. All the knowledge of geometry which they possessed when
Greek scholars visited them, six centuries B. c., was doubtless known
to them two thousand years earlier, when they built those stupendous
and gigantic structures—the pyramids.

1]. Baillet, “Le papyrus mathématique d’Akhmim,” Mémoires publiés par les
membres de la mission archéologique fran¢aise au Caire, T. IX, 1t fascicule, Paris,
1892, pp. 1-88. See also Cantor, 0p. cit. Vol. I, 1907, pp. 67, 504.




THE GREEKS
Greek Geometry

About the seventh century B. c. an active commercial intercourse
sprang up between Greece and Egypt. Naturally there arose an
interchange of ideas as well as of merchandise. Greeks, thirsting for
knowledge, sought the Egyptian priests for instruction. Thales,
Pythagoras, (Enopides, Plato, Democritus, Eudoxus, all visited the
land of the pyramids. Egyptian ideas were thus transplanted across
the sea and there stimulated Greek thought, directed it into new lines,
and gave to it a basis to work upon. Greek culture, therefore, is not
primitive. Not only in mathematics, but also in mythology and
art, Hellas owes a debt to older countries. To Egypt Greece is in-
debted, among other things, for its elementary geometry. But this
does not lessen our admiration for the Greek mind. From the mo-
ment that Hellenic philosophers applied themselves to the study of
Egyptian geometry, this science assumed a radically different aspect.
“Whatever we Greeks receive, we improve and perfect,” says Plato.
The Egyptians carried geometry no further than was absolutely neces-
sary for their practical wants. The Greeks, on the other hand, had
within them a strong speculative tendency. They felt a craving to
discover the reasons for things. They found pleasure in the con-
templation of <deal relations, and loved science as science.

Our sources of information on the history of Greek geometry before
Euclid consist merely of scattered notices in ancient writers. The
early mathematicians, Thales and Pythagoras, left behind no written
records of their discoveries. A full history of Greek geometry and
astronomy during this period, written by Eudemus, a pupil of Aris-
totle, has been lost. It was well known to Proclus, who, in his com-
mentaries on Euclid, gives a brief account of it. This abstract con-
stitutes our most reliable information. We shall quote it frequently
under the name of Eudemian Summary.

The Ionic Schood

To Thales (640-546 B. C.), of Miletus, one of the “seven wise men,”
and the founder of the Ionic school, falls the honor of having intro-
duced the study of geometry into Greece. During middle life he
engaged in commercial pursuits, which took him to Egypt. He is
said to have resided there, and to have studied the physical sciences
and mathematics with the Egyptian priests. Plutarch declares that
Thales soon excelled his masters, and amazed King Amasis by measur-

15
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ing the heights of the pyramids from their shadows. According to
Plutarch, this was done by considering that the shadow cast by a
vertical staff of known length bears the same ratio to the shadow of
the pyramid as the height of the staff bears to the height of the pyra-
mid. This solution presupposes a knowledge of proportion, and the
Ahmes papyrus actually shows that the rudiments of proportion were
known to the Egyptians. According to Diogenes Laertius, the pyra-
mids were measured by Thales in a different way; viz. by finding the
length of the shadow of the pyramid at the moment when the shadow
3;:1 staff was equal to its own length. Probably both methods were

The Eudemian Summary ascribes to Thales the invention of the
theorems on the equality of vertical angles, the equality of the angles
at the base of an isosceles triangle, the bisection of a circle by any
diameter, and the congruence of two triangles having a side and the two
adjacent angles equal respectively. The last theorem, combined (we
have reason to suspect) with the theorem on similar triangles, he applied
to the measurement of the distances of ships from the shore. Thus
Thales was the first to apply theoretical geometry to practical uses.
The theorem that all angles inscribed in a semicircle are right angles
is attributed by some ancient writers to Thales, by others to Pythag-
oras. Thales was doubtless familiar with other theorems, not re-
corded by the ancients. It has been inferred that he knew the sum
of the three angles of a triangle to be equal to two right angles, and
the sides of equiangular triangles to be proportional.! The Egyptians
must have made use of the above theorems on the straight line, in
some of their constructions found in the Ahmes papyrus, but it was
left for the Greek philosopher to give these truths, which others saw,
but did not formulate into words, an explicit, abstract expression, and
to put into scientific language and subject to proof that which others
merely felt to be true. Thales may be said to have created the geom-
etry of lines, essentially abstract in its character, while the Egyptians
studied only the geometry of surfaces and the rudiments of solid
geometry, empirical in their character.?

With Thales begins also the study of scientific astronomy. He
acquired great celebrity by the prediction of a solar eclipse in 585 B. C.
Whether he predicted the day of the occurrence, or simply the year,
is not known. It is told of him that while contemplating the stars
during an evening walk, he fell into a ditch. The good old woman
attending him exclaimed, “How canst thou know what is doing in
the heavens, when thou seest not what is at thy feet?”

The two most prominent pupils of Thales were Anaximander (b. 611

1G. J. Allman, Greck Geomelry from Thales to Euclid. Dublin, 1889, p. r0.
George Johnston Allman (1824-1904) was professor of mathematics at Queen’s
College, Galway, Ireland.

2G. J. Allman, op. cit., p. 15.
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B. C.) and Anaximenes (b. 570 B. ¢.). They studied chiefly astronomy
and physical philosophy. Of Anaxagoras (500-428 B. C.), a pupil of
Anaximenes, and the last philosopher of the Ionic school, we know
little, except that, while in prison, he passed his time attempting to
square the circle. This is the first time, in the history of mathematics,
that we find mention of the famous problem of the quadrature of the
circle, that rock upon which so many reputations have been destroyed.
It turns upon the determination of the exact value of . Approxima-
tions to 7 had been made by the Chinese, Babylonians, Hebrews, and
Egyptians. But the invention of a method to find its exact value, is
the knotty problem which has engaged the attention of many minds
from the time of Anaxagoras down to our own. Anaxagoras did
not offer any solution of it, and seems to have luckily escaped par-
alogisms. The problem soon attracted popular attention, as appears
from the reference to it made in 414 B. C. by the comic poet Aris-
tophanes in his play, the “Birds.” !

About the time of Anaxagoras, but isolated from the Ionic school,
flourished (Enopides of Chios. Proclus ascribes to him the solution
of the following problems: From a point without, to draw a per-
pendicular to a given line, and to draw an angle on a line equal to a
given angle. That a man could gain a reputation by solving problems
so elementary as these, indicates that geometry was still in its infancy,
and that the Greeks had not yet gotten far beyond the Egyptian con-
structions.

The Tonic school lasted over one hundred years. The progress of
mathematics during that period was slow, as compared with its
growth in a later epoch of Greek history. A new impetus to its prog-
ress was given by Pythagoras.

The School of Pythagoras

Pythagoras (580?—500? B. C.) was one of those figures which im-
pressed the imagination of succeeding times to such an extent that
their real histories have become difficult to be discerned through the
mythical haze that envelops them. The following account of Pythag-
oras excludes the most doubtful statements. He was a native of
Samos, and was drawn by the fame of Pherecydes to the island of
Syros. He then visited the ancient Thales, who incited him to study
in Egypt. He sojourned in Egypt many years, and may have visited
Babylon. On his return to Samos, he found it under the tyranny of
Polycrates. Failing in an attempt to found a school there, he quitted
home again and, following the current of civilisation, removed to
Magna Grzcia in South Italy.” He settled at Croton, and founded
the famous Pythagorean school. This was not merely an academy for

1 F. Rudio in Bibliotheca mathematica, 3 S., Vol. 8, 1907-8, pp. 13~22.
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the teaching of philosophy, mathematics, and natural science, but it
was a brotherhood, the members of which were united for life. This
.brotherhood had observances approaching nmasonic peculiarity. They
were forbidden to divulge the discoveries and doctrines of their school.
Hence we uﬁhﬁﬁg&d to speak of the Pythagoreans as a body, and
find it difficult to determine to whom each particular discovery is to
be ascribed. The Pythagoreans themselves were in the habit of re-
ferring every discovery back to the great founder of the sect:

This school grew rapidly and gained considerable political ascend-
ency. But the mystic and secret observances, introduced in imitation
of Egyptian usages, and the aristocratic tendencies of the school,
caused it to become an object of suspicion. The democratic party in
Lower Italy revolted and destroyed the buildings of the Pythagorean
school. Pythagoras fled to Tarentum and thence to Metapontum,
where he was murdered.

Pythagoras has left behind no mathematical treatises, and our
sources of information are rather scanty. Certain it is that, in the
Pythagorean school, mathematics was the principal study. Pythag-
oras raised mathematics to the rank of a science. Arithmetic was
courted by him as fervently as geometry. In fact, arithmetic is the
foundation of his philosophic system.

The Eudemian Summary says that “Pythagoras changed the study
of geometry into the form of a liberal education, for he examined its
principles to the bottom, and investigated its theorems in an imma-
terial and intellectual manner.” His geometry was connected closely
with his arithmetic. He was especially fond of those geometrical
relations which admitted of arithmetical expression.

Like Egyptian geometry, the geometry of the Pythagoreans is much
concerned with areas. To Pythagoras is ascribed the important
theorem that the square on the hypotenuse of a right triangle is
equal to the sum of the squares on the other two sides. He had
probably learned from the Egyptians the truth of the theorem in the
special case when the sides are 3, 4, 5, respectively. The story goes,
that Pythagoras was so jubilant over this discovery that he sacrificed
a hecatomb. Its authenticity is doubted, because the Pythagoreans
believed in the transmigration of the soul and opposed the shedding
of blood. In the later traditions of the Neo-Pythagoreans this ob-
jection is removed by replacing this bloody sacrifice by that of “an
ox made of flour!” The proof of the law of three squares, given in
Euclid’s Elements, 1. 47, is due to Euclid himself, and not to the
Pythagoreans. What the Pythagorean method of proof was has
been a favorite topic for conjecture.

The theorem on the sum of the three angles of a triangle, presum-
ably known to Thales, was proved by the Pythagoreans after the
manner of Euclid. They demonstrated also that the plane about a
point is completely filled by six equilateral triangles, four squares, or
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three regular hexagons, so that it is possible to divide up.a plane into
figures of either kind.

From the equilateral triangle and the square arise the solids, namely,
the tetraedron, octaedron, icosaedron, and the cube. These solids
were, in all probability, known to the Egyptians, excepting, perhaps,
the icosaedron. In Pythagorean philosophy, they represent respec-
tively the four elements of the physical world; namely, fire, air, water,
and earth. Later another regular solid was discovered, namely, the
dodecaedron, which, in absence of a fifth element, was made to repre-
sent the universe itself. Iamblichus states that Hippasus, a Pytha-
gorean, perished in the sea, because he boasted that he first divulged
‘“ the sphere with the twelve pentagons.” The same story of death at yd
sea is told of a Pythagorean who disclosed the theory of irrationals. V\
The star-shaped pentagram was used as a symbol of recognition by X
the Pythagoreans, and was called by them Health.

Pythagoras called the sphere the most beautiful of all solids, and ,
the circle the most beautiful of all plane figures. The treatment of
the subjects of proportion and of srrational quantities by him and
his school will be taken up under the head of arithmetic.

~.According to Eudemus, the Pythagoreans invented the problems
concerning the application of areas, including the cases of defect and
excess, as in Euclid, VI. 28, 29.

They were also familiar with the construction of a polygon equal
in area to a given polygon and similar to another given polygon. This
problem depends upon several important and somewhat advanced
theorems, and testifies to the fact that the Pythagoreans made no
mean progress in geometry.

Of the theorems generally ascribed to the Italian school, some
cannot be attributed to Pythagoras himself, nor to his earliest suc-
cessors. The progress from empirical to reasoned solutions must, of
necessity, have been slow. It is worth noticing that on the circle
no theorem of any importance was discovered by this school.

Though politics broke up the Pythagorean fraternity, yet the school
continued to exist at least two centuries longer. Among the later
Pythagoreans, Philolaus and Archytas are the most prominent.
Philolaus wrote a book on the Pythagorean doctrines. By him were
first given to the world the teachings of the Italian school, which had
been kept secret for a whole century. The brilliant Archytas (428-
347 B. C.) of Tarentum, known as a great statesman and general, and
universally admired for his virtues, was the only great geometer
among the Greeks when Plato opened his school. Archytas was the
first to apply geometry to mechanics and to treat the latter subject
methodically. He also found a very ingenious mechanical solution
to the problem of the duplication of the cube. His solution involves
clear notions on the generation of cones and cylinders. This problem
reduces itself to finding two mean proportionals between two given
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lines. These mean proportionals were obtained by Archytas from
the section of a half-cylinder. The doctrine of proportion was ad-
vanced through him.

There is every reason to believe that the later Pythagoreans exer-
cised a strong influence on the study and development of mathematics
at Athens. The Sophists acquired geometry from Pythagorean
sources. Plato bought the works of Philolaus, and had a warm friend
in Archytas.

The Sophist School

After the defeat of the Persians under Xerxes at the battle of
Salamis, 480 B. C., a league was formed among the Greeks to preserve
the freedom of the now liberated Greek cities on the islands and coast
of the Agzan Sea. Of this league Athens soon became lmm an
dictator. She caused the separate treasury of the league to be nierg
into that of Athens, and then spent the money of her allies for her
own aggrandisement. Athens was also a great commercial centre.
Thus she became the richest and most beautiful city of antiquity.
All menial work was performed by slaves. The citizen of Athens wzs
well-to-do and enjoyed a large amount of leisure. The govemm?
being purely democratic, every citizen was a politician. To make his
influence felt among his fellow-men he must, first of all, be educated.
Thus there arose a demand for teachers. The supply came principally '
from Sicily, where Pythagorean doctrines had spread. These teachers
were called Sophists, or “wise men.” Unlike the Pythagoreans, they
accepted pay for their teaching. Although rhetoric was the principal
feature of their instruction, they also taught geometry, astronomy,
and philosophy. Athens soon became the headquarters of Grecian
men of letters, and of mathematicians in particular. The ‘home of
mathematics among the Greeks was first in the Ionian Islands, then
in Lower Italy, and during the time now under consideration, at
Athens.

The geometry of the circle, which had been entirely Neglected by
the Pythagoreans, was taken up by the Sophists. Nearly all their
discoveries were made in connection with their innumerable attempts
to solve the following three famous problems:—

(1) To trisect an arc or an angle.

(2) To “double the cube,” i. e., to find a cube whose volume is
double that of a given cube.

(3) To “square the circle,” 7. e. to find a square or some other
rectilinear figure exactly equal in area to a given circle.

These problems have probably been the subject of more discussion
and research than any other problems in mathematics. The bisection
of an angle was one of the easiest problems in geometry. The trisec-
tion of an angle, on the other hand, presented unexpected difficulties.
A right angle had been divided into three equal parts by the Pytha-
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Hippocrates added to his fame by writing a geometrical text-book,
called the Elements. This publication shows that the Pythagorean
habit of secrecy was being abandoned; secrecy was contrary to the
spirit of Athenian life.

The sophist Antiphon, a contemporary of Hippocrates, introduced
the process of exhaustion for the purpose of solving the problem of
the quadrature. He did himself credit by remarking that by inscrib-
ing in a circle a square or an equilateral triangle, and on its sides
erecting isosceles triangles with their vertices in the circumference,
and on the sides of these triangles erecting new triangles, etc., one
could obtain a succession of regular polygons, of which each approaches
nearer to the area of the circle than the previous one, until the circle
is finally exhausted. Thus is obtained an inscribed polygon whose
sides coincide with the circumference. Since there can be found
squanmes equal in area to any polygon, there also can be found a square
equalito the last polygon inscribed, and therefore equal to the circle
itself § Bryson of Heraclea, a contemporary of Antiphon, advanced -
the pfoblem of the quadrature considerably by circumscribing poly-
gons at the same time that he inscribed polygons. He erred, however,
in assuming that the area of a circle was the arithmetical mean be-
tween circumscribed and inscribed polygons. Unlike Bryson and
the rest of Greek geometers, Antiphon seems to have believed it
possible, by continually doubling the sides of an inscribed polygon,
to obtain a polygon coinciding with the circle. This question gave
rise to lively disputes in Athens. If a polygon can coincide with the
circle, then, says Simplicius, we must put aside the notion that magni-
tudes are divisible ad infinitum. This difficult philosophical question
led to paradoxies that are difficult to explain and that deterred Greek
mathematicians from introducing ideas of infinity into their geometry;
rigor in geometric proofs demanded the exclusion of obscure concep-
tions. Famous are the arguments against the possibility of motion
that were advanced by Zeno of Elea, the great dialectician (early in
the sth century B. c.). None of Zeno’s writings have come down to
us. We know of his tenets only through his critics, Plato, Aristotle,
Simplicius. Aristotle, in his Physics, VI, 9, ascribes to Zeno four
arguments, called “Zeno’s paradoxies”: (1) The “Dichotomy”: You
cannot traverse an infinite number of points in a finite time; you
must traverse the half of a given distance before you traverse the
whole, and the half 6f that again before you can traverse the whole.
This goes on ad infinitum, so that (if space is made up of points) there
is an infinite number in any given space, and it cannot be traversed
in a finite time. (2) The ‘““Achilles”: Achilles cannot overtake a tor-
toise. For, Achilles must first reach the place from which the tortoise
started. By that time the tortoise will have moved on a little way.
Achilles must then traverse that, and still the tortoise will be ahead.
He is always nearer, yet never makes up to it. (3) The “Arrow”:
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An arrow in any given moment of its flight must be at rest in some
particular point. (4) The “Stade”: Suppose three el rows of
points in juxtaposition, as in Fig. 1. One of these (B) is immovable,

A . . .. <A

B ... B

c .. .. C .. —
Fig. 1 Fig. 2

while A and C move in opposite directions with equal velocity, so
as to come into the position in Fig. 2. The movement of C relatively
to A will be double its movement relatively to B, or, in other words,
any given point in C has passed twice as many points in A as it has
in B. It cannot, therefore, be the case that an instant of time corre-
sponds to the passage from one point to another.

Plato says that Zeno’s purpose was “to protect the arguments of
Parmenides against those who make fun of him”; Zeno argues that
“there is no many,” he “denies plurality.” That Zeno’s reasoning was
wrong has been the view universally held since the time of Aristotle
down to the middle of the nineteenth century. More recently the
opinion has been advanced that Zeno was incompletely and incor-
rectly reported, that his arguments are serious efforts, conducted with
logical rigor. This view has been advanced by Cousin, Grote and P.
Tannery.! Tannery claims that Zeno did not deny motion, but
wanted to show that motion was impossible under the Pythagorean
conception of space as the sum of points, that the four arguments must
be taken together as constituting a dialogue between Zeno and an
adversary and that the arguments are in the form of a double dilemma
into which Zeno forces his adversary. Zeno’s arguments involve con-
cepts of continuity, of the infinite and infinitesimal; they are as much
the subjects of debate now as they were in the time of Aristotle.
Aristotle did not successfully explain Zeno’s paradoxes. He gave no
reply to the query arising in the mind of the student, how is it pos-
sible for a variable to reach its limit? Aristotle’s continuum was a
sensuous, physical one; he held that, since a line cannot be built up
of points, a line cannot actually be subdivided into points. “The
continued bisection of a quantity is unlimited, so that the unlimited
exists potentially, but is actually never reached.” No satisfactory
explanation of Zeno’s arguments was given before the creation of
Georg Cantor’s continuum and theory of aggregates.

The process of exhaustion due to Antiphon and Bryson gave rise
to the cumbrous but perfectly rigorous “method of exhaustion.” In
determining the ratio of the areas between two curvilinear plane
figures, say two circles, geometers first inscribed or circumscribed
similar polygons, and then by increasing indefinitely the number of

1 See F. Cajori, “The History of Zeno’s Arguments on Motion” in the Americ.
Math. Monihly, Vol. 22, 1915, p. 3.
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sides, nearly exhausted the spaces between the polygons and circum-
ferences. From the theorem that similar polygons inscribed in circles
are to each other as the squares on their diameters, geometers may
have divined the theorem attributed to Hippocrates of Chios that the
circles, which differ but little from the last drawn polygons, must be
to each other as the squares on their diameters. But in order to ex-
clude all vagueness and possibility of doubt, later Greek geometers
applied reasoning like that in Euclid, X1I, 2, as follows: Let C and ¢,
D and d be respectively the circles and diameters in question. Then
if the proportion D? : d*=C : ¢ is not true, suppose that D? : @?=C : ¢l
If ¢' <c, then a polygon p can be inscribed in the circle ¢ which comes
nearer to it in area than does ¢!. If P be the corresponding polygon
in C, then P:p=D?:d?=C :c!, and P:C=p :c!. Since p>cl, we
have P>C, whichisabsurd. Next they proved by this same method of
reductio ad. absurdum the falsity of the supposition that ¢!>¢. Since
¢! can be neither larger nor smaller than ¢, it must be equal to it,
Q.E.D. Hankel refers this Method of Exhaustion back to Hippocrates
of Chios, but the reasons for assigning it to this early writer, rather
than to Eudoxus, seem insufficient.

Though progress in geometry at this period is traceable only at
Athens, yet Ionia, Sicily, Abdera in Thrace, and Cyrene produced
mathematicians who made creditable contributions to the science. We
can mention here only Democritus of Abdera (about 460-370 B. C.),
a pupil of Anaxagoras, a friend of Philolaus, and an admirer of the
Pythagoreans. He visited Egypt and perhaps even Persia. He was
a successful geometer and wrote on incommensurable lines, on geom-
etry, on numbers, and on perspective. None of these works are extant.
He used to boast that in the construction of plane figures with proof
no one had yet surpassed him, not even the so-called harpedonaptz
(“rope-stretchers”) of Egypt. By this assertion he pays a flattering
compliment to the skill and ability of the Egyptians.

The Platonic School

During the Peloponnesian War (431-404 B. C.) the progress of geom-
etry was checked. After the war, Athens sank into the background
as a minor political power, but advanced more and more to the front
as the leader in philosophy, literature, and science. Plato was born
at Athens in 429 B. c., the year of the great plague, and died in 348.
He was a pupil and near friend of Socrates, but it was not from him
that he acquired his taste for mathematics. After the death of
Socrates, Plato travelled extensively. In Cyrene he studied mathe-
matics under Theodorus. He went to Egypt, then to Lower Italy
and Sicily, where he came in contact with the Pythagoreans. Archytas .
of Tarentum and Timeus of Locri became his intimate friends. On
nis return to Athens, about 389 B. c., he founded his school in the
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groves of the Academia, and devoted the remainder of his life to teach-
ing and writing.

Plato’s physical philosophy is partly based on that of the Pytha-
goreans. Like them, he sought in arithmetic and geometry the key
to the universe. When questioned about the occupation of the Deity,
Plato answered that ‘“He geometrises continually.” Accordingly, a
knowledge of geometry is a necessary preparation for the study of
philosophy. To show how great a value he put on mathematics and
how necessary it is for higher speculation, Plato placed the inscrip-
tion over his porch, “Let no one who is unacquainted with geometry
enter here.” Xenocrates, a successor of Plato as teacher in the
Academy, followed in his master’s footsteps, by declining to admit a
pupil who had no mathematical training, with the remark, “Depart,
for thou hast not the grip of philosophy.” Plato observed that geom-
etry trained the mind for correct and vigorous thinking. Hence it
was that the Eudemian Summary says, “He filled his writings with
mathematical discoveries, and exhibited on every occasion the re-
markable connection between mathematics and philosophy.”

With Plato as the head-master, we need not wonder that the Pla-
tonic school produced so large a number of mathematicians. Plato
did little real original work, but he made valuable improvements in
the logic and methods employed in geometry. It is true that the
Sophist geometers of the previous century were fairly rigorous in their
proofs, but as a rule they did not reflect on the inward nature of their
methods. They used the axioms without giving them explicit ex-
pression, and the geometrical concepts, such as the point, line, surface,
etc., without assigning to them formal definitions.! The Pythagoreans
called a point “unity in position,” but this is a statement of a philo-
sophical theory rather than a definition. Plato objected to calling a
point a “geometrical fiction.” He defined a point as the “beginning
of a line” or as “an indivisible line,” and a line as “length without
breadth.” He called the point, line, surface, the “boundaries” of
the line, surface, solid, respectively. Many of the definitions in Euclid
are to be ascribed to the Platonic school. The same is probably true
of Euclid’s axioms. Aristotle refers to Plato the axiom that “equals
subtracted from equals leave equals.”

One of the greatest achievements of Plato and his school is the in-.
vention of analysis as a method of proof. To be sure, this method
had been used unconsciously by Hippocrates and others; but Plato,
like a true philosopher, turned the instinctive logic into a conscious,
legitimate method.

1 “If any one scientific invention can claim pre-eminence over all others, I should
be inclined myself to erect a monument to the unknown inventor of the mathe-
matical point, as the supreme type of that process of abstraction which has been
a necessary condition of scientific work from the very beginning.” Horace Lamb’s
Address, Section A, Brit. Ass’n, 1904.
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The terms synthesis and analysis are used in mathematics in a more
special sense than in logic. In ancient mathematics they had a dif-
ferent meaning from what they now have. The oldest definition of
mathematical analysis as opposed to synthesis is that given in Euclid,
XIII, s, which in all probability was framed by Eudoxus: “ Analysis is
the obtaining of the thing sought by assuming it and so reasoning up
to an admitted truth; synthesis is the obtaining of the thing sought
by reasoning up to the inference and proof of it.”” The analytic method
is not conclusive, unless all operations involved in it are known to
be reversible. To remove all doubt, the Greeks, as a rule, added to
the analytic process a synthetic one, consisting of a reversion of all
operations occurring in the analysis. Thus the aim of analysis was
to aid in the discovery of synthetic proofs or solutions.

Plato is said to have solved the problem of the duplication of the
cube. But the solution is open to the very same objection which he
made to the solutions by Archytas, Eudoxus, and Men®chmus. He
called their solutions not geometrical, but mechanical, for they re-
quired the use of other instruments than the ruler and compasses.
He said that thereby “the good of geometry is set aside and destroyed,
for we again reduce it to the world of sense, instead of elevating and
imbuing it with the eternal and incorporeal images of thought, even
as it is employed by God, for which reason He always is God.” These
objections indicate either that the solution is wrongly attributed to
Plato or that he wished to show how easily non-geometric solutions
of that character can be found. It is now rigorously established that
the duplication problem, as well as the trisection and quadrature
problems, cannot be solved by means of the ruler and compasses
only.

Plato gave a healthful stimulus to the study of stereometry, which
until his time had been entirely neglected by the Greeks. The sphere
and the regular solids have been studied to some extent, but the prism,
pyramid, cylinder, and cone were hardly known to exist. All these
solids became the subjects of investigation by the Platonic school.
One result of these inquiries was epoch-making. Mengechmus, an
associate of Plato and pupil of Eudoxus, invented the conic sections,
which, in course of only a century, raised geometry to the loftiest height
which it was destined to reach during antiquity. Menzchmus cut
three kinds of cones, the “right-angled,” “acute-angled,” and “obtuse-
angled,” by planes at right angles to a side of the cones, and thus
obtained the three sections which we now call the parabola, ellipse,
and hyperbola. Judging from the two very elegant solutions of the
“Delian Problem” by means of intersections of these curves, Menach-
mus must have succeeded well in investigating their properties. In
what manner he carried out the graphic construction of these curves
is not known.

Another great geometer was Dinostratus, the brother of Menazch-
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mus and pupil of Plato. Celebrated is his mechanical solution of the
quadrature of the circle, by means of the quadraérix of Hippias.

Perhaps the most brilliant mathematician of this period was
Eudoxus. He was born at Cnidus about 408 B. cC., studied under
Archytas, and later, for two months, under Plato. He was imbued
with a true spirit of scientific inquiry, and has been called the father
of scientific astronomical observation. From the fragmentary notices
of his astronomical researches, found in later writers, Ideler and
Schiaparelli succeeded in reconstructing the system of Eudoxus with
its celebrated representation of planetary motions by ‘concentric
spheres.” Eudoxus had a school at Cyzicus, went with his pupils to
Athens, visiting Plato, and then returned to Cyzicus, where he died
355 B. C. The fame of the academy of Plato is to a large extent due
to Eudoxus’s pupi's of the school at Cyzicus, among whom are Men-
echmus, Cinostratus, Athenzus, and Helicon. Diogenes Laertius de-
scribes Eudoxus as astronomer, physician, legislator, as well as geom-
eter. The Exdemian Summary says that Eudoxus “first increased the
number of general theorems, added to the three proportions three
more, and raised to a considerable quantity the learning, begun by
Plato, on the subject of the section, to which he applied the analytical
method.” By this “section” is meant, no doubt, the “golden section”
(sectio aurea), which cuts a line in extreme and mean ratio. The first
five propositions in Euclid XIII relate to lines cut by this section, and
are generally attributed to Eudoxus. Eudoxus added much to the
knowledge of solid geometry. He proved, says Archimedes, that a
pyramid is exactly one-third of a prism, and a cone one-third of a
cylinder, having equal base and altitude. The proof that spheres are
to each other as the cubes of their radii is probably due to him. He
made frequent and skilful use of the method of exhaustion, of which
he was in all probability the inventor. A scholiast on Euclid, thought
to be Proclus, says further that Eudoxus practically invented the
whole of Euclid’s fifth book. Eudoxus also found two mean propor-
tionals between two given lines, but the method of solution is not
known.

Plato has been called a maker of mathematicians. Besides the
pupils already named, the Eudemian Summary mentions the following:
Theetetus of Athens, a man of great natural gifts, to whom, no doubt,
Euclid was greatly indebted in the composition of the roth book,!
treating of incommensurables and of the 13th book; Leodamas of
Thasos; Neocleides and his pupil Leon, who added much to the work
of their predecessors, for Leon wrote an Elements carefully designed,
both in number and utility of its proofs; Theudius of Magnesia, who
composed a very good book of Elements and generalised propositions,
which had been confined to particular cases; Hermotimus of Col-
ophon, who discovered many propositions of the Elements and com-

1 G. J. Allman, op. cit., p. 212.
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posed some on Joci; and, finally, the names of Amyclas of Heraclea,
Cyzicenus of Athens, and Philippus of Mende.

A skilful mathematician of whose life and works we have no details
is Aristeeus, the elder, probably a senior contemporary of Euclid. The
fact that he wrote a work on conic sections tends to show that much
progress had been made in their study during the time of Menzchmus.
Aristzus wrote also on regular solids and cultivated the analytic
method. His works contained probably a summary of the researches
of the Platonic school.!

Aristotle (384-322 B. C.), the systematiser of deductive logic, though
not a professed mathematician, promoted the science of geometry by
improving some of the most difficult definitions. His Physics contains
passages with suggestive hints of the principle of virtual velocities.
He gave the best discussion of continuity and of Zeno’s arguments
against motion, found in antiquity. About his time there appeared a
work called Mechanica, of which he is regarded by some as the author.
Mechanics was totally neglected by the Platonic school.

The First Alexandrian School

In the previous pages we have seen the birth of geometry in Egypt,
its transference to the Ionian Islands, thence to Lower Italy and to
Athens.. We have witnessed its growth in Greece from feeble child-
hood to vigorous manhood, and now we shall see it return to the land
of its birth and there derive new vigor.

During her declining years, immediately following the Pelopon-
nesian War, Athens produced the greatest scientists and philosophers
of antiquity. It was the time of Plato and Aristotle. In 338 B. C,, at
the battle of Cheronea, Athens was beaten by Philip of Macedon,
and her power was broken forever. Soon after, Alexander the Great,
the son of Philip, started out to conquer the world. In eleven years
he built up a great empire which broke to pieces in a day. Egypt
fell to the lot of Ptolemy Soter. Alexander had founded the seaport
of Alexandria, which soon became the “noblest of all cities.” Ptolemy
made Alexandria the capital. The history of Egypt during the next
three centuries is mainly the history of Alexandria. Literature,
philosophy, and art were diligently cultivated. Ptolemy created the
university of Alexandria. He founded the great Library and built
laboratories, museums, a zodlogical garden, and promenades. Alex-
andria soon became the great centre of learning.

Demetrius Phalereus was invited from Athens to take charge of the
Library, and it is probable, says Gow, that Euclid was invited with
him to open the mathematical school. According to the studies of
H. Vogt,? Euclid was born about 365 B. c. and wrote his Elements

1 G. J. Allman, op. cil., p. 205.
2 Bibliotheca mathematica, 3 S., Vol. 13, 1913, pp. 193—202.
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between 330 and 320 B. c. Of the life of Euclid, little is known, except
what is added by Proclus to the Eudemian Summary. Euclid, says
Proclus, was younger than Plato and older than Eratosthenes and
Archimedes, the latter of whom mentions him. He was of the Platonic
sect, and well read in its doctrines. He collected the Elements, put
in order much that Eudoxus had prepared, completed many things of
Theztetus, and was the first who reduced to unobjectionable demon-
stration the imperfect attempts of his predecessors. When Ptolemy
once asked him if geometry could not be mastered by an easier process
than by studying the Elements, Euclid returned the answer, “There
is no royal road to geometry.” Pappus states that Euclid was distin-
guished by the fairness and kindness of his disposition, particularly
toward those who could do anything to advance the mathematical
sciences. Pappus is evidently making a contrast to Apollonius, of
whom he more than insinuates the opposite character.! A pretty
little story is related by Stobaus: 2 “A youth who had begun to read
geometry with Euclid, when he had learnt the first proposition, in-
quired, ‘What do I get by learning these things?’ So Euclid called
his slave and said, ‘Give him threepence, since he must make gain
out of what he learns.”” These are about all the personal details
preserved by Greek writers. Syrian and Arabian writers claim to
know much more, but they are'unreliable. At one time Euclid of
Alexandria was universally confounded with Euclid of Megara, who
lived a century earlier.

The fame of Euclid has at all times rested mainly upon his book on
geometry, called the Elements. This book was so far superior to the
Elements written by Hippocrates, Leon, and Theudius, that the latter
works soon perished in the struggle for existence. The Greeks gave
Euclid the special title of ‘“the author of the Elements.” 1t is a rc-
markable fact in the history of gcometry, that the Elements of Euclid,
written over two thousand years ago, are still regarded by some as the
best introduction to the mathematical sciences. In England they
were used until the present century extensively as a text-book in
schools. Some editors of Euclid have, however, been inclined to credit
him with more than is his due. They would have us believe that a
finished and unassailable system of geometry sprang at once from the
brain of Euclid, “an armed Minerva from the head of Jupiter.” They
fail to mention the earlicr eminent mathematicians from whom Euclid
got his material. Comparatively few of the propositions and proofs
in the Elemenis are his own discoveries. In fact, the proof of the
“Theorem of Pythagoras’ is the only one directly ascribed to him.
Allman conjectures that the substance of Books I, I1, IV comes from
the Pythagoreans, that the substance of Book VI is due to the Pytha-

! A. De Morgan, “Eucleides” in Smith’s Dictionary of Greek and Roman Biography
and Mythology.

2 J. Gow, op. cil., p. 195.
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goreans and Eudoxus, the latter contributing the doctrine of propor-
tion as applicable to incommensurables and also the Method of Ex-
haustions (Book XII), that Theztetus contributed much toward
Books X and XIII, that the principal part of the original work of
Euclid himself is to be found in Book X.! Euclid was the greatest
systematiser of his time. By careful selection from the material before
him, and by logical arrangement of the propositions selected, he built
up, from a few definitions and axioms, a proud and lofty structure.
It would be erroneous to believe that he incorporated into his Elements
all the elementary theorems known at his time. Archimedes, Apol-
lonius, and even he himself refer to theorems not included in his Ele-
menis, as being well-known truths.

The text of the Elements that was commonly used in schools was
Theon’s edition. Theon of Alexandria, the father of Hypatia, brought
out an edition, about 700 years after Euclid, with some alterations in
the text. As a consequence, later comxmentators, especially Robert
Simson, who labored under the idea that Euclid must be absolutely -
perfect, made Theon the scapegoat for all the defects which they
thought they could discover in the text as they knew it. But among
the manuscripts sent by Napoleon I from the Vatican to Paris was
found a copy of the Elements believed to be anterior to Theon’s recen-
sion. Many variations from Theon’s version were noticed therein,
but they were not at all important, and showed that Theon generally
made only verbal changes. The defects in the Elements for which
Theon was blamed must, therefore, be due to Euclid himself. The
Elements used to be considered as offering models of scrupulously
rigorous demonstrations. It is certainly true that in point of rigor
it compares favorably with its modern rivals; but when examined
in the light of strict mathematical logic, it has been pronounced by
C. S. Peirce to be “riddled with fallacies.” The results are correct
only because the writer’s experience keeps him on his guard. In
many proofs Euclid relics partly upon intuition.

At the beginning of our editions of the Elements, under the head of
definitions, are given the assumptions of such notions as the point,
line, etc., and some verbal explanations. Then follow three postulates
or demands, and twelve axioms. The term ‘ axiom” was used by
Proclus, but not by Euclid. He speaks, instcad, of “common no-
tions”’—common either to all men or to all sciences. There has been
much controversy among ancient and modern critics on the postulates
and axioms. An immense preponderance of manuscripts and the
testimony of Proclus place the ‘“axioms” about right angles and
parallels among the postulates.? This is indeed their proper place,

1G. J. Allman, op. cil., p. 211.

2 A. De Morgan, loc. cit.; H. Hankel, Theorie der Complexen Zahlensysteme, Leip-
zig, 1867, p. 52. In the various editions of Euclid’s Elements different numbers are
assigned to the axioms. Thus the parallel axiom is called by Robert Simson the
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for they are really assumptions, and not common notions or axioms.
The postulate about parallels plays an important réle in the history
of non-Euclidean geometry. An important postulate which Euclid
missed was the one of superposition, according to which figures can
be moved about in space without any alteration in form or magnitude.

The Elements contains thirteen books by Euclid, and two, of which
it is supposed that Hypsicles and Damascius are the authors. The
first four books are on plane geometry. The fifth book treats of the
theory of proportion as applied to magnitudes in general. It has been
greatly admired because of its rigor of treatment. Beginners find the
book difficult. Expressed in modern symbols, Euclid’s definition of
proportion is thus: Four magnitudes, a, b, ¢, d, are in proportion, when

. . > >
for any integers m and n, we have simultaneously ma?nb, and me

nd. Says T. L. Heath,! “certain it is that there is an exact corre-
spondence, almost coincidence, between Euclid’s definition of equal
ratios and the modern theory of irrationals due to Dedekind. H. G.
Zeuthen finds a close resemblance between Euclid’s definition and
Weierstrass’ definition of equal numbers. The sixth book develops
the geometry of similar figures. Its 27th Proposition is the earliest
maximum theorem known to history. The seventh, eighth, ninth
books are on the theory of numbers, or on arithmetic. According to
P. Tannery, the knowledge of the existence of irrationals must have
greatly affected the mode of writing the Elements. The old naive
theory of proportion being recognized as untenable, proportions
are not used at all in the first four books. The rigorous theory of
Eudoxus was postponed as long as possible, because of its difficulty.
The interpolation of the arithmetical books VII-IX is explained
as a preparation for the fuller treatment of the irrational in book X.
Book VII explains the G. C. D. of two numbers by the process
of division (the so-called “Euclidean method”). The theory of
proportion of (rational) numbers is then developed on the basis of
the definition, “ Numbers are proportional when the first is the same
multiple, part, or parts of the second that the third is of the fourth.”
This is believed to be the older, Pythagorean theory of proportion.2
The tenth treats of the theory of incommensurables. De Morgan con-
sidered this the most wonderful of all. We give a fuller account of it
under the head of Greek Arithmetic. The next three books are on

12th, by Bolyai the 11th, by Clavius the 13th, by F. Peyrard the sth. It is called
the sth postulale in old manuscripts, also by Heiberg and Menge in their annotated
edition of Euclid’s works, in Greek and Latin, Leipzig, 1883, and by T. L. Heath
in his Thirteen Books of Euclid's Elements, Vols. I-III, Cambridge, 1908. Heath’s
is the most recent translation into English and is very fully and ably annotated.

1T, L. Heath, op. cit., Vol. II, p. 124.

2 Read H. B. Fine, “Ratio, Proportion and Measurement in the Elements of
Euclid,” Annals of Mathematics, Vol. XIX, 1917, pp. 70-76.
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stereometry. The eleventh contains its more elementary theorems;
the twelfth, the metrical relations of the pyramid, prism, cone, cylinder,
and sphere. The thirteenth treats of the regular polygons, especially
of the triangle and pentagon, and then uses them as faces of the five
regular solids; namely, the tetraedron, octaedron, icosaedron, cube,
and dodecaedron. The regular solids were studied so extensively by
the Platonists that they received the name of * Platonic figures.” The
statement of Proclus that the whole aim of Euclid in writing the Ele-
menis was to arrive at the construction of the regular solids, is ob-
viously wrong. The fourteenth and fifteenth books, treating of solid
geometry, are apocryphal. It is interesting to see that to Euclid, and
to Greek mathematicians in general, the existence of areas was evident
froa intuition. The notion of non-quadrable areas had not occurred
to them.

A remarkable feature of Euclid’s, and of all Greek geometry before
Archimedes is that it eschews mensuration. Thus the theorem that
the area of a triangle equals half the product of its base and its altitude
is foreign to Euclid.

Another extant book of Euclid is the Data. It seems to have been
written for those who, having completed the Elements, wish to acquire
the power of solving new problems proposed to them. The Dala is
a course of practice in analysis. It contains little or nothing that an
intelligent student could not pick up from the Elements itself. Hence
it contributes little to the stock of scientific knowledge. The following
are the other works with texts more or less complete and generally
attributed to Euclid: Phenomena, a work on spherical geometry and
astronomy; Optics, which develops the hypothesis that light proceeds
from the eye, and not from the object seen; Catopirica, containing
propositions on reflections from mirrors: De Divisionibus, a treatise on
the division of plane figures into parts having to one another a given
ratio; ! Sectio Canonis, a work on musical intervals. His treatise on
Porisms is lost; but much learning has been expended by Robert Sim-
son and M. Chasles in restoring it from numerous notes found in the
writings of Pappus. The term “porism” is vague in meaning. Ac-
cording to Proclus, the aim of a porism is not to state some property
or truth, like a theorem, nor to effect a construction, like a problem,
but to find and bring to view a thing which necessarily exists with
given numbers or a given construction, as, to find the centre of a given
circle, or to find the G. C. D. of two given numbers. Porisms, ac-
cording to Chasles, are incomplete theorems, “expressing certain
relations between things variable according to a common law.”
Euclid’s other lost works are Fallacies, containing exercises in detec-
tion of fallacies; Conic Sections, in four books, which are the foundation
of a work on the same subject by Apollonius; and Loci on a Surface,

1 A careful restoration was brought out in 1915 by R. C. Archibald of Brown
University.
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the meaning of which title is not understood. Heiberg believes it to
mean “loci which are surfaces.”

The immediate successors of Euclid in the mathematical school at
Alexandria were probably Conon, Dositheus, and Zeuxippus, but
little is known of them.

Archimedes (287?-212 B. C.), the greatest mathematician of an-
tiquity, was born in Syracuse. Plutarch calls him a relation of King
Hieron; but more reliable is the statement of Cicero, who tells us he
was of low birth. Diodorus says he visited Egypt, and, since he was
a great friend of Conon and Eratosthenes, it is highly probable that
he studied in Alexandria. This belief is strengthened by the fact that
he had the most thorough acquaintance with all the work previously
done in mathematics. He returned, however, to Syracuse, where he
made himself useful to his admiring friend and patron, King Hieron,
by applying his extraordinary inventive genius to the construction of
various war-engines, by which he inflicted much loss on the Romans
during the siege of Marcellus. The story that, by the use of mirrors
reflecting the sun’s rays, he set on firc the Roman ships, when they
came within bow-shot of the walls, is probably a fiction. The city
was taken at length by the Romans, and Archimedes perished in the
indiscriminate slaughter which followed. According to tradition, he
was, at the time, studying the diagram to some problem drawn in the
sand. Asa Roman soldier approached him, he called out, “Don’t spoil
my circles.” The soldier, feeling insulted, rushed upon him and killed
him. No blame attaches to the Roman general Marcellus, who ad-
mired his genius, and raised in his honor a tomb bearing the figure
of a sphere inscribed in a cylinder. When Cicero was in Syracuse,
he found the tomb buried under rubbish.

Archimedes was admired by his fellow-citizens chiefly for his me-
chanical inventions; he himself prized far more highly his discoveries
in pure science. He declared that “every kind of art which was con-
nected with daily needs was ignoble and vulgar.” Some of his works
have been lost. The following are the extant books, arranged ap-
proximately in chronological order: 1. Two books on .Equiponderance
of Planes or Cenires of Plane Gravities, between which is inserted his
treatise on the Quadrature of the Parabola; 2. The Method; 3. Two books
on the Sphere and Cylinder; 4. The Mcasurement of the Circle; 5. On
Spirals; 6. Conoids and Spheroids; 7. The Sand-Counter; 8. Two books
on Floating Bodies; g. Fifteen Lemmas.

In the book on the Measurement of the Circle, Archimedes proves
first that the area of a circle is equal to that of a right triangle having
the length of the circumference for its base, and the radius for its
altitude. In this he assumes that there exists a straight line equal in
length to the circumference—an assumption objected to by some
ancient critics, on the ground that it is not evident that a straight
line can equal a curved one. The finding of such a line was the next




GREEK GEOMETRY 35

problem. He first finds an upper limit to the ratio of the circumfer-
ence to the diameter, or . To do this, he starts with an equilateral
triangle of which the base is a tangent and the vertex is the centre of
the circle. By successively bisecting the angle at the centre, by com-
paring ratios, and by taking the irrational square roots always a little
too small, he finally arrived at the conclusion that w<34. Next he
finds a lower limit by inscribing in the circle regular polygons of 6, 12,
24, 48, 96 sides, finding for each successive polygon its perimeter,
which is, of course, always less than the circumference. Thus he
finally concludes that “the circumference of a circle exceeds three
times its diameter by a part which is less than } but more than }$
of the diameter.” This approximation is exact enough for most pur-
ses.

The Quadrature of the Parabola contains two solutions to the prob-
lem—one mechanical, the other geometrical. The method of ex-
haustion is used in both.

It is noteworthy that, perhaps through the influence of Zeno, in-
finitesimals (infinitely small constants) were not used in rigorous
demonstration. In fact, the great geometers of the period now under
consideration resorted to the radical measure of excluding them from
demonstrative geometry by a postulate. This was done by Eudoxus,
Euclid, and Archimedes. In the preface to the Guadrature of the Parab-
ola, occurs the so-called “ Archimedean postulate,” which Archimedes
himself attributes to Eudoxus: “When two spaces are unequal, it is
possible to add to itsclf the difference by which the lesser is surpassed
by the greater, so often that every finite space will be exceeded.”
Euclid (Elements V, 4) gives the postulate in the form of a definition:
“Magnitudes are said to have a ratio to one another, when the less
can be multiplied so as to exceed the other.” Nevertheless, infinitesi-
mals may have been used in tentative researches. That such was the
case with Archimedes is evident from his book, The Method, formerly
thought to be irretrievably lost, but fortunately discovered by Heiberg
in 1906 in Constantinople. The contents of this book shows that he
considered infinitesimals sufficiently scientific to suggest the truths of
theorems, but not to furnish rigorous proofs. In finding the areas of
parabolic segments, the volumes of spherical segments and other solids
of revolution, he uses a mechanical process, consisting of the weighing
of infinitesimal elements, which he calls straight lines or plane areas,
but which are really infinitely narrow strips or infinitely thin plane
lamine.! The breadth or thickness is regarded as being the same in
the elements weighed at any one time. The Archimedean postulate
did not command the interest of mathematicians until the modern
arithmetic continuum was created. It was O. Stolz that showed that
it was a consequence of Dedekind’s postulate relating to “sections.”

1T, L. Heath, Method of Archimedes, Cambridge, 1912, p. 8.
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It would seem that, in his great researches, Archimedes’ mode of
procedure was, to start with mechanics (centre of mass of surfaces and
solids) and by his infinitesimal-mechanical method to discover new
results for which later he deduced and published the rigorous proofs.
Archimedes knew the integral ! fx3dx.

Archimedes studied also the ellipse and accomplished its quadrature,
but to the hyperbola he seems to have paid less attention. It is be-
lieved that he wrote a book on conic sections.

Of all his discoveries Archimedes prized most highly those in his
Sphere and Cylinder. In it are proved the new theorems, that the
surface of a sphere is equal to four times a great circle; that the surface
segment of a sphere is equal to a circle whose radius is the straight
line drawn from the vertex of the segment to the circumference of its
basal circle; that the volume and the surface of a sphere are § of the
volume and surface, respectively, of the cylinder circumscribed about
the sphere. Archimedes desired that the figure to the last proposition
be inscribed on his tomb. - This was ordered done by Marcellus.

The spiral now called the “spiral of Archimedes,” and described in
the book On Spirals, was discovered by Archimedes, and not, as some
believe, by his friend Conon.? His treatise thereon is, perhaps, the
- most wonderful of all his works. Nowadays, subjects of this kind
are made easy by the use of the infinitesimal calculus. In its stead
the ancients used the method of exhaustion. Nowhere is the fertility
of his genius more grandly displayed than in his masterly use of this
method. With Euclid and his predecessors the method of exhaustion
was only the means of proving propositions which must have been
seen and believed before they were proved. But in the hands of
Archimedes this method, perhaps combined with his infinitesimal-
mechanical method, became an instrument of discovery.

By the word “conoid,” in his book on Conoids and Spheroids, is
meant the solid produced by the revolution of a parabola or a hyper-
bola about its axis. Spheroids are produced by the revolution of an
ellipse, and are long or flat, according as the ellipse revolves around
the major or minor axis. The book leads up to the cubature of these

solids. A few constructions of geo-

¢ metric figures were given by Archi-
E medes and Appolonius which were
F B effected by “insertions.” In the

D 21 following trisection of an angle, at-

tributed by the Arabs to Archi-

medes, the “insertion” is achieved by the aid of a graduated ruler.?
To trisect the angle CAB, draw the arc BCD. Then “insert” the

VH. G. Zeuthen in Bibliotheca mathematica, 3 S., Vol. 7, 1906-7, p. 347.

* M. Cantor, 0p. cit., Vol. I, 3 Aufl., 1907, p. 306.

*F. Enriques, Fragen der Elementargeometrie, deutsche Ausg. v. H. Fleischer, II,
Leipzig, 1907, p. 234.
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distance FE, equal to AB, marked on an edge passing through C
and moved until the points E and F are located as shown in the
figure. The required angle is EFD.

His arithmetical treatise and problems will be considered later.
We shall now notice his works on mechanics. Archimedes is the
author of the first sound knowledge on this subject. Archytas, Aris-
totle, and others attempted to form the known mechanical truths into
a science, but failed. Aristotle knew the property of the lever, but
could not establish its true mathematical theory. The radical and
fatal defect in the speculations of the Greeks, in the opinion of Whewell,
was “that though they had in their possession facts and ideas, the

_ideas were not distinct and appropriate to the facts.”” For instance,
Aristotle asserted that when a body at the end of a lever is moving,
it may be considered as having two motions; one in the direction of
the tangent and one in the direction of the radius; the former motion
is, he says, according to nature, the latter conirary to nature. These
inappropriate notions of ‘“natural” and ‘“unnatural” motions, to-
gether with the habits of thought which dictated these speculations,
made the Perception of the true grounds of mechanical properties
impossible.! It seems strange that even after Archimedes had en-
tered upon the right path, this science should have remained ab-
solutely stationary till the time of Galileo—a period of nearly two
thousand years.

The proof of the property of the lever, given in his Equiponderance
of Planes, holds its place in many text-books to this day. Mach?
criticizes it. “From the mere assumption of the equilibrium of equal
weights at equal distances is derived the inverse proportionality of
weight and lever arm! How is that possible?” Archimedes’ estimate
of the efficiency of the lever is expressed in the saying attributed to
him, “Give me a fulcrum on which to rest, and I will move the earth.”

While the Eguiponderance treats of solids, or the equilibrium of
solids, the book on Floating Bodies treats of hydrostatics. His atten-
tion was first drawn to the subject of specific gravity when King Hieron
asked him to test whether a crown, professed by the maker to be pure
gold, was not alloyed with silver. The story goes that our philosopher
was in a bath when the true method of solution flashed on his mind.
He immediately ran home, naked, shouting, “I have found it!” To
solve the problem, he took a piece of gold and a piece of silver, each
weighing the same as the crown. According to one author, he deter-
mined the volume of water displaced by the gold, silver, and crown
respectively, and calculated from that the amount of gold and silver

1 William Whewell, History of the Inductive Sciences, 3rd Ed., New York, 1858,
Vol. I, p. 87. William Whewell (1794-1866) was Master of Trinity College, Cam-
bri

t E“Ma.ch, The Science of Mechanics, tr. bz T. McCormack, Chi , 1007, P. 14.
Emst Mach (1838-1916) was professor of the history and theory of the inductive
sciences at the university of Vienna.
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in the crown. According to another writer, he weighed separately
the gold, silver, and crown, while immersed in water, thereby deter-
mining their loss of weight in water. From these data he easily found
the solution. It is possible that Archimedes solved the problem by
both methods.

After examining the writings of Archimedes, one can well under-
stand how, in ancient times, an ‘ Archimedean problem” came to
mean a problem too deep for ordinary minds to solve, and how an
‘“ Archimedean proof” came to be the synonym for unquestionable
certainty. Archimedes wrote on a very wide range of subjects, and
displayed great profundity in each. He is the Newton of antiquity.

Eratosthenes, eleven years younger than Archimedes, was a native
of Cyrene. He was educated in Alexandria under Callimachus the
poet, whom he succeeded as custodian of the Alexandrian Library.
His many-sided activity may be inferred from his works. He wrote
on Good and Evil, Measurement of the Earth, Comedy, Geography,
Chronology, Constellations, and the Duplication of the Cube. He was
also a philologian and a poet. He measured the obliquity of the
ecliptic and invented a device for finding prime numbers, to be de-
scribed later. Of his geometrical writings we possess only a letter to
Ptolemy Euergetes, giving a history of the duplication problem and
also the description of a very ingenious mechanical contrivance of his
own to solveit. In his old age he lost his eyesight, and on that account
is said to have committed suicide by voluntary starvation.

About forty years after Archimedes flourished Apollonius of Perga,
whose genius nearly equalled that of his great predecessor. He incon-
testably occupies the second place in distinction among ancient mathe-
maticians. Apollonius was born in the reign of Ptolemy Euergetes
and died under Ptolemy Philopator, who reigned 222-205 B. c. He
studied at Alexandria under the successors of Euclid, and for some
time, also, at Pergamum, where he made the acquaintance of that
Eudemus to whom he dedicated the first three books of his Conic
Sections. The brilliancy of his great work brought him the title of the
“Great Geometer.”” This is all that is known of his life.

His Conic Sections were in eight books, of which the first four only
have come down to us in the original Greck. The next three books
were unknown in Europe till the middle of the seventeenth century,
when an Arabic translation, made about 1250, was discovered. The
eighth book has never been found. In 1710 E. Halley of Oxford pub-
lished the Greeck text of the first four books and a Latin translation
of the remaining three, together with his conjectural restoration of
the eighth book, founded on the introductory lemmas of Pappus. The
first four books contain little more than the substance of what earlier
geometers had done. Eutocius tells us that Heraclides, in his life of
Archimedes, accused Appolonius of having appropriated, in his Conic
Sections, the unpublished discoveries of that great mathematician.
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It is difficult to believe that this charge rests upon good foundation.
Eutocius quotes Geminus as replying that neither Archimedes nor
Apollonius claimed to have invented the conic sections, but that
Apollonius had introduced a real improvement. While the first three
or four books were founded on the works of Menachmus, Aristeus,
Euclid, and Archimedes, the remaining ones consisted almost entirely
of new matter. The first three books were sent to Eudemus at inter-
vals, the other books (after Eudemus’s death) to one Attalus. The
preface of the second book is interesting as showing the mode in
which Greek books were “published” at this time. It reads thus:
“I have sent my son Apollonius to bring you (Eudemus) the second
book of my Conics. Read it carefully and communicate it to such
others as are worthy of it. If Philonides, the geometer, whom I intro-
duced to you at Ephesus, comes into the neighbourhood of Pergamum,
give it to him also.” !

The first book, says Apollonius in his preface to it, “contains the
mode of producing the three sections and the conjugate hyperbolas
and their principal characteristics, more fully and generally worked
out than in the writings of other authors.” We remember that
Menachmus, and all his successors down to Apollonius, considered only
sections of right cones by a plane perpendicular to their sides, and that
the three sections were obtained each from a different cone. Apol-
lonius introduced an important generalisation. He produced all the
sections from one and the same cone, whether right or scalene, and
by sections which may or may not be perpendicular to its sides. The
old names for the three curves were now no longer applicable. Instead
of calling the three curves, sections of the ‘“acute-angled,” ‘“right-
angled,” and “obtuse-angled” cone, he called them ellipse, parabola,
and hyperbola, respectively. To be sure, we find the words “parabola”
and “ellipse”’ in the works of Archimedes, but they are probably only
interpolations. The word “ellipse” was applied because y2<pzx, p
being the parameter; the word “parabola” was introduced because
y*= px, and the term “hyperbola” because y2> px.

The treatise of Apollonius rests on a unique property of conic sec-
tions, which is derived directly from the nature of the cone in which
these sections are found. How this property forms the key to the
system of the ancients is told in a masterly way by M. Chasles.?
“Conceive,” says he, “an oblique cone on a circular base; the straight
line drawn from its summit to the centre of the circle forming its base
is called the axis of the cone. The plane passing through the axis,
perpendicular to its base, cuts the cone along two lines and determines
in the circle a diameter; the triangle having this diameter for its base

1H. G. Zeuthen, Die Lekrc von den Kcgelschnitien im Allerthum, Kopenhagen,
1886, p. 502.

* M. Chasles, Geschichie der Geometrie. Aus dem Franzosischen iibertragen durch,
Dr. L. A. Sohncke, Halle, 1839, p. 15.
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and the two lines for its sides, is called the triangle through the axis.
In the formation of his conic sections, Apollonius supposed the cutting
plane to be perpendicular to the plane of the triangle through the
axis. The points in which this plane meets the two sides of this tri-
angle are the vertices of the curve; and the straight line which joins
these two points is a diameter of it. Apollonius called this diameter
latus transversum. At one of the two vertices of the curve erect a per-
pendicular (Jatus rectum) to the plane of the triangle through the
axis, of a certain length, to be determined as we shall specify later,
and from the extremity of this perpendicular draw a straight line to
the other vertex of the curve; now, through any point whatever of
the diameter of the curve, draw at right angles an ordinate: the square
of this ordinate, comprehended between the diameter and the curve,
will be equal to the rectangle constructed on the portion of the ordinate
comprised between the diameter and the straight line, and the part
of the diameter comprised between the first vertex and the foot of the
ordinate. Such is the characteristic property which Apollonius recog-
nises in his conic sections and which he uses for the purpose of in-
2rring from it, by adroit transformations and deductions, nearly all
the rest. It plays, as we shall see, in his hands, almost the same réle
as the equation of the second degree with two variables (abscissa and
ordinate) in the system of analytic geometry of Descartes.” Apol-
lonius made use of co-ordinates as did Menachmus before him.!
Chasles continues:

“It will be observed from this that the diameter of the curve and
the perpendicular erected at one of its extremities suffice to construct
the curve. These are the two elements which the ancients used, with
which to establish their theory of conics. The perpendicular in ques-
tion was called by them latus erectum; the moderns changed this name
first to that of latus rectum, and afterwards to that of parameter.”

The first book of the Conic Sections of Apollonius is almost wholly
devoted to the generation of the three principal conic sections.

The second book treats mainly of asymptotes, axes, and diameters.

The third book treats of the equality or proportionality of triangles,
rectangles, or squares, of which the component parts are determined
by portions of transversals, chords, asymptotes, or tangents, which
are frequently subject to a great number of conditions. It also touches
the subject of foci of the ellipse and hyperbola.

In the fourth book, Apollonius discusses the harmonic division of
straight lines. He also examines a system of two conics, and shows
that they cannot cut each other in more than four points. He inves-
tigates the various possible relative positions of two conics, as, for
instance, when they have one or two points of contact with each other.

The fifth book reveals better than any other the giant intellect of
its author. Difficult questions of maxima and minima, of which few

U T. L. Heath, A4 pollonius of Perga, Cambridge, 1896, p. CXV.
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examples are found in earlier works, are here treated most exhaustively.
The subject investigated is, to find the longest and shortest lines that
can be drawn from a given point to a conic. Here are also found the
germs of the subject of evolutes and centres of osculation.

The sixth book is on the similarity of conics.

The seventh book is on conjugate diameters.

The eighth book, as restored by Halley, continues the subject of
conjugate diameters.

It is worthy of notice that Apollonius nowhere introduces the
notion of directrix for a conic, and that, though he incidentally dis-
covered the focus of an ellipse and hyperbola, he did not discover the
focus of a parabola.! Conspicuous in his geometry is also the absence
of technical terms and symbols, which renders the proofs long and
cumbrous. R. C. Archibald claims that Apollonius was familiar with
the centres of similitude of circles, usually attributed to Monge.
T. L. Heath? comments thus: “The principal machinery used by
Apollonius as well as by the earlier geometers comes under the head
of what has been not inappropriately called a geometrical algebra.”

The discoveries of Archimedes and Apollonius, says M. Chasles,
marked the most brilliant epoch of ancient geometry. Two questions
which have occupied geometers of all periods may be regarded as
having originated with them. The first of these is the quadrature of
curvilinear figures, which gave birth to the infinitesimal calculus. The
second is the theory of conic sections, which was the prelude to the
theory of geometrical curves of all degrees, and to that portion of
geometry which considers only the forms and situations of figures
and uses only the intersection of lines and surfaces and the ratios of
rectilineal distances. These two great divisions of geometry may be
designated by the names of Geomelry of Measurements and Geometry
of Forms and Situations, or, Geometry of Archimedes and of Apol-
lonius.

Besides the Conic Sections, Pappus ascribes to Apollonius the fol-
lowing works: On Conlacts, Plane Loci, Inclinations, Secéion of an Area,
Determinate Section, and gives lemmas from which attempts have
been made to restore the lost originals. Two books on De Sectione
Rationis have been found in the Arabic. The book on Contacts, as
restored by F. Vieta, contains the so-called “Apollonian Problem”:
Given three circles, to find a fourth which shall touch the three.

Euclid, Archimedes, and Apollonius brought geometry to as high
a state of perfection as it perhaps could be brought without first in-
troducing some more general and more powerful method than the old
method of exhaustion. A briefer symbolism, a Cartesian geometry,
an infinitesimal calculus, were needed. The Greek mind was not

17. Gow, op. cil., p. 252. .
3T.L. Heath, 4 pollonius of Perga, edited in modern notation. Cambridge, 1896,
p. ci.
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adapted to the invention of general methods. Instead of a climb to
still loftier heights we observe, therefore, on the part of later Greek
geometers, a descent, during which they paused here and there to look
around for details which had been passed by in the hasty ascent.!

Among the carliest successors of Apollonius was Nicomedes. Noth-
ing definite is known of him, except that he invented the conchoid
(“mussel-like””), a curve of the fourth order. He devised a little
machine by which the curve could be easily described. With aid of
the conchoid he duplicated the cube. The curve can also be used for
trisecting angles in a manner resembling that in the eighth lemma of
Archimedes. Proclus ascribes this mode of trisection to Nicomedes,
but Pappus, on the other hand, claims it as his own. The conchoid
was used by Newton in constructing curves of the third degree.

About the time of Nicomedes (say, 180 B. c.), flourished also
Diocles, the inventor of the cissoid (“ivy-like”). This curve he used
for finding two mean proportionals between two given straight lines.
The Greeks did not consider the companion-curve to the cissoid;
in fact, they considered only the part of the cissoid -proper which
lies inside the circle used in constructing the curve. The part of the
area of the circle left over when the two circular areas on the concave
sides of the branches of the curve are removed, looks somewhat like
an ivy-leaf. Hence, probably, the name of the curve. That the two
branches extend to infinity appears to have been noticed first by G. P.
de Roberal in 1640 and then by R. de Sluse.2

About the life of Perseus we know as little as about that of Nico-
medes and Diocles. He lived some time between 200 and 100 B. C.
From Heron and Geminus we lcarn that he wrote a work on the spire,
a sort of anchor-ring surface described by Heron as being produced by
the revolution of a circle around one of its chords as an axis. The
sections of this surface yield peculiar curves called spiral sections,
which, according to Geminus, were thought out by Perseus. These
curves appear to be the same as the Hippopede of Eudoxus.

Probably somewhat later than Perseus lived Zenodorus. He wrote
an interesting treatise on a new subject; namely, isoperimeirical figures.
Fourteen propositions are preserved by Pappus and Theon. Here
are a few of them: Of isoperimetrical, regular polygons, the one having
the largest number of angles has the greatest area; the circle has a
greater area than any regular polygon of equal periphery; of all iso-
perimentrical polygons of » sides, the regular is the greatest; of
all solids having surfaces equal in area, the sphere has the greatest
volume.

Hypsicles (between 200 and 100 B. €.) was supposed to be the
author of both the fourteenth and fifteenth books of Euclid, but recent
critics are of opinion that the fifteenth book was written by an author

1 M. Cantor, 0p. cit., Vol. I, 3 Aufl,, 1907, p. 350.
2 G. Loria, Ebenc Curven, transl. by I, Schiitte, I, 1910, p. 37.
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who lived several centuries after Christ. The fourteenth book con-
tains seven elegant theorems on regular solids. A treatise of Hypsicles
on Ristngs is of interest because it gives the division of the circum-
ference into 360 degrees after the fashion of the Babylonians.

Hipparchus of Nicea in Bithynia was the greatest astronomer of
antiquity. He took astronomical observations between 161 and 127
B. C. He established inductively the famous theory of epicycles and
eccentrics. As might be expected, he was interested in mathematics,
not per se, but only as an aid to astronomical inquiry. No mathe-
matical writings of his are extant, but Theon of Alexandria informs us
that Hipparchus originated the science of #rigomometry, and that he
calculated a “table of chords” in twelve books. Such calculations
must have required a ready knowledge of arithmetical and algebraical
operations. He possessed arithmetical and also graphical devices for
solving geometrical problems in a plane and on a sphere. He gives
indication of having seized the idea of co-ordinate representation, found
earlier in Apollonius.

About 100 B. C. flourished Heron the Elder of Alexandria. He was
the pupil of Ctesibius, who was celebrated for his ingenious mechanical
inventions, such as the hydraulic organ, the water-clock, and catapult.
It is believed by some that Heron was a son of Ctesibius. He ex-
hibited talent of the same order as did his master by the invention of
the eolipile and a curious mechanism known as “Heron’s fountain.”
Great uncertainty exists concerning his writings. Most authorities
believe him to be the author of an important Treatise on the Diopira,
of which there exist three manuscript copies, quite dissimilar. But
M. Marie! thinks that the Diopira is the work of Heron the ¥V ounger,
who lived in the seventh or eighth century after Christ, and that
Geodesy, another book supposed to be by Heron, is only a corrupt and
defective copy of the former work. Diopira contains the important
formula for finding the area of a triangle expressed in terms of its
sides; its derivation is quite laborious and yet exceedingly ingenious.
“It seems to me difficult to believe,” says Chasles, “that so beautiful
a theorem should be found in a work so ancient as that of Heron the
Elder, without that some Greek geometer should have thought to
cite it.”” Marie lays great stress on this silence of the ancient writers,
and argues from it that the true author must be Heron the Younger
or some writer much more recent than Heron the Elder. But no re-
liable evidence has been found that there actually existed a second
mathematician by the name of Heron. P. Tannery has shown that,
in applying this formula, Heron found the irrational square roots by

. — A .
the approximation, v/A~%(a-+ ;), where a? is the square nearest to

! Maximilien Marie, Histoire des scienccs mathématiques et physiques. Paris,
Tome I, 1883, p. 178.
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A. When a more accurate value was wanted, Heron took ;(a-i-;l)

in the place of a in the above formula. Apparently, Heron some-
times found square and cube roots also by the method of “double
false position.”

“Dioptra,” says Venturi, were instruments which had great re-
semblance to our modern theodolites. The book Dioptra is a treatise
on geodesy containing solutions, with aid of these instruments, of a
large number of questions in geometry, such as to find the distance
between two points, of which one only is accessible, or between two
points which are visible but both inaccessible; from a given point to
draw a perpendicular to a line which cannot be approached; to find
the difference of level between two points; to measure the area of a
field without entering it.

Heron was a practical surveyor. This may account for the fact
that his writings bear so little resemblance to those of the Greek
authors, who considered it degrading the science to apply geometry to
surveying. The character of his geometry is not Grecian, but de-
cidedly Egyptian. This. fact is the more surprising when we consider
that Heron demonstrated his familiarity with Euclid by writing a com-
mentary on the Elements. Some of Heron’s formulas point to an old
Egyptian origin. Thus, besides the above exact formula for the area
a,-:-azxé

of a triangle in terms of its sides, Heron gives the formula z

which bears a striking likeness to the formula ‘ﬂjz'i’x#* for
finding the area of a quadrangle, found in the Edfu inscriptions.
There are, moreover, points of resemblance between Heron’s writings
and the ancient Ahmes papyrus. Thus Ahmes used unit-fractions
exclusively (except the fraction §); Heron uses them oftener than other
fractions. Like Ahmes and the priests at Edfu, Heron divides com-
plicated figures into simpler ones by drawing auxiliary lines; like them,
he shows, throughout, a special fondness for the isosceles trapezoid.

The writings of Heron satisfied a practical want, and for that reason
were borrowed extensively by other peoples. We find traces of them
in Rome, in the Occident during the Middle Ages, and even in India.

The works attributed to Heron, including the newly discovered
Melrica published in 1903, have been edited by J. H. Heiberg,
H. Schéne and W. Schmidt. i

Geminus of Rhodes (about 70 B. C.) published an astronomical work
still extant. He wrote also a book, now lost, on the Arrangement of
Mathematics, which contained many valuable notices of the early
history of Greek mathematics. Proclus and Eutocius quote it fre-
quently. Theodosius is the author of a book of little merit on the
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geometry of the sphere. Investigations due to P. Tannery and A. A.
Bjornbo ! seem to indicate that the mathematician Theodosius was
not Theodosius of Tripolis, as formerly supposed, but was a resident
of Bithynia and contemporary of Hipparchus. Dionysodorus of
Amisus in Pontus applied the intersection of a parabola and hyperbola
to the solution of a problem which Archimedes, in his Sphere and
Cylinder, had left incomplete. The problem is “to cut a sphere so
that its segments shall be in a given ratio.”

We have now sketched the progress of geometry down to the time
of Christ. Unfortunately, very little is known of the history of geom-
etry between the time of Apollonius and the beginning of the Christian
era. The names of quite a number of geometers have been mentioned,
but very few of their works are now extant. It is certain, however,
that there were no mathematicians of real genius from Apollonius to
Ptolemy, excepting Hipparchus and perhaps Heron.

The Second Alexandrian School

The close of the dynasty of the Lagides which ruled Egypt from the
time of Ptolemy Soter, the builder of Alexandria, for 300 years; the
absorption of Egypt into the Roman Empire; the closer commercial
relations between peoples of the East and of the West; the gradual
decline of paganism and spread of Christianity,—these events were
of far-reaching influence on the progress of the sciences, which then
had their home in Alexandria. Alexandria became a commercial and
intellectual emporium. Traders of all nations met in her busy streets,
and in her magnificent Library, museums, lecture-halls, scholars from
the East mingled with those of the West; Greeks began to study older
literatures and to compare them with their own. In consequence of
this interchange of ideas the Greek philosophy became fused with
Oriental philosophy. Neo-Pythagoreanism and Neo-Platonism were
the names of the modified systems. These stood, for a time, in op-
position to Christianity. The study of Platonism and Pythagorean
mysticism led to the revival of the theory of numbers. Perhaps the
dispersion of the Jews and their introduction to Greek learning helped
“in bringing about this revival. The theory of numbers became a
favorite study. This new line of mathematical inquiry ushered in
what we may call a new school. There is no doubt that even now
geometry continued to be one of the most important studies in the
Alexandrian course. This Second Alexandrian School may be said to
begin with the Christian era. It was made famous by the names of
Claudius Ptolemaus, Diophantus, Pappus, Theon of Smyrna, Theon
of Alexandria, Iamblichus, Porphyrius, and others.

By the side of these we may place Serenus of Antincia, as having

1 Axel Anthon Bjdrnbo (1874-1911) of Copenhagen was a historian of mathe-
matics. See Bibliotheca mathematica, 3 S., Vol. 12, 1911-12, pp. 337-344.
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been connected more or less with this new school. He wrote on sec-
tions of the cone and cylinder, in two books, one of which treated
only of the triangular section of the cone through the apex. He solved
the problem, “given a cone (cylinder), to find a cylinder (cone), so
that the section of both by the same plane gives similar ellipses.” Of
particular interest is the following theorem, which is the foundation
of the modern theory of harmonics: If from D we draw DF, cutting
the triangle ABC, and choose H on it, so that DE : DF=EH : HF,
and if we draw the line AH, then every transversal through D, such
as DG, will be divided by AH so that DK : DG=KJ : JG. Menelaus
of Alexandria (about 98 A. D.) was the author of Spherica, a work
extant in Hebrew and Arabic, but not in Greek. In it he proves the
theorems on the congruence of
spherical triangles, and describes
their properties in much the same
way as Euclid treats plane tri-
angles. In it are also found the
theorems that the sum of the three
sides of a spherical triangle is less
than a great circle, and that the
sum of the three angles exceeds two right angles. Celebrated are two
theorems of his on plane and spherical triangles. The one on plane tri-
angles is that, “if the three sides be cut by a straight line, the product of
the three segments which have no common extremity is equal to the
product of the other three.” L. N. M. Carnot makes this proposition,
known as the “lemma of Menelaus,” the base of his theory of trans-
versals. The corresponding theorem for spherical triangles, the so-
called “regula sex quantitatum,” is obtained from the above by
reading “chords of three segments doubled,” in place of “three seg-
ments.”

Claudius Ptolemy, a celebrated astronomer, was a native of Egypt.
Nothing is known of his personal history except that he flourished in
Alexandria in 139 A. D. and that he made the earliest astronomical
observations recorded in his works, in 125 A. D., the latest in 151 A. D.
The chief of his works are the Syntaxis Mathematica (or the Almagest,
as the Arabs call it) and the Geographica, both of which are extant.
The former work is based partly on his own researches, but mainly
on those of Hipparchus. Ptolemy seems to have been not so much of
an independent investigator, as a corrector and improver of the work
of his great predecessors. The Almagest! forms the foundation of
all astronomical science down to N. Copernicus. The fundamental
idea of his system, the “Ptolemaic System,” is that the earth is in the
centre of the universe, and that the sun and planets revolve around
the earth. Ptolemy did considerable for mathematics. He created,

10n the importance of the Almagest in the history of astronomy, consult P.
Tannery, Recherches sur Ukistoire de I'astronomic, Paris, 1893.
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for astronomical use, a frigonomelry remarkably perfect in form. The
foundation of this science was laid by the illustrious Hipparchus.

The Almagest is in 13 books. Chapter g of the first book shows how
to calculate tables of chords. The circle is divided into 360 degrees,
each of which is halved. The diameter is divided into 120 divisions;
each of these into 60 parts, which are again subdivided into 6o smaller
parts. In Latin, these parts were called partes minute prime and
partes minule secunde. Hence our names, “minutes” and “seconds.”
The sexagesimal method of dividing the circle is of Babylonian origin,
and was known to Geminus and Hipparchus. But Ptolemy’s method
of calculating chords seems original with him. He first proved the
proposition, now appended to Euclid VI (D), that “the rectangle
contained by the diagonals of a quadrilateral figure inscribed in a
circle is equal to both the rectangles contained by its opposite sides.”
He then shows how to find from the chords of two arcs the chords of
their sum and difference, and from the chord of any arc that of its
half. These theorems he applied to the calculation of his tables of
chords. The proofs of these theorems are very pretty. Ptolemy’s
construction of sides of a regular inscribed pentagon and decagon was
given later by C. Clavius and L. Mascheroni, and now is used much
by engineers. Let the radius BD be L to AC,

DE=EC. Make EF=EB, then BF is the side of £
the pentagon and DF is the side of the decagon.
Another chapter of the first book in the Alma-

gest is devoted to ftrigonomelry, and to spherical
trigonometry in .particular. Ptolemy proved the
“lemma of Menelaus,” and also the ‘“regula sex quantitatum.”
Upon these propositions he built up his trigonometry. In trigono-
metric computations, the Greeks did not use, as did the Hindus, half
the chord of twice the arc (the ‘“sine”); the Greeks used instead
the whole chord of double the arc. Only in graphic constructions,
referred to again later, did Ptolemy and his predecessors use half the
chord of double the arc. The fundamental theorem of plane trigo-
nometry, that two sides of a triangle are to each other as the chords
of double the arcs measuring the angles opposite the two sides, was
not stated explicitly by Ptolemy, but was contained implicitly in other
theorems. More complete are the propositions in spherical trigo-
nometry.

The fact that trigonometry was cultivated not for its own sake, but
to aid astronomical inquiry, explains the rather startling fact that
spherical trigonometry came to exist in a developed state earlier than
plane trigonometry.

The remaining books of the Almagest are on astronomy. Ptolemy
has written other works which have little or no bearing on mathe-
matics, except one on geometry. Extracts from this book, made by
Proclus, indicate that Ptolemy did not regard the parallel-axiom of

A F D E C
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Euclid as self-evident, and that Ptolemy was the first of the long line
of geometers from ancient time down to our own who toiled in the vain
attempt to prove it. The untenable part of his demonstration is the
assertion that, in case of parallelism, the sum of the interior angles on
one side of a transversal must be the same as their sum on the other
side of the transversal. Before Ptolemy an attempt to improve the
theory of parallels was made by Posidonius (first cent. B. c.) who de-
fined parallel lines as lines that are coplanar and equidistant. From
an Arabic writer, Al-Nirizi (ninth cent.) it appears that Simplicius
brought forward a proof of the sth postulate, based upon this def-
inition, and due to his friend Aganis J)(?eminus?).1

In the making of maps of the earth’s surface and of the celestial
sphere, Ptolemy (following Hipparchus) used stereographic projection.
The eye is imagined to be at one of the poles, the projection being
thrown upon the equatorial plane. He devised an instrument, a form
of astrolabe planisphere, which is a stereographic projection of the
celestial sphere.? Ptolemy wrote a monograph on the analemma which
was a figure involving orthographic projections of the celestial sphere -
upon three mutually perpendicular planes (the horizontal, meridian
and vertical circles). The analemma was used in determining positions
of the sun, the rising and setting of the stars. The procedure was
probably known to Hipparchus and the older astronomers. It tvr-
nished a graphic method for the solution of spherical triangles and was
used subsequently by the Hindus, the Arabs, and Europeans as late
as the seventeenth century.?

Two prominent mathematicians of this time were Nicomachus and
Theon of Smyrna. Their favorite study was theory of numbers.
The investigations in this science culminated later in the algebra of
Diophantus. But no important geometer appeared after Ptolemy
for 150 years. An occupant of this long gap was Sextus Julius
Africanus, who wrote an unimportant work on geometry applied
to the art of war, entitled Cestes. Another was the sceptic, Sextus
Empiricus (200 A. D.); he endeavored to elucidate Zeno’s *“ Arrow”’
by stating another argument equally paradoxical and therefore far
from illuminating: Men never die, for if a man die, it must either
be at a time when he is alive, or at a time when he is not alive;
hence he never dies. Sextus Empiricus advanced also the paradox,
that, when a line rotating in a plane about one of its ends describes
a circle with each of its points, these concentric circles are of un-
equal area, yet each circle must be equal to the neighbouring circle
which it touches.!

! R. Bonola, Non-Euclidean Geomelry, trans. by H. S. Carslaw, Chicago, 1912,
pp. 3-8. Robert Bonola (1875-1911) was professor in Rome. .

3See M. Latham, *“ The Astrolabe,” Am. Math. Monthly, Vol. 24, 1917, p. 162.

3See A. v. Braunmihl, Geschichte der Trigonometrie, Leipzig, I, 1900, p. 11.
:Aleix{and.er von Braunmuhj (1853-1908) was professor at the technical high school
in
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Pappus, probably born about 340 A. D., in Alexandria, was the
last great mathematician of the Alexandrian school. His genius was
inferior to that of Archimedes, Apollonius, and Euclid, who flourished
over 500 years earlier. But living, as he did, at a period when interest
in geometry was declining, he towered above his contemporaries “like
the peak of Teneriffa above the Atlantic.” He is the author of a
Commentary on the Almagest, a Commentary on Euclid’s Elemenis, a
Commentary on the Analemma of Diodorus,—a writer of whom nothing
is known. All these works are lost. Proclus, probably quoting from
the Commentary on Euclid, says that Pappus objected to the state-
merit that an angle equal to a right angle is always itself a right
angle. :

The only work of Pappus still extant is his Mathematical Collections.
This was originally in eight books, but the first and portions of the
second are now missing. The Mathematical Collections seems to have
been written by Pappus to supply the geometers of his time with a
succinct analysis of the most difficult mathematical works and to
facilitate the study of them by explanatory lemmas. But these
lemmas are selected very freely, and frequently have little or no con-
nection with the subject on hand. However, he gives very accurate
summaries of the works of which he treats. The Mathematical Col-
lections is invaluable to us on account of the rich information it gives
on various treatises by the foremost Greek mathematicians, which
are now lost. Mathematicians of the last century considered it pos-
sible to restore lost work from the résumé by Pappus alone.

We shall now cite the more important of those theorems in the
Mathematical Collections which are supposed to be original with
Pappus. First of all ranks the elegant theorem re-discovered by P.
Guldin, over 1000 years later, that the volume generated by the
revolution of a plane curve which lies wholly on one side of the axis,
equals the area of the curve multiplied by the circumference de-
scribed by its center of gravity. Pappus proved also that the centre
of gravity of a triangle is that of another triangle whose vertices lie
upon the sides of the first and divide its three sides in the same ratio.
In the fourth book are new and brilliant propositions on the quadra-
trix which indicate an intimate acquaintance with curved surfaces.
He generates the quadratrix as follows: Let a spiral line be drawn
upon a right circular cylinder; then the perpendiculars to the axis
of the cylinder drawn from each point of the spiral line form the
surface of a screw. A plane passed through one of these perpendicu-
lars, making any convenient angle with the base of the cylinder, cuts
the screw-surface in a curve, the orthogonal projection of which upon
the base is the guadratriz. A second mode of generation is no less
admirable: If we make the spiral of Archimedes the base of a right

1See K. Lasswitz, Geschichte der Atomistik, I, Hamburg und Leipzig, 1890,
p. 148. :
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cylinder, and imagine a cone of revolution having for its axis the side
of the cylinder passing through the initial point of the spiral, then
this cone cuts the cylinder in a curve of double curvature. The per-
pendiculars to the axis drawn through every point in this curve form
the surface of a screw which Pappus here calls the plectoidal surface.
A plane passed through one of the perpendiculars at any convenient
angle cuts that surface in a curve whose orthogonal projection upon
the plane of the spiral is the required quadratrix. Pappus considers
curves of double curvature still further. He produces a spherical
spiral by a point moving uniformly along the circumference of a
great circle of a sphere, while the great circle itself revolves uniformly
around its diameter. He then finds the area of that portion of the
surface of the sphere determined by the spherical spiral, “a complana-
tion which claims the more lively admiration, if we consider that,
although the entire surface of the sphere was known since Archimedes’
time, to measure portions thereof, such as spherical triangles, was
then and for a long time afterwards an unsolved problem.”! A
question which was brought into prominence by Descartes and Newtox
is the “problem of Pappus.” Given several straight lines in a plane,
to find the locus of a point such that when perpendiculars (or, more
generally, straight lines at given angles) are drawn from it to the
given lines, the product of certain ones of them shall be in a given
ratio to the product of the remaining ones. It is worth noticing that
it was Pappus who first found the focus of the parabola and pro-
pounded the theory of the involution of points. He used the directrix
and was the first to put in definite form the definition of the conic
sections as loci of those points whose distances from a fixed point
and from a fixed line are in a constant ratio. He solved the problem
to draw through three points lying in the same straight line, three
straight lines which shall form a triangle inscribed in a given circle.
From the Mathematical Collections many more equally difficult the-
orems might be quoted which are original with Pappus as far as we
know. It ought to be remarked, however, that he has been charged
in three instances with copying theorems without giving due credit,
and that he may have done the same thing in other cases in which
we have no data by which to ascertain the real discoverer.?

About the time of Pappus lived Theon of Alexandria. He brought
out an edition of Euclid’s Elements with notes, which he probably
used as a text-book in his classes. His commentary on the Almagest
is valuable for the many historical notices, and especially for the
specimens of Greek arithmetic which it contains. Theon’s daughter
Hypatia, a woman celebrated for her beauty and modesty, was the
last Alexandrian teacher of reputation, and is said to have been an

1 M. Cantor, 0p. cit., Vol. I, 3 Aufl,, 1907, p. 451.
2 For a defence of Pappus against these charges, see J. H. Weaver in Bull, Am
Math. Soc., Vol. 23, 1916, pp. 131-133.
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abler philosopher and mathematician than her father. Her notes on
the works of Diophantus and Apollonius have been lost. Her tragic
death in 415 A. D. is vividly described in Kingsley’s Hypatia.

From now on, mathematics ceased to be cultivated in Alexandria.
The leading subject of men’s thoughts was Christian theology.
Paganism disappeared, and with it pagan learning. The Neo-Platonic
school at Athens struggled on a century longer. Proclus, Isidorus, and
others kept up the “golden chain of Platonic succession.” Proclus,
the successor of Syrianus, at the Athenian school, wrote a commentary
on Euclid’s Elements. We possess only that on the first book, which
is valuable for the information it contains on the history of geometry.
Damascius of Damascus, the pupil of Isidorus, is now believed to be
the author of the fifteenth book of Euclid. Another pupil of Isidorus
was Eutocius of Ascalon, the commentator of Apollonius and Archi-
medes. Simplicius wrote a commentary on Aristotle’s De Celo.
Simplicius reports Zeno as saying: “That which, being added to
another, does not make it greater, and being taken away from another
does not make it less, is nothing.” According to this, the denial of
the existence of the infinitesimal goes back to Zeno. This momentous
question presented itself centuries later to Leibniz, who gave different
answers. The report made by Simplicius of the quadratures of Anti-
phon and Hippocrates of Chios is one of the best sources of historical
information on this point.! In the year 529, Justinian, disapproving
heathen learning, finally closed by imperial edict the schools at
Athens.

As a rule, the geometers of the last soo years showed a lack of
creative power. They were commentators rather than discoverers.

The principal characteristics of ancient geometry are:—

(1) A wonderful clearness and definiteness of its concepts and an
almost perfect logical rigor of its conclusions.

(2) A complete want of general principles and methods. Ancient
geometry is decidedly special. Thus the Greeks possessed no general
method of drawing tangents. “The determination of the tangents
to the three conic sections did not furnish any rational assistance for
drawing the tangent to any other new curve, such as the conchoid,
the cissoid, etc.” In the demonstration of a theorem, there were, for
the ancient geometers, as many different cases requiring separate
proof as there were different positions for the lines. The greatest
geometers considered it necessary to treat all possible cases indc-
pendently of each other, and to prove each with equal fulness. To
devise methods by which the various cases could all be disposed of
by one stroke, was beyond the power of the ancients. “If we com-
pare a mathematical problem with a huge rock, into the interior of
which we desire to penetrate, then the work of the Greek mathe-

1 See F. Rudio in Bibliothcca mathemalica, 3 S., Vol. 3, 1902, pp. 7-62.
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maticians appears to us like that of a vigorous stonecutter who, with
chisel and hammer, begins with indefatigable perseverance, from with-
out, to crumble the rock slowly into fragments; the modern mathe-
matician appears like an excellent miner, who first bores through the
rock some few passages, from which he then bursts it into pieces
with one powerful blast, and brings to light the treasures within.” !

- Greek Arithmetic and Algebra

Greek mathematicians were in the habit of discriminating between
the science of numbers and the art of calculation. The former they
called arithmetica, the latter logistica. The drawing of this distinction
between the two was very natural and proper. The difference be-
tween them is as marked as that between theory and practice. Among
the Sophists the art of calculation was a favorite study. Plato, on
the other hand, gave considerable attention to philosophical arith-
metic, but pronounced calculation a vulgar and childish art.

In sketching the history of Greek calculation, we shall first give a
brief account of the Greek mode of counting and of writing numbers.
Like the Egyptians and Eastern nations, the earliest Greeks counted
on their fingers or with pebbles. In case of large numbers, the pebbles
were probably arranged in parallel vertical lines. Pebbles on the
first line represented units, those on the second tens, those on the
third hundreds, and so on. Later, frames came into use, in which
strings or wires took the place of lines. According to tradition,
Pythagoras, who travelled in Egypt and, perhaps, in India, first
introduced this valuable instrument into Greece. The abacus, as it
is called, existed among different peoples and at different times, in
various stages of perfection. An abacus is still employed by the
Chinese under the name of Swan-pan. We possess no specific informa-
tion as to how the Greek abacus looked or how it was used. Boethius
says that the Pythagoreans used with the abacus certain nine signs
called apices, which resembled in form the nine ““Arabic numerals.”
But the correctness of this assertion is subject to grave doubts.

The oldest Grecian numerical symbols were the so-called Herodianic
signs (after Herodianus, a Byzantine grammarian of about 200 A. D,
who describes them). These signs occur frequently in Athenian in-
scriptions and are, on that account, now generally called A#ic. For
some unknown reason these symbols were afterwards replaced by the
alphabetic numerals, in which the letters of the Greek alphabet were
used, together with three strange and antique letters § ¢, and T?),
and the symbol M. This change was decidedly for the worse, for the
old Attic numerals were less burdensome on the memory, inasmuch

' H. Hankel, Die Entwickelung der Mathematik in den leisien .f‘clvhunderlen.
Tibingen, 1884, p. 16,
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as they contained fewer symbols and were better adapted to show
forth analogies in numerical operations. The following table shows
the Greek alphabetic numerals and their respective values:—

aB y 8 es {906 ¢« x XA p v &€ o = 9
I 2 3 45 6 7 8 9 10 20 30 40 50 60 70 80 ogo
p o T v ¢ X ™ e B ;¥ etc.

[}
100 200 300 400 500 600 700 800 QOO I00O 2000 30CO

10,000 20,000 30,000

It will be noticed that at 1000, the alphabet is begun over again,
but, to prevent confusion, a stroke is now placed before the letter
and generally somewhat below it. A horizontal line drawn over a
number served to dlstmgmsh it more readily from words. The co-
efficient for M was sometimes placed before or behind instead of over

the M. Thus 43,678 was written 8M,yxoy. It is to be observed that
the Greeks had no zero.

Fractions were denoted by first writing the numerator marked with
an accent, then the denominator marked with two accents and written
twice. Thus, «y'x0"’x8"' =13, In case of fractions having unity for
the numerator, the @’ was omitted and the denominator was written
only once. Thus ud”’'=

The Greeks had the name epimorion for the ratio -—_T_—I Archytas

proved the theorem that if an epimorion ﬂ is reduced to its lowest

terms :—‘, then v=p-+1. This theorem is found later in the musical

writings of Euclid and of the Roman Boethius. The Euclidean form
of arithmetic, without perhaps the representation of numbers by lines,
existed as early as the time of Archytas.!

Greek writers seldom refer to calculation with alphabetic numerals.
Addition, subtraction, and even multiplication were probably per-
formed on the abacus. Expert mathematicians may have used the
symbols. Thus Eutocius, a commentator of the sixth century after
Christ, gives a great many multiplications of which the following is

a specimen: 2—

1 P. Tannery in Bibliotheca mathematica, 3 S., Vol. VI, 1905, p. 228.
1 1. Gow, op. cil., p. 50.
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—_— The operation is explained suf-
ofe 265 ficiently by the modern numerals
ofe 265 appended. In case of mixed
3 a numbers, the process was still
MM,Be 40000, 12000, 1000  moreclumsy. Divisionsare found
a ___ in Theon of Alexandria’s com-
M,8yxr 12000, 3600, 300  mentary on the Almagest. As

arke 1000, 300, 25 might be expected, the process is
T lorag/ arlx;i1 tedious._ that

e have seen In geometry

Moxe 0225 the moreadvanced mathematicians
frequently had occasion to extract the square root. Thus Archimedes
in his Mensuration of the Circle gives a large number of square roots.
He states, for instance, that 1/3<43%! and v/3> 285, but he givesno
clue to the method by which he obtained these approximations. It
is not improbable that the earlier Greek mathematicians found the
square root by trial only. Eutocius says that the method of extracting
it was given by Heron, Pappus, Theon, and other commentators on
the Almagest. Theon’s is the only one of these methods known to us.
It is the same as the one used nowadays, except that sexagesimal
fractions are employed in place of our decimals. What the mode of
procedure actually was when sexagesimal fractions were not used, has
been the subject of conjecture on the part of numerous modern writers.

Of interest, in connection with arithmetical symbolism, is the Sand-
Counter (Arenarius), an essay addressed by Archimedes to Gelon,
king of Syracuse. In it Archimedes shows that people are in error who
think the sand cannot be counted, or that if it can be counted, the
-number cannot be expressed by arithmetical symbols. He shows that
the number of grains in a heap of sand not only as large as the whole
earth, but as large as the entire universe, can be arithmetically ex-
pressed. Assuming that 10,000 grains of sand suffice to make a little
solid of the magnitude of a poppy-seed, and that the diameter of a
poppy-seed be not smaller than J%; part of a finger’s breadth; assuming
further, that the diameter of the universe (supposed to extend to the
sun) be less than 10,000 diameters of the earth, and that the latter
be less than 1,000,000 stadia, Archimedes finds a number which would
exceed the number of grains of sand in the sphere of the universe.
He goes on even further. Supposing the universe to reach out to the
fixed stars, he finds that the sphere, having the distance from the
earth’s centre to the fixed stars for its radius, would contain a number
of grains of sand less than 1000 myriads of the eighth octad. In our
notation, this number would be 108 or 1 with 63 ciphers after it. It
can hardly be doubted that one object which Archimedes had in view
in making this calculation was the improvement of the Greek sym-
bolism. It is not known whether he invented some short notation by
which to represent the above number or not.
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We judge from fragments in the second book of Pappus that Apol-
lonius proposed an improvement in the Greek method of writing
numbers, but its nature we do not know. Thus we see that the Greeks
never possessed the boon of a clear, comprehensive symbolism. The
honor of giving such to the world was reserved by the irony of fate
for a nameless Indian of an unknown time, and we know not whom to
thank for an invention of such importance to the general progress of
intelligence.!

Passing from the subject of logistica to that of arithmetica, our at-
tention is first drawn to the science of numbers of Pythagoras. Before
founding his school, Pythagoras studied for many years under the
Egyptian priests and familiarised himself with Egyptian mathematics
and mysticism. If he ever was in Babylon, as some authorities claim,
he may have learned the sexagesimal notation in use there; he may
have picked up considerable knowledge on the theory of proportion,
and may have found a large number of interesting astronomical
observations. Saturated with that speculative spirit then pervading
the Greek mind, he endeavored to discover some principle of homo-
geneity in the universe. Before him, the philosophers of the Ionic
school had sought it in the matter of things; Pythagoras looked for
it in the structure of things. He observed various numerical relations
or analogies between numbers and the phenomena of the universe.
Being convinced that it was in numbers and their relations that he
was to find the foundation to true philosophy, he proceeded to trace
the origin of all things to numbers. Thus he observed that musical
strings of equal length stretched by weights having the proportion of
3 3, produced intervals which were an octave, a fifth, and a fourth.
Harmony, therefore, depends on musical proportion; it is nothing but "
a mysterious numerical relation. Where harmony is, there are
numbers. Hence the order and beauty of the universe have their
origin in numbers. There are seven intervals in the musical scale,
and also seven planets crossing the heavens. The same numerical
relations which underlie the former must underlie the latter. But
where numbers are, there is harmony. Hence his spiritual ear dis-
cerned in the planetary motions a wonderful “ harmony of the spheres.”
The Pythagoreans invested particular numbers with extraordinary
attributes. Thus one is the essence of things; it is an absolute number;
hence the origin of all numbers and so of all things. Four is the most
perfect number, and was in some mystic way conceived to correspond
to the human soul. Philolaus believed that g is the cause of color, 6 of
cold, 7 of mind and health and light, 8 of love and friendship.2 In
Plato’s works are evidences of a similar belief in religious relations of
numbers. Even Aristotle referred the virtues to numbers.

Enough has been said about these mystic speculations to show
what lively interest in mathematics they must have created and

1]. Gow, op. cit., p. 63. 2 J. Gow, op. cil., p. 69.
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maintained. Avenues of mathematical inquiry were opened up by
them which otherwise would probably have remained closed at that
time.

The Pythagoreans classified numbers into odd and even. They
observed that the sum of the series of odd numbers from 1 to 2 +1
was always a complete square, and that by addition of the even num-
bers arises the series 2, 6, 12, 20, in which every number can be de-
composed into two factors differing from each other by unity. Thus,
6=2.3, 12=3.4, etc. These latter numbers were considered of
sufficient importance to receive the separate name of heferomecic (not

equilateral). Numbers of the form 1(”—2-@ were called triangular,

because they could always be arranged thus, ,%%% Numbers which
were equal to the sum of all their possible factors, such as 6, 28, 496,
were called perfect; those exceeding that sum, excessive; and those
which were less, defective. Amicable numbers were those of which
each was the sum of the factors in the other. Much attention was
paid by the Pythagoreans to the subject of proportion. The quan-
tities a, b, ¢, d were said to be in arithmetical proportion when ¢ —b=
¢—d; in geometrical proportion, when a:b=c: d; in harmonic propor-

tion, when a—b:b—c=a:c. It is probable that the Pythagoreans
were also familiar with the musical proportion a:—:—b— ‘%:b

Tamblichus says that Pythagoras introduced it from Babylon.

In connection with arithmetic, Pythagoras made extensive investi-
gations into geometry. He believed that an arithmetical fact had
its analogue in geometry, and vice versa. In connection with his
theorem on the right triangle he devised a rule by which integral
numbers could be found, such that the sum of the squares of two of
them equalled the square of the third. Thus, take for one side an odd
(2n41)2—1

2

number (2n+1); then = 2n2+2n=the other side, and
(2n%+-2n+ 1) = hypotenuse. If 2n+1=0¢, then the other two numbers
are 40 and 41. But this rule only applies to cases in which the hy-
potenuse differs from one of the sides by 1. In the study of the right
triangle there doubtless arose questions of puzzling subtlety. Thus,
given a number equal to the side of an isosceles right triangle, to find
the number which the hypotenuse is equal to. The side may have
been taken equal to 1, 2, §, §, or any other number, yet in every in-
stance all efforts to find a number exactly equal to the hypotenuse
must have remained fruitless. The problem may have been attacked
again and again, until finally ‘‘some rare genius, to whom it is granted,
during some happy moments, to soar with eagle’s flight above the
level of human thinking,” grasped the happy thought that this prob-
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lem cannot be solved. In some such manner probably arose the theory
of irrational quantities, which is attributed by Eudemus to the Pytha-
goreans. It was indeed a thought of extraordinary boldness, to as-
sume that straight lines could exist, differing from one another not
only in length,—that is, in quantity,—but also in a quality, which,
though real, was absolutely invisible.! Need we wonder that the

oreans saw in irrationals a deep mystery, a symbol of the un-
speakable? We are told that the one who first divulged the theory of
irrationals, which the Pythagoreans kept secret, perished in conse-
quence in a shipwreck, “for the unspeakable and invisible should
always be kept secret.” Its discovery is ascribed to Pythagoras, but
we must remember that all important Pythagorean discoveries were,
according to Pythagorean custom, referred back to him. The first
incommensurable ratio known seems to have been that of the side

of a square to its diagonal, as 1 :\/2. Theodorus of Cyrene added to
this the fact that the sides of squares represented in length by /3,

\/;, etc., up to V4 17, and Theztetus, that the sides of any square,
represented by a surd, are incommensurable with the linear unit.
Euclid (about 300 B. C.), in his Elements, X, 9, generalised still further:
Two magnitudes whose squares are (or are not) to one another as a
square number to a square number are commensurable (or incom-
mensurable), and conversely. In the tenth book, he treats of incom-
mensurable quantities at length. He investigates every possible

variety of lines which can be represented by V/va=++v?, @ and b
representing two commensurable lines, and obtains 25 species. Every
individual of every species is incommensurable with all the individuals
of every other species. “This book,” says De Morgan, “has a com-
pleteness which none of the others (not even the fifth) can boast of;
and we could almost suspect that Euclid, having arranged his ma-
terials in his own mind, and having completely elaborated the tenth
book, wrote the preceding books after it, and did not live to revise
them thoroughly.” 2 The theory of incommensurables remained
where Euclid left it, till the fifteenth century.

If it be recalled that the early Egyptians had some familiarity with
quadratic equations, it is not surprising if similar knowledge is dis-
played by Greek writers in the time of Pythagoras. Hippocrates, in
the fifth century B. c., when working on the areas of lunes, assumes
the geometrical equivalent of the solution of the quadratic equation
224+1/% ax=a2. The complete geometrical solution was given by
Euclid in his Elements, VI, 27-29. He solves certain types of quad-
ratic equations geometrically in Book II, s, 6, 11.

1 H. Hankel, Zur Geschichte der Mathematik in Miltelalter und Allerthum, 1874,
p. 102.

2 A. De Morgan, “Eucleides” in Smith's Dictionary of Greck and Roman Biog.
and Myth.
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Euclid devotes the seventh, eighth, and ninth books of his Elements
to arithmetic. Exactly how much contained in these books is Euclid’s
own invention, and how much is borrowed from his predecessors, we
have no means of knowing. Without doubt, much is original with
Euclid. The seventh book begins with twenty-one definitions. All
except that for “prime’” numbers are known to have been given by
the Pythagoreans. Next follows a process for finding the G. C. D.
of two or more numbers. The eighth book deals with numbers in con-
tinued proportion, and with the mutual relations of squares, cubes,
and plane numbers. Thus, XXII, if three numbers are in continued
proportion, and the first is a square, so is the third. In the ninthk book,
the same subject is continued. It contains the proposition that the
number of primes is greater than any given number.

After the death of Euclid, the theory of numbers remained almost
stationary for 400 years. Geometry monopolised the attention of all
Greek mathematicians. Only two are known to have done work in
arithmetic worthy of mention. Eratosthenes (275-194 B. C.) invented
a “sieve” for finding prime numbers. All composite numbers are
“sifted” out in the following manner: Write down the odd numbers
from 3 up, in succession. By striking out every third number after
the 3, we remove all multiples of 3. By striking out every fifth num-
ber after the 5, we remove all multiples of 5. In this way, by rejecting
multiples of 7, 11, 13, etc., we have left prime numbers only. Hyp-
sicles (between 200 and 100 B. C.) worked at the subjects of polygonal
numbers and arithmetical progressions, which Euclid entirely neg-
lected. In his work on “risings of the stars,” he showed (1) that in
an arithmetical series of 2. terms, the sum of the last # terms exceeds
the sum of the first # by a multiple of #2; (2) that in such a series of
2n+1 terms, the sum of the serics is the number of terms multiplied
by the middle term; (3) that in such a series of 2% terms, the sum is
half the number of terms multiplied by the two middle terms.!

For two centuries after the time of Hypsicles, arithmetic disappears
from history. It is brought to light again about 100 A. D. by Ni-
comachus, a Neo-Pythagorean, who inaugurated the final era of Greek
mathematics. From now on, arithmetic was a favorite study, while
geometry was neglected. Nicomachus wrote a work entitled In-
troductio Arithmetica, which was very famous in its day. The great
number of commentators it has reccived vouch for its popularity.
Boethius translated it into Latin. Lucian could pay no higher com-
pliment to a calculator than this: “You reckon like Nicomachus of
Gerasa.” The Introductio Arithmetica was the first exhaustive work
in which arithmetic was treated quite independently of geometry.
Instead of drawing lines, like Euclid, he illustrates things by real
numbers. To be sure, in his book the old geometrical nomenclature is
retained, but the method is inductive instead of deductive. “Its sole

1]. Gow, op. cit., p. 87.
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business is classification, and all its classes are derived from, and
exhibited by, actual numbers.” The work contains few results that
are really original. We mention one important proposition which is
probably the author’s own. He states that cubical numbers are al-
ways equal to the sum of successive odd numbers. Thus, 8=23=
3+5,27=3"=71+9+11, 64=4°=13+15+17+19, and so on. This
theorem was used later for finding the sum of the cubical numbers
themselves. Theon of Smyrna is the author of a treatise on “the
mathematical rules necessary for the study of Plato.” The work is
ill arranged and of little merit. Of interest is the theorem, that every
square number, or that number minus 1, is divisible by 3 or 4 or both.
A remarkable discovery is a proposition given by Iamblichus in his
treatise on Pythagorean philosophy. It is founded on the observation
that the Pythagoreans called 1, 10, 100, 1000, units of the first, second,
third, fourth “course” respectively. The theorem is this: If we add
any three consecutive numbers, of which the highest is divisible by 3,
then add the digits of that sum, then, again, the digits of tha! sum,
and so on, the final sum will be 6. Thus, 614 62+463=186, 148+ 6=
15, 1+5=6. This discovery was the more remarkable, because the
ordinary Greek numerical symbolism was much less likely to suggest
any such property of numbers than our “Arabic” notation would
have been.

Hippolytus, who appears to have been bishop at Portus Romae in -
Italy in the early part of the third century, must be mentioned for the
giving of “ proofs” by casting out the ¢’s and the 7’s.

The works of Nicomachus, Theon of Smyrna, Thymaridas, and
others contain at times investigations of subjects which are really
algebraic in their nature. Thymaridas in one place uses the Greek,
word meaning ‘“unknown quantity” in a way which would lead one
to believe that algebra was not far distant. Of interest in tracing the
invention of algebra are the arithmetical epigrams in the Palatine
Anthology, which contain about fifty problems leading to linear equa-
tions. Before the introduction of algebra these problems were pro-
pounded as puzzles. A riddle attributed to Euclid and contained in
the Anthology is to this effect: A mule and a donkey were walking
along, laden with corn. The mule says to the donkey, ‘“If you gave
me one measure, I should carry twice as much as you. If I gave you
one, we should both carry equal burdens. Tell me their burdens, O
most learned master of geometry.” !

It will be allowed, says Gow, that this problem, if authentic, was
not beyond Euclid, and the appeal to geometry smacks of antiquity.
A far more difficult puzzle was the famous “cattle-problem,” which
Archimedes propounded to the Alexandrian mathematicians. The
problem is indeterminate, for from only seven equations, eight un-
known quantities in integral numbers are to be found. It may be

1 J. Gow, op. cit., p. 99.
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stated thus: The sun had a herd of bulls.and cows, of different colors.
(1) Of Bulls, the white (W) were, in number, ({43) of the blue (B)
and yellow (¥): the B were (34 £) of the ¥ and piebald (P): the P
were (3 4) of the Wand Y. (2) Of Cows, which had the same colors
(wP b, y’ ﬂ)’

w=(G+1) B+b): b=G+3) P+p):p=G+%) T +y):y=G+3)-
(W +w).

Find the number of bulls and cows.! This leads to high numbers,
but, to add to its complexity, the conditions are superadded that
W+ B=a square, and P4-Y=a triangular number, leading to an in-
determinate equation of the second degree. Another problem in the
Anthology is quite familiar to school-boys: “Of four pipes, one fills the
cistern in one day, the next in two days, the third in three days, the
fourth in four days: if all run together, how soon will they fill the
cistern?” A great many of these problems, puzzling to an arith-
metician, would have been solved easily by an algebraist. They be-
came very popular about the time of Diophantus, and doubtless acted
as a powerful stimulus on his mind.

Diophantus was one of the last and most fertile mathematicians of
the second Alexandrian school. He flourished about 250 A. . His
age was eighty-four, as is known from an epitaph to this effect: Dio-
phantus passed j of his life in childhood, {; in youth, and } more as
a bachelor; five years after his marriage was born a son who died four
years before his father, at half his father’s age. The place of nativity
and parentage of Diophantus are unknown. If his works were not
written in Greek, no one would think for a moment that they were
the product of Greck mind. There is nothing in his works that
reminds us of the classic period of Greek mathematics. His were al-
most entirely new ideas on a new subject. In the circle of Greek
mathematicians he stands alone in his specialty. Except for him,
we should be constrained to say that among the Greeks algebra was
almost an unknown science.

Of his works we have lost the Porisms, but possess a fragment of
Polygonal Numbers, and seven books of his great work on Arithmetica,
said to have been written in 13 books. Recent editions of the Arith-
metica were brought out by the indefatigable historians, P. Tannery
and T. L. Heath, and by G. Wertheim.

If we except the Ahmes papyrus, which contains the first sugges-
tions of algebraic notation, and of the solution of equations, then his
Arithmetica is the earliest treatise on algebra now extant. In this work
is introduced the idea of an algebraic equation expressed in algebraic
symbols. His treatment is purely analytical and completely divorced
from geometrical wmecthods. He states that “a number to be sub-

17]. Gow, op. cit., p. 99.
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tracted, multiplied by a number to be subtracted, gives a number to
be added.” This is applied to the multiplication of differences, such
as (x—1) (x—2). It must be remarked, that Diophantus had no
notion whatever of negative numbers standing by themselves. All
he knew were differences, such as (2x— 10), in which 2x could not be
smaller than 10 without leading to an absurdity. He appears to be
the first who could perform such operations as (x— 1) X (x — 2) without
reference to geometry. Such identities as (@ +5)2 = a2 +2ab +b2, which
witl. Euclid appear in the elevated rank of geometric theorems, are
with Diophantus the simplest consequences of the algebraic laws of
operation. His sign for subtraction was f}, for equality ¢. For un-
known quantities he had only one symbol, s. He had no sign for
addition except juxtaposition. Diophantus used but few symbols,
and sometimes ignored even these by describing an operation in words
when the symbol would have answered just as well.

In the solution of simultaneous equations Diophantus adroitly
managed with only one symbol for the unknown quantities and ar-
rived at answers, most commonly, by the method of tentative assump-
tion, which consists in assigning to some of the unknown quantities
preliminary values, that satisfy only one or two of the conditions.
These values lead to expressions palpably wrong, but which generally
suggest some stratagem by which values can be secured satisfying
all the conditions of the problem.

Diophantus also solved determinate equations of the second degree.
Such equations were solved geometrically by Euclid and Hippocrates.
Algebraic solutions appear to have been found by Heron of Alexandria,
who gives 84 as an approximate answer to the equation 144x(14—2) =
6720. In the Geometry, doubtfully attributed to Heron, the solution of
the equation }ix2+3%4'x =212 is practically stated in the form x =

V(154X 212 +841)
I

whole process of solving quadratic equations; he merely states the
result. Thus, “84x2+7x =7, whence x is found =1.” From partial
explanations found here and there it appears that the quadratic equa-
tion was so written that all terms were positive. Hence, from the point
of view of Diophantus, there were three cases of equations with a
positive root: ax? +bx =c, ax? =bx +c, ax? +c =bx, each case requiring
a rule slightly different from the other two. Notice he gives only one
root. His failure to observe that a quadratic equation has two roots,
even when both roots are positive, rather surprises us. It must be
remembered, however, that this same inability to perceive more than
one out of the several solutions to which a problem may point is com-
mon to all Greek mathematicians. Another point to be observed
is that he never accepts as an answer a quantity which is negative
or irrational.

29, Diophantus nowhere goes through with the
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Diophantus devotes only the first book of his Arithmetica to the
solution of determinate equations. The remaining books extant
treat mainly of indeterminale quadratic equations of the form Ax2+
Bx+C =92, or of two simultaneous equations of the same form. He
considers several but not all the possible cases which may arise in
these equations. The opinion of Nesselmann on the method of Dio-
phantus, as stated by Gow, is as follows: “ (1) Indeterminate equations
of the second degree are treated completely only when the quadratic
or the absolute term is wanting: his solution of the equations Ax2+
C =92 and Ax2+4+Bx+C =y? is in many respects cramped. (2) For
the ‘double equation’ of the second degree he has a definite rule only
when the quadratic term is wanting in both expressions: even then
his solution is not general. More complicated expressions occur only
under specially favourable circumstances.” Thus, he solves Bx +C?
=32, Bix+C12=y;2.

The extraordinary ability of Diophantus lies rather in another di-
rection, namely, in his wonderful ingenuity to reduce all sorts of
equations to particular forms which he knows how to solve. Very
great is the variety of problems considered. The 130 problems found
in the great work of Diophantus contain over 5o different classes of
problems, which are strung together without any attempt at classi-
fication. But still more multifarious than the problems are the solu-
tions. General methods are almost unknown to Dipohantus. Each
problem has its own distinct method, which is often useless for the
most closely related problems. ‘It is, therefore, difficult for a modern,
after studying roo Diophantine solutions, to solve the roist.” This
statement, due to Hankel, is somewhat overdrawn, as is shown by
Heath.!

That which robs his work of much of its scientific value is the
fact that he always feels satisfied with one solution, though his equa-
tion may admit of an indefinite number of values. Another great
defect is the absence of general methods. Modern mathematicians,
such as L. Euler, J. Lagrange, K. F. Gauss, had to begin the study of
indeterminate analysis anew and received no direct aid from Dio-
phantus in the formulation of methods. In spite of these defects
we cannot fail to admire the work for the wonderful ingenuity ex-
hibited therein in the solution of particular equations.

1 T. L. Heath, Diophantus of Alexandria, 2 Ed., Cambridge, 1910, pp. 54~97.




THE ROMANS

Nowhere is the contrast between the Greek and Roman minds
shown forth more distinctly than in their attitude toward the mathe-
matical science. The sway of the Greek was a flowering time for
mathematics, but that of the Roman a period of sterility. In philos-
ophy, poetry, and art the Roman was an imitator. But in mathe-
matics he did not even rise to the desire for imitation. The mathe-
matical fruits of Greek genius lay before him untasted. In him a
science which had no direct bearing on practical life could awake no
interest.” As a consequence, not only the higher geometry of Archi-
medes and Apollonius, but even the Elements of Euclid, were neglected.
What little mathematics the Romans possessed did not come altogether
from the Greeks, but came in part from more ancient sources. Exactly
where and how some of it originated is a matter of doubt. It seems
most probable that the ‘Roman notation,” as well as the early
practical geometry of the Romans, came from the old Etruscans,
who, at the earliest period to which our knowledge of them extends,
inhabited the district between the Arno and Tiber.

Livy tells us that the Etruscans were in the habit of representing
the number of years elapsed, by driving yearly a nail into the sanc-
tuary of Minerva, and that the Romans continued this practice. A
less primitive mode of designating numbers, presumably of Etruscan
origin, was a notation resembling the present ‘“Roman notation.”
This system is noteworthy from the fact that a principle is involved
in it which is rarely met with in others, namely, the principle of sub-
traction. If a letter be placed before another of greater value, its
value is not to be added to, but subtracted from, that of the greater.
In the designation of large numbers a horizontal bar placed over a
letter was made to increase its value one thousand fold. In fractions
the Romans used the duodecimal system.

Of arithmetical calculations, the Romans employed three different
kinds: Reckoning on the fingers, upon the abacus, and by tables pre-
pared for the purpose.! Finger-symbolism was known as early as the
time of King Numa, for he had erected, says Pliny, a statue of the
double-faced Janus, of which the fingers indicated 365 (3557), the
number of days in a year. Many other passages from Roman authors
point out the use of the fingers as aids to calculation. Infact, a finger-
symbolism of practically the same form was in use not only in Rome,
but also in Greece and throughout the East, certainly as early as the
beginning of the Christian era, and continued to be used in Europe

1 M. Cantor, 0p. cit., Vol. I, 3 Aufl., 1907, p. 526.
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during the Middle Ages. We possess no knowledge as to where or when
it was invented. The second mode of calculation, by the abacus, was
a subject of elementary instruction in Rome. Passages in Roman
writers indicate that the kind of abacus most commonly used was
covered with dust and then divided into columns by drawing straight
lines. Each column was supplied with pebbles (calculi, whence “cal-
culare” and “calculate’) which served for calculation.

The Romans used also another kind of abacus, consisting of a
metallic plate having grooves with movable buttons. By its use all
integers between 1 and 9,099,999, as well as some fractions, could be
represented. In the two adjoining figures ! the lines represent grooves

T
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and the circles buttons. The Roman numerals indicate the value of
each button in the corresponding groove below, the button in the
shorter groove above having a fivefold value. Thus 1l =1,000,000;
‘hence each button in the long left-hand groove, when in use, stands
for 1,000,000, and the button in the short upper groove stands for
5,000,000. The same holds for the other grooves labelled by Roman
numerals. The eighth long groove from the left (having 5 buttons)
represents duodecimal fractions, each button indicating (., while the
button above the dot means 4. In the ninth column the upper
button represents 4, the middle 5, and two lower each .%;. Our
first figure represents the positions of the buttons before the operation
begins; our second figure stands for the number 852 } 4. The eye
has here to distinguish the buttons in use and those left idle. Those
counted are one button above ¢ (=500), and three buttons below
¢ ( =300); one button above x ( =50); two buttons below I ( =2); four
buttons indicating duodecimals (= }); and the button for .
Suppose now that 10,318 { § 5 is to be added to 852 § ;. The
operator could begin with the highest units, or the lowest units, as he
pleased. Naturally the hardest part is the addition of the fractions.

P

1 G. Friedlein, Die Zahlzeichen und das elementare Rechnen der Griechen und Romer,
Erlangen, 1869, F}g 21.  Gottfried Friedlein (1828-1875) was ‘“Rektor der Kgl.
Studienanstalt zu Hof” in Bavaria.
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In this case the button for %, the button above the dot and three
buttons below the dot were used to indicate the sum § 5. The addi-
tion of 8 would bring all the buttons above and below 1 into play,
making 10 units. Hence, move them all back and move up one button
in the groove below x. Add 1o by moving up another of the buttons
below x; add 300 to 800 by moving back all buttons above and below
¢, except one button below, and moving up one button below 1; add
10,000 by moving up one button below x. In subtraction the operation
was similar.

Multiplication could be carried out in several ways. In case of
384 ,‘f-‘ times 25 £, the abacus may have shown successively the follow-
ing values: 600 (=30.20), 760 (=600+20.8), 770 (=760+1}.20),
77015 (=770 +4¢.20), 92013 (=77013 +30.5), 960 1§ (=920 {3+
8.5), 963 5 (=960 13+3.5), 963 5 o (=963 3+4¢-5), 973 § o5
(=963 3 vc+3-30), 976 vy ¢ (=973 § 97 +8.3), 976 § 3¢ (=976
Tr3rt 3.3 976 3 o 75 (=976 § Fc+i. 40

In division the abacus was used to represent the remainder resulting
from the subtraction from the dividend of the divisor or of a con-
venient multiple of the divisor. The process was complicated and
difficult. These methods of abacal computation show clearly how
multiplication or division can be carried out by a series of successive
additions or subtractions. In this connection we suspect that recourse
was had to mental operations and to the multiplication table. Pos-
sibly finger-multiplication may also have been used. But the multi-
plication of large numbers must, by either method, have been beyond:
the power of the ordinary arithmetician. To obviate this difficulty,
the arithmetical tables mentioned above were used, from which the
desired products could be copied at once. Tables of this kind were .
prepared by Victorius of Aquitania. His tables contain a peculiar
notation for fractions, which continued in use throughout the Middle
Ages. Victorius is best known for his canon paschalis, a rule for find-
ing the correct date for Easter, which he published in 457 A. D.

Payments of interest and problems in interest were very old among
the Romans. The Roman laws of inheritance gave rise to numerous
arithmetical examples. Especially unique is the following: A dying
man wills that, if his wife, being with &ﬂd, gives birth to a son, the
son shall receive 3 and she } of his estates; but if a daughter is born,
she shall receive } and his wife §. It happens that twins are born, a
boy and a girl. How shall the estates be divided so as to satisfy the
will? The celebrated Roman jurist, Salvianus Julianus, decided that
the estates shall be divided into seven equal parts of which the son
receives four, the wife two, the daughter one.

We next consider Roman geometry. He who expects to find in

! Friedlein, op. cit., p. 89.
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Rome a science of geometry, with definitions, axioms, theorems, and
proofs arranged in logical order, will be disappointed. The only
geometry known was a practical geometry, which, like the old Egyp-
tian, consisted only of empirical rules. This practical geometry was
employed in surveying. Treatises thereon have come down to us,
compiled by the Roman surveyors, called agrimensores or gromatici.
One would naturally expect rules to be clearly formulated. But no;
they are left to be abstracted by the reader from a mass of numerical
examples. ““The total impression is as though the Roman gromatic
were thousands of years older than Greek geometry, and as though
a deluge were lying between the two.” Some of their rules were prob-
ably inherited from the Etruscans, but others are identical with those
of Heron. Among the latter is that for finding the area of a triangle
from its sides and the approximate formula, ;342 for the area of
equilateral triangles (a being one of the sides). But the latter area
was also calculated by the formulas }(e?+a) and 3}a?, the first of
which was unknown to Heron. Probably the expression 442 was de-

rived from the Egyptian formula aT-i-bc%i for the determination of

the surface of a quadrilateral. This Egyptian formula was used by
the Romans for finding the area, not only of rectangles, but of any
quadrilaterals whatever. Indeed, the gromatici considered it even
sufficiently accurate to determine the areas of cities, laid out irregu-
larly, simply by measuring their circumferences.! Whatever Egyptian
geometry the Romans possessed was transplanted across the Mediter-
ranean at the time of Julius Cesar, who ordered a survey of the whole
empire to secure an equitable mode of taxation. Casar also reformed
the calendar, and, for that purpose, drew from Egyptian learning.
He secured the services of the Alexandrian astronomer, Sosigenes.

Two Roman philosophical writers deserve our attention. The
philosophical poet, Titus Lucretius (96?-55 B. C.), in his De rerum
natura, entertains conceptions of an infinite multitude and of an in-
finite magnitude which accord with the modern definitions of those
terms as being not variables but constants. However, the Lucretian
infinites are not composed of abstract things, but of material particles.
His infinite multitude is of the denumerable variety; he made use
of the whole-part property of infinite multitudes.2

Cognate topics are discussed several centuries later by the cele-
brated father of the Latin church, St. Augustine (354-430 A. D.), in
his references to Zeno of Elea. In a dialogue on the question, whether
or not the mind of man moves when the body moves, and travels with
the body, he is led to a definition of motion, in which he displays some
levity. It has been said of scholasticism that it has no sense of humor.

1 H. Hankel, op. cil., p. 297.
2C. J. Keyser in Bull. Am. Math. Soc., Vol. 24, 1918, p. 268, 321.
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Hardly does this apply to St. Augustine. He says: “When this dis-
course was concluded, a boy came running from the house to call us
to dinner. I then remarked that this boy compels us not only to
define motion, but to see it before our very eyes. So let us go, and
pass from this place to another; for that is, if I am not mistaken,
nothing else than motion.” St. Augustine deserves the credit of
having accepted the existence of the actually infinite and to have
recognized it as being, not a variable, but a constant. He recognized
all finite positive integers as an infinity of that type. On this point
he occupied a radically different position than his forerunner, the
Greek father of the church, Origen of Alexandria. Origen’s arguments
against the actually infinite have been pronounced by Georg Cantor
the profoundest ever advanced against the actually infinite.

In the fifth century, the Western Roman Empire was fast falling
to pieces. Three great branches—Spain, Gaul, and the province of
Africa—broke off from the decaying trunk. In 476, the Western
Empire passed away, and the Visigothic chief, Odoacer, became king.
Soon after, Italy was conquered by the Ostrogoths under Theodoric.
It is remarkable that this very period of political humiliation should
be the one during which Greek science was studied in Italy most
zealously. School-books began to be compiled from the elements of
Greek authors. These compilations are very deficient, but are of
absorbing interest, from the fact that, down to the twelfth century,
they were the only sources of mathematical knowledge in the Occident.
Foremost among these writers is Boethius (died 524). At first he
was a great favorite of King Theodoric, but later, being charged by
envious courtiers with treason, he was imprisoned, and at last decapi-
tated. While in prison he wrote On the Consolations of Philosophy. As
a mathematician, Boethius was a Brobdingnagian among Roman
Scholars, but a Liliputian by the side of Greek masters. He wrote
an Institutis Arithmetica, which is essentially a translation of the arith-
metic of Nicomachus, and a Geomelry in several books. Some of the
most beautiful results of Nicomachus are omitted in Boethius’ arith-
metic. The first book on geometry is an extract from Euclid’s Ele-
ments, which contains, in addition to definitions, postulates, and
axioms, the theorems in the first three books, without proofs. How
can this omission of proofs be accounted for? It has been argued by
some that Boethius possessed an incomplete Greek copy of the Ele-
menis; by others, that he had Theon’s edition before him, and be-
lieved that only the theorems came from Euclid, while the proofs were
supplied by Theon. The second book, as also other books on geometry
attributed to Boethius, teaches, from numerical examples, the men-
suration of plane figures after the fashion of the agrimensores.

A celebrated portion in the geometry of Boethius is that pertaining
to an abacus, which he attributes to the Pythagoreans. A consider-
able improvement on the old abacus is there introduced. Pebbles
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are discarded, and apices (probably small cones) are used. Upon each
of these apices is drawn a numeral giving it some value below r10.
The names of these numerals are pure Arabic, or nearly so, but are
added, apparently, by a later hand. The o is not mentioned by
Boethius in the text. These numerals bear striking resemblance to
the Gubar-numerals of the West-Arabs, which are admittedly of
Indian origin. These facts have given rise to an endless controversy.
Some contended that Pythagoras was in India, and from there brought
the nine numerals to Greece, where the Pythagoreans used them
secretly. This hypothesis has been generally abandoned, for it is
not certain that Pythagoras or any disciple of his ever was in India,
nor is there any evidence in any Greek author, that the apices were
known to the Greeks, or that numeral signs of any sort were used by
them with the abacus. It is improbable, moreover, that the Indian
signs, from which the apices are derived, are so old as the time of
Pythagoras. A second theory is that the Geometry attributed to
Boethius is a forgery; that it is not older than the tenth, or possibly
the ninth, century, and that the apices are derived from the Arabs.
But there is an Encyclopedia written by Cassiodorius (died about
585) in which both the arithmetic and geometry of Boethius are men-
tioned. Some doubt exists as to the proper interpretation of this
passage in the Encyclopedia. At present the weight of evidence is
that the geometry of Boethius, or at least the part mentioning the
numerals, is spurious.! A third theory (Woepcke’s) is that the
Alexandrians either directly or indirectly obtained the nine numerals
from the Hindus, about the second century A. D., and gave them to
the Romans on the one hand, and to the Western Arabs on the other.
This explanation is the most plausible.

It is worthy of note that Cassiodorius was the first writer to use
the terms “rational” and “irrational” in the sense now current in
arithmetic and algebra.?

1A discussion of this so-called * Boethius question,” which has been de-
bated for two centuries, is given by D. E. Smith and L. C. Karpinski in their Hindu-
Arabic Numerals, 1911, Chap. V.

* Encyclopédie des sciences mathémaliques, Tome I, Vol. 2, 1907, p. 2. An il-
luminating article on ancient fmger—symbolism is L. J. Richardson’s “ Digital
Reckoning Among the Ancients” in the Am. Math. Monthly, Vol 23, 1816,
PP 7-13.
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The Maya of Central America and Southern Mexico developed
hieroglyphic writing, as found in inscriptions and codices dating ap-
parently from about the beginning of the Christian era, that ranks
‘“probably as the foremost intellectual achievement of pre-Columbian
times in the New World.” Maya number systems and chronology
are remarkable for the extent of their early development. Perhaps
five or six centuries before the Hindus gave a systematic exposition
of their decimal number system with its zero and principle of local
value, the Maya in the flatlands of Central America had evolved
systematically a vigesimal number system employing a zero and the
principle of local value. In the Maya number system found in the
codices the ratio of increase of successive units was not 1o, as in the
Hindu system; it was 20 in all positions except the third. That is,
20 units of the lowest order (kins, or days) make one unit of the next
higher order (uinals, or 20 days), 18 dinals make one unit of the third
order (fun, or 300 aays), 20 tuns make one unit of the fourth order
(katun, or 7200 days), 20 katuns make one unit of the fifth order
(cycle, or 144,000 days) and finally, 20 cycles make r great cycle of
2,880,000 days. In Maya codices we find symbols for 1 to 19, ex-
pressed by bars and dots. Each bar stands K)T 5 units, each dot for
1 unit. For instance,

I 2 4 5 17 I 19
The zero is represented by a symbol that looks roughly like a half-
closed eye. In writing 20 the principle of local value enters. It is
expressed by a dot placed over the symbol for zero. The numbers
are written vertically, the lowest order being assigned the lowest
position. Accordingly, 37 was expressed by the symbols for 17 (three
bars and two dots) in the kin place, and one dot representing 20,
placed above 17 in the uinal place. To write 360 the Maya drew
two zeros, one above the other, with one dot higher up, in third place
(1X18%20+0+0=360). The highest number found in the codices
is in our decimal notation 12,489,781.

A second numeral system is found on Maya inscriptions. It em-
ploys the zero, but not the principle of local value. Special symbols
are employed to designate the different units. It is as if we were to
write 203 as “2 hundreds, o tens, 3 ones.” !

! For an account of the Maya number-systems and chronology, see S. G. Morley
An Iniroduction to the Study of the Maya Hierogliphs, Government Printing Office,

Washington, 1915. 6
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The Maya had a sacred year of 260 days, an official year of 360
days and a solar year of 365+ days. The fact that 18X20 =360

seems to account for the break in the vigesimal system, making 18 .

(instead of 20) uinals equal to 1 tun. The lowest common multiple
of 260 and 365, or 18980, was taken by the Maya as the ‘“calendar
round,” a period of 52 years, which is “the most lmportant period in
Maya chronology.”

We may add here that the number systems of Indian tribes in North
America, while disclosing no use of the zero nor of the principle of
local value, are of interest as exhibiting not only quinary, decimal, and
vigesilmal systems, but also ternary, quarternary, and octonary sys-
tems.

1See W. C. Eells, “Number Systems of the North American Indians’’ in Amer-
ican Math. Monthly, Vol. 20, 1913, pp. 263-272, 293-299; also Bibliotheca mathe-
malica, 3 S., Vol. 13, 1913, pp. 218-222.



THE CHINESE!

The oldest extant Chinese work of mathematical interest is an
anonymous publication, called Chou-pei and written before the
second century, A. D., perhaps long before. In one of the dialogues the
Chou-pei is believed to reveal the state of mathematics and astronomy
in China as early as 1100 B. C. The Pythagorean theorem of the right
triangle appears to have been known at that early date.

Next to the Chou-pei in age is the Chiu-chang Suan-shu (*Arith-
metic in Nine Sections’’), commonly called the Chiu-chang, the most
celebrated Chinese Text on arithmetic. Neither its authorship nor
the time of its composition is known definitely. By an edict of the
despotic emperor Shih Hoang-ti of the Ch’in Dynasty ‘“all books were
burned and all scholars were buried in the year 213 B. c.” After the
death of this emperor, learning revived again. We are told that a
scholar named CHANG T’saNG found some old writings, upon which
he based this famous treatise, the Chiu-chang. About a century later
a revision of it was made by Ching Ch’ou-ch’ang; commentaries on
this classic text were made by Liu Hui in 263 A. p. and by Li Ch’un-
féng in the seventh century. How much of the “Arithmetic in Nine
Sections,” as it exists to-day, is due to the old records ante-dating
213 B. C., how much to Chang T’sang and how much to Ching Ch’ou-
ch’ang, it has not yet been found possible to determine.

The *Arithmetic in Nine Sections” begins with mensuration; it
gives the area of a triangle as } b k, of a trapezoid as 4 (b+b')k, of a
circle variously as §¢.3d, cd, 4% and {;¢?, where ¢ is the circumference
and d is the diameter. Here 7 is taken equal to 3. The area of a

ent of a circle is given as 3(ca +a?), where ¢ is the chord and a
the altitude. Then follow fractions, commercial arithmetic including
percentage and proportion, partnership, and square and cube root of
numbers. Certain parts exhibit a partiality for unit-fractions. Divi-
sion by a fraction is effected by inverting the fraction and multiplying.
The rules of operation are usually stated in obscure language. There
are given rules for finding the volumes of the prism, cylinder, pyramid,
truncated pyramid and cone, tetrahedron and wedge. Then follow
problems in alligation. There are indications of the use of positive
and negative numbers. Of interest is the following problem because
centuries later it is found in a work of the Hindu Brahmagupta:

1 All our information on Chinese mathematics is drawn from Yoshio Mikami’s
The Development of M athematics in China and Japan, Leipzig, 1912, and from David
Eugene Smith and Yoshio Mikami's History of Japanese Mathematics, Chicago,
1914.
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There is a bamboo 10 ft. high, the upper end of which is broken and
reaches to the ground 3 ft. from the stem. What is the height of the

break? In the solution the height of the break is taken =32 — 5 ;3:10'

Here is another: A square town has a gate at the mid-point of each
side. Twenty paces north of the north gate there is a tree which
is visible from a point reached by walking from the south gate 14
paces south and then 1775 paces west. Find the side of the square.
The problem leads to the quadratic equation x2 4 (20 +14)x—2X 10X
1775 =o. The derivation and solution of this equation are not made
clear in the text. There is an obscure statement to the effect that
the answer is obtained by evolving the root of an expression which
is not monomial but has an additional term [the term of the first
degree (20+14)x]. It has been surmised that the process here re-
ferred to was evolved more fully later and led to the method closely
resembling Horner’s process of approximating to the roots, and that
the process was carried out by the use of calculating boards. Another
problem leads to a quadratic equation, the rule for the solution of
which fits the solution of literal quadratic equations.

We come next to the Sun-Tsu Suan-ching (“‘ Arithmetical Classic
of Sun-Tsu”’), which belongs to the first century, A. . The author,
Sun-Tsu, says: “In making calculations we must first know positions
of numbers. Unity is vertical and ten horizontal; the hundred stands
while the thousand lies; and the thousand and the ten look equally,
and so also the ten thousand and the hundred.” This is evidently a
reference to abacal computation, practiced from time immemorial in
China, and carried on by the use of computing rods. These rods,
made of small bamboo or of wood, were in Sun-Tsu’s time much longer.
The later rods were about 1% inches long, red and black in color,
representing respectively positive and negative numbers. According
to Sun-Tsu, units are represented by vertical rods, tens by horizontal
rods, hundreds by vertical, and so on; for 5 a single rod suffices. The

numbers 1-9 are represented by rods thus: |, [, [Il, lll, IIll, T, TI, T,
the numbers in the tens column, 10, 20, . . ., go are written thus:

—— = L.l

, =, =, 1, ==, =, =. The number 6728 is designated
1 T =TII. The rods were placed on a board ruled in columns,
and were rearranged as the computation advanced. The successive
steps in the multiplication of 321 by 46 must have been about as
follows:

’
Il

321 321 321
138 1472 14766
46 46 46

The product was placed between the multiplicand and multiplier.
The 46 is multiplied first by 3, then by 2, and last by 1, the 46 being
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moved to the right one place at each step. Sun-Tsu does not take up
dmslon, except when the divisor consists of one digit. Square root

explained more clearly than in the ‘“Arithmetic in Nine Sections.”
Algebra is involved in the problem suggested by the reply made by a
woman washing dishes at a river: “I don’t know how many guests
there were; but every two used a dish for rice between them; every
three a dish for broth; every four a dish for meat; and there were 65
dishes in all.—Rule: Arrange the 65 dishes, and multlply by 12, when
we get 780. Divide by 1 3, and thus we obtain the answer.”

An indeterminate equation is involved in the following: “There are
certain things whose number is unknown. Repeatedly divide by 3,
the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is
2. What will be the number?” Only one solution is given, viz. 23.

The Hasi-tao Suan-ching (‘“Sea-island Arithmetical Classic”) was
written by Liv Hur, the commentator on the “Arithmetic in Nine
Sections,” during the war-period in the third century, A. p. He gives
complicated problems indicating marked proficiency in algebraic
manipulation. The first problem calls for the determination of the
distance of an island and the height of a peak on the island, when two
rods 30 high and 1000’ apart are in line with the peak, the top of the
peak being in line with the top of the nearer (more remote) rod, when
seen from a point on the level ground 123’ (127’) behind this nearer
(more remote) rod. The rules given for solving the problem are
equivalent to the expressions obtained from proportions arising from
the similar triangles.

Of the treatises brought forth during the next centuries only a few
are extant. We mention the ““Arithmetical Classic of Chang Ch’iu-
chien” of the sixth century which gives problems on proportion, arith-
metical progr&sion and mensuration. He proposes the “problem of
100 hens” which is given again by later Chinese authors: “A cock
costs 5 pieces of money, a hen 3 pieces, and 3 chickens 1 piece. If
then we buy with 100 pieces 100 of them, what will be their respective
numbers?”’

The early values of 7 used in China were 3 and V/10. Liu Hui
calculated the perimeters of regular inscribed polygons of 12, 24, 48,
96, 192 sides and arrived at T =3.14+. Tsu Ch’ung-chih in the fifth
century took the diameter 10® and obtained as upper and lower limits
for w 3.1415927 and 3.1415926, and from these the “accurate” and
“inaccurate” values 355/113, 22/7. The value 22/7 is the upper limit
given by Archimedes and is found here for the first time in Chinese
history. The ratio 355/113 became known to the Japanese, but in
the West it was not known until Adrigen Anthonisz, the father of
Adriaen Metius, derived it anew, sometime between 1585 and 1625.
However, M. Curtze’s researches would seem to show that it was
known to Vzlentin Otto as early as 1573.!

1 Bibliotheca mathematica, 3 S., Vol. 13, 1913, p. 264. A neat geometric construc-
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In the first half of the seventh century WANG Hs’ 1a0-T'UNG brought
forth a work, the Ch’i-ku Suan-ching, in which numerical cubic equa-
tions appear for the first time in Chinese mathematics. This took
place seven or eight centuries after the first Chinese treatment of
quadratics. Wang Hs’iao-t’ung gives several problems leading to
cubics: “There is a right triangle, the product of whose two sides is
706 45, and whose hypotenuse is greater than the first side by 30 %.
It is required to know the lengths of the three sides.” He gives the
answer 14 y4, 49 3, 513, and the rule: “The Product (P) being
squared and being divided by twice the Surplus (S), make the result
shik or the constant class. Halve the surplus and make it the lien-fa
or the second degree class. And carry out the operation of evolution
according to the extraction of cube root. The result gives the first
side. Adding the surplus to it, one gets the hypotenuse. Divide the
product with the first side and the quotient is the second side.” This
rule leads to the cubic equation x*® +S/2x%~ Fz =o. The mode of solu-
tion is similar to the process of extracting cube roots, but details of
the process are not revealed.

In 1247 CH'IN CHiu-sHAO wrote the Su-shu Chiu-chang (‘“‘Nine
Sections of Mathematics’’) which makes a decided advance on the
solution of numerical equations. At first Ch’in Chiu-shao led a mili-
tary life; he lived at the time of the Mongolian invasion. For ten
years stricken with disease, he recovered and then devoted himself to
study. The following problem led him to an equation of the tenth
degree: There is a circular castle of unknown diameter, having 4
gates, Three miles north of the north gate is a tree which is visible
from a point g miles east of the south gate. The unknown diameter
is found to be 9. He passes beyond Sun-Tsu in his ability to solve
indeterminate equations arising for a number which will give the
residues ry, 72, . ., 7o when divided by m;, m,, ., my, respectively.

Ch’in Chiu-shao solves the equation — x4 +763200x%— 40642560000
=0 by a process almost identical with Horner’s method. However,
the computations were very probably carried out on a computing
board, divided into columns, and by the use of computing rods.
Hence the arrangement of the work must have been different from
that of Horner. But the operations performed were the same. The
first digit in the root being 8, (8 hundreds), a transformation is ef-
fected which yields x*—3200x%— 3076800x%— 826880000x +3820544-
oooo =0, the same equation that is obtained by Horner’s process.
Then, taking 4 as the second figure in the root, the absolute term
vanishes in the operation, giving the root 840. Thus the Chinese had

tion of the fraction $§ § =344+ (72+8?) is given anonymously in Grunert's Archiv.

Vol. 12, 1849, p. 98. Using ${§, T. M. P. Hughes gives in Nature, Vol. 93,

1914, p. 110, a method of constructing a triangle that gives the area of a given
ircle with great accuracy.
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invented Horner’s method of solving numerical equations more than
five centuries before Ruffini and Horner. This solution of higher
numerical equations is given later in the writings of Li Yek and others.
Ch’in Chiu-shao marks an advance over Sun-Tsu in the use ofoasa
symbol for zero. Most likely this symbol is an importation from
India. Positive and negative numbers were distinguished by the use
of red and black computing rods. This author gives for the first time
a problem which later became a favorite one among the Chinese; it
involved the trisection of a trapezoidal field under certain restrictions
in the mode of selection of boundaries.

We have already mentioned a contemporary of Ch’in Chiu-shao,
namely, L1 YEH; he lived far apart in a rival monarchy and worked
independently. He was the author of T’sé-yitan Hai-ching (“Sea-
Mirror of the Circle-Measurements”), 1248, and of the I-ku YVen-tuan,
1259. He used the symbol o for zero. On account of the inconven-
ience of writing and printing positive and negative numbers in dif-
ferent colors, he designated negative numbers by drawing a cancella-
tion mark across the symbol. Thus ] o stood for 60, }o stood for
—60. The unknown quantity was represented by unity which was
probably represented on the counting board by a rod easily distin-
guished from the other rods. The terms of an equation were written,
not in a horizontal, but in a vertical line. In Li Yeh’s work of 1259,
as also in the work of Ch’in Chiu-shao, the absolute term is put in the
top line; in Li Yeh’s work of 1248 the order of the terms is reversed,
so that the absolute term is in the bottom line and the highest power
of the unknown in the top line. In the thirteenth century Chinese
algebra reached a much higher development than formerly. This
science, with its remarkable method (our Horner’s) of solving numer-
ical equations, was designated by the Chinese “the celestial element
method.”

A third prominent thirteenth century mathematician was Yanc
Hui, of whom several books are still extant. They deal with the
summation of arithmetical progressions, of the series 1 +3+6+.. +
(1+2+.. +n) =n(n+1)(n +2)+6, 124224.. +n2=in(n+3)(n +1),
also with proportlon, simultaneous linear equations, quadratic and
quartic equations.

Half a century later, Chinese algebra reached its height in the
treatise Swuan-hsiao Chi-méng (“Introduction to Mathematical
Studies”), 1299, and the Szu-yuen Yiu-chien (“The Precious Mirror
of the Four Elements”), 1303, which came from the pen of Cru
Srin-CHIEH. The first work contains no new results, but exerted a
great stimulus on Japanese mathematics in the seventeenth century.
At one time the book was lost in China, but in 1839 it was restored
by the discovery of a copy of a Korean reprint, made in 1660. The
“Precious Mirror” is a more original work. It treats fully of the
“celestial element method.” He gives as an ‘“ancient method” a

(g
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triangle (known in the West as Pascal’s arithmetical triangle), dis-
playing the binomial coefficients, which were known to the Arabs in
the eleventh century and were probably imported into China. Chu
shih-Chieh’s algebraic notation was altogether different from our
modern notation. Thus, @ +b +c+d was written

I

202
10*01

220 2

I

as shown on the left, except that, in the central position, we employ
an asterisk in place of the Chinese character #'af (great extreme, ab-
solute term) and that we use the modern numerals in place of the
sangi forms. The square of a +b +c +d, namely, a? +b2 +c2? +d? +2ad
+2ac +2ad +2bc +2bd +2cd, is represented as shown on the right.
In further illustration of the Chinese notation, at the time of Chu
Shih-Chieh, we give !

el [*1e]=2 [*]-2[=-2 [*]o]s]-=

»

-
- -
-

1 »

o O2 *
=x =13 =2y3
ol1I o}l o

I

=U

In the fourteenth century astronomy and the calendar were studied.
They involved the rudiments of geometry and spherical trigonometry.
In this field importations from the Arabs are disclosed.

- After the noteworthy achievements of the thirteenth century,
Chinese mathematics for several centuries was in a period of decline.
The famous “celestial element method” in the solution of higher
equations was abandoned and forgotten. Mention must be made,
however, of CH’£NG TAI-WEI, who in 1593 issued his Suan-fa T ung-
tsung (“A Systematised Treatise on Arithmetic”), which is the oldest
work now extant that contains a diagram of the form of the abacus,
called suan-pan, and the explanation of its use. The instrument was
known in China in the twelfth century. Resembling the old Roman
abacus, it contained balls, movable along rods held by a wooden
frame. The suan-pan replaced the old computing rods. The “Sys-
tematised Treatise on Arithmetic” is famous also for containing some
magic squares and magic circles. Little is known of the early history

!In the symbol for “xz” notice that the “1” is one space down (x) and one
space to the right (z) of *, and is made to stand for the product xz. In the symbol
for “2yz” the three o’s indicate the absence of the terms y, x, xy; the “2”
means twice the product of the two letters in the same row, respectively one space
to the right and to the left of *, i. e., 2 yz. The limitations of this notation are ob-
vious.
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of magic squares. Myth tells us that, in early times, the sage Vi,
the enlightened emperor, saw on the calamitous Yellow River a divine
tortoise, whose back was decorated with the figure made up of the
numbers from 1 to g, arranged in form of a magic square or lo-shw.

Qoreeeesess /
_ -+
o S

The lo-shu.

The numerals are indicated by knots in strings: black knots repre-
sent even numbers (symbolizing imperfection), white knots repre-
sent odd numbers (perfection).

Christian missionaries entered China in the sixteenth century.
The Italian Jesuit Malteo Ricci (1552-1610) introduced European
astronomy and mathematics. With the aid of a Chinese scholar
named Hsi, he brought out in 1607 a translation of the first six books
of Euclid. Soon after followed a sequel to Euclid and a treatise on
surveying. The missionary Mu Ni-ko sometime before 1660 intro-
duced logarithms. In 1713 Adrian Vlack’s logarithmic tables to 11
places were reprinted. Ferdinand Verbiest' of West Flanders, a
noted Jesuit missionary and astronomer, was in 1669 made vice-
president of the Chinese astronomical board and in 1673 its president.
European algebra found its way into China. Mei Ku-ch’éng noticed
that the European algebra was essentially of the same principles as
the Chinese “celestial element method” of former days which had
been forgotten. Through him there came a revival of their own
algebraic method, without, however, displacing European science.
Later Chinese studies touched mainly three subjects: The determina-
tion of 7 by geometry and by infinite series, the solution of numerical
equations, and the theory of logarithms.

We shall see later that Chinese mathematics stimulated the growth
of mathematics in Japan and India. We have seen that, in a small
way, there was a taking as well as a giving. Before the influx of
recent European science, China was influenced somewhat by Hindu
and Arabic mathematics. The Chinese achievements which stand
out most conspicuously are the solution of numerical equations and
the origination of magic squares and magic circles.

1 Consult H. Bosmans, Ferdinand Verbiest, Louvain, 1912. Extract from Revue
des Questions scientifiques, January-April, 1912.
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According to tradition, there existed in Japan in remote times a
system of numeration which extended to high powers of ten and re-
sembled somewhat the sand counter of Archimedes. About 552 A. D.
Buddhism was introduced into Japan. This new movement was
fostered by Prince Shotoku Taishi who was deeply interested in all
learning. Mathematics engaged his attention to such a degree that
he came to be called the father of Japanese mathematics. A little
later the Chinese system of weights and measures was adopted. In
701 a university system was established in which mathematics figured
prominently. Chinese science was imported, special mention being
made in the official Japanese records of nine Chinese texts on mathe-
matics, which include the Chou-pei, the Suan-ching written by Sun-
Tsu and the great arithmetical work, the Chiu-chang. But this eighth
century interest in mathematics was of short duration; the Chiu-chang
was forgotten and the dark ages returned. Calendar reckoning and
the rudiments of computation are the only signs of mathematical
activity until about the seventeenth century of our era. On account
of the crude numeral systems, devoid of the principal of local value
and of a symbol for zero, mechanical aids of computation became a
necessity. These consisted in Japan, as in China, of some forms of
the abacus. In China there came to be developed an instrument,
called the suan-pan, in Japan it was called the soroban. The importa-
tion of the suan-pan into Japan is usually supposed to have occurred
before the close of the sixteenth century. Bamboo computing rods
were used in Japan in the seventh century. These round pieces were
replaced later by the square prisms (sangi pieces). Numbers were
represented by these rods in the manner practiced by the Chinese.
The numerals were placed inside the squares of a surface ruled like a
chess board. The soroban was simply a more highly developed form
of abacal instrument.

The years 1600 to 1675 mark a period of great mathematical ac-
tivity. It was inaugurated by MOrt KAMBEI SHIGEYOSHI, who popu-
larized the use of the soroban. His pupil, YosHipa SuicHIBEI KoY,
is the author of Jinko-ki, 1627, which attained wide popularity and
is the oldest Japanese mathematical work now extant. It explains
operations on the soroban, including square and cube root. In one of

1 This account is compiled from David Fugene Smith and Yoshio Mikami’s
History of Japanese Mathemalics, Chicago, 1914, from Yoshio Mikami’s Develo
ment of Mathematics in China and Japan, Leipzig, 1912, and from T. Hayashr’s
A Bricf History of the Japanese Mathemalics, Overgedrukt uit het Nieww Archicf
wor Wiskunde VI, pp. 296-361; VII, pp. 105-161.
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his later editions Yoshida appended a number of advanced problems
to be solved by competitors. This procedure started among the
Japanese the practice of issuing problems, which was kept up until
1813 and helped to stimulate mathematical activity.

Another pupil of Mori was IMaMUrA CHISHO who, in 1639, pub-
lished a treatise entitled Jugairoku, written in classical Chinese. He
took up the mensuration of the circle, sphere and cone. Another
author, Isomura KiTTokv, in his Kelsugisho, 1660 (second edition
1684), when considering problems on mensuration, makes a crude
approach to integration. He gives magic squares, both odd and even
celled, and also magic circles. Such squares and circles became favor-
ite topics among the Japanese. In the 1684 edition, Isomura gives
also magic wheels. TANAkA KISSHIN arranges the integers 1—96 in
six 42-celled magic squares, such that the sum in each row and column
are 194; placing the six squares upon a cube, he obtains his “magic
cube.” Tanaka formed also “magic rectangles.”! MURAMATSU in
1663 gives a magic square containing as many as 19? cells and a magic
circle involving 129 numbers. Muramatsu gives also the famous
“ Josephus Problem” in the following form: ‘Once upon a time there
lived a wealthy farmer who had thirty children, half being of his first
wife and half of his second one. The latter wished a favorite son to
inherit all the property, and accordingly she asked him one day, say-
ing: Would it not be well to arrange our 30 children on a circle, calling
one of them the first and counting out every tenth one until there
should remain only one, who should be called the heir. The hus-
band assenting, the wife arranged the children . . ; the counting . .
resulted in the elimination of 14 step-children at once, leaving only
one. Thereupon the wife, feeling confident of her success, said, . .
let us reverse the order. . The husband agreed again, and the
counting proceeded in the reverse order, with the unexpected result
that all of the second wife’s children were stricken out and there re-
mained only the step-child, and accordingly he inherited the property.”
The origin of this problem is not known. It is found much earlier in
the Codex Einsidelensis (Einsideln, Switzerland) of the tenth century,
while a Latin work of Roman times attributes it to Flavius Josephus.
It commonly appears as a problem relating to Turks and Christians,
half of whom must be sacrificed to save a sinking ship. It was very
common in early printed European books on arithmetic and in books
on mathematical recreations.

In 1666 SATO SEIKO wrote his Kongenki which, in common with
other works of his day, considers the computation of #(=3.14).
He is the first Japanese to take up the Chinese “celestial element
method” in algebra. He applies it to equations of as high a degree as
the sixth. His successor, SAWAGUCHI, and a contemporary Nozawa,
give a crude calculus resembling that of Cavalieri. Sawaguchi rises

1Y, Mikami in Archiv der Mathemalik u. Physik, Vol. 20, pp. 183-186.
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above the Chinese masters in recognising the plurality of roots, but
he declares problems which yield them to be erroneous in their nature.
Another evidence of a continued Chinese influence is seen in the
Chinese value of m, 335, which was made known in Japan by IKEDA.
We come now to SEKI Kowa (1642-1708) whom the Japanese con-
sider the greatest mathematician that their country has produced.
The year of his birth was the year in which Galileo died and Newton
was born. Seki was a great teacher who attracted many gifted pupils.
Like Pythagoras, he discouraged divulgence of mathematical dis-
coveries made by himself and his school. For that reason it is difficult
to determine with certainty the exact origin and nature of some of the
discoveries attributed to him. He is said to have left hundreds of
manuscripts; the transcripts of a few of them still remain. He pub-
lished only one book, the Hatsubi Sampo, 1674, in which he solved
15 problems issued by a contemporary writer. Seki’s explanations
are quite incomplete and obscure. Takebe, one of his pupils, lays
stress upon Seki’s clearness. The inference is that Seki gave his ex-
planations orally, probably using the computing rods or sengi, as he
proceeded. Noteworthy among his mathematical achievements are
the tenzan method and the yendan method. Both of these refer to
improvements in algebra. The fenzan method is an improvement of
the Chinese “celestial element” method, and has reference to nota-
tion, while the yendan refers to explanations or method of analysis.
The exact nature and value of these two methods are not altogether
clear. By the Chinese “celestial element” method the roots of equa-
tions were computed one digit at a time. Seki removed this limita-
tion. Building on results of his predecessors, Seki gives also rules for
writing down magic squares of (27 +1)2 cells. In the case of the more
troublesome even celled squares, Seki first gives a rule for the con-
struction of a magic square of 42 cells, then of 4(n +1)% and 16 n2 cells.
He simplified also the treatment of magic circles. Perhaps the most
original and important work of Seki is the invention of determinants,
sometime before 1683. Leibniz, to whom the first idea of determinants
is usually assigned, made his discovery in 1693 when he stated that
three linear equations in x and y can have the same ratio only when
the determinant arising from the coefficients vanishes. Seki took 7
equations and gave a more general treatment. Seki knew that a
determinant of the ntt order, when expanded, has »! terms and that
rows and columns are interchangeable.! Usually attributed to Seki
is the invention of the yenri or “circle-principle”” which, it is claimed,
accomplishes somewhat the same things as the differential and in-
tegral calculus. Neither the exact nature nor the origin of the yenri
is well understood. Doubt exists whether Seki was its discoverer.
TAKEBE, a pupil of Seki, used the yenri and may be the chief originator

1 For details consult Y. Mikami, “On the Japanese theory of determinants” in
Isis, Vol. II, 1914, pp. 9-36.
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of it, but his explanations are incomplete and obscure. Seki, Takebe
and their co-workers dealt with infinite series, especially in the study
of the circle and of w. Probably some knowledge of European mathe-
matics found its way into Japan in the seventeenth century. A
Japanese, under the name of Pelrus Hartsingius, is known to have
studied at Leyden under Van Schooten, but there is no clear evidence
that he returned to Japan. In 1650 a Portuguese astronomer, whose
real name is not known and whose adopted name was Sawano Chian,
translated a European astronomical work into Japanese.!

In the eighteenth century the followers of Seki were in control.
Their efforts were expended upon problem-solving, the mensuration
of the circle and the study of infinite series. Of KURUSHIMA GITA,
who died in 1757, fragmentary manuscripts remain, which show a
“magic cube” composed of four 4%-celled magic squares in which the
sums of rows and columns is 130, and the sums of corresponding cells
of the four squares is likewise 130. This “magic cube” is evidently a
different thing from Tanaka’s ‘Magic cube.” Near the close of the
eighteenth century, during the waning days of the Seki school, there
arose a bitter controversy between FujITA SADASUKE, then the head
of the Seki school, and ApA AmmEer.  Of the two, Aida was the younger
and more gifted—an insurgent against the old and involved methods
of exposition. Aida worked on the approximate solution of numerical
equations.? The most noted work of the time was done by a man
living in peaceful seclusion, AjiMA CHOKUYEN of Yedo, who died in
1798. He worked on Diophantine analysis and on a problem known
in the West as “the Malfatti problem,” to inscribe three circles in a
triangle, each tangent to the other two. This problem appeared in
Japan in 1781. Malfatti’s publication on it appeared in 1803, but
the special case of the isosceles triangle had been considered by Jakob
Bernoulli before 1744. Ajima treats special cases of the problem to
determine the number of figures in the repetend in circulating decimals.
He improved the yenri and placed mathematics on the highest plane
that it reached in Japan during the eighteenth century.

In the early part of the nineteenth century there was greater in-
filtration of European mathematics. There was considerable activity,
but no noteworthy names appeared, except WApA NEI (1787-1840)
who perfected the yenri still further, developing an integral calculus
that served the ordinary purposes of mensuration, and giving reasons
where his predecessors ordinarily gave only rules. He worked par-
ticularly on maximia and minima, and on roulettes. Japanese re-
searches of his day relate to groups of ellipses and other figures which

1Y. Mikami in Annaes da academia polyt. do Porto, Vol. VIII, 1913.

?Y. Mikami, ‘‘On Aida Ammei’s solution of an equation” in Annaes da Academia
Polyt. do Porto, Vol. VIII, 1913. This article gives details on the solution of equa-
tions in China and Japan. See also Mikami’s article on Miyai Antai in the Tokokn
Matk. Journal, Vol. s, Nos. 3, 4, 1914. :
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can be drawn upon a folding fan. Here mathematics finds application
to artistic design.

After the middle of the nineteenth century the native mathematics
of Japan yielded to a strong influx of Western mathematics. The
movement in Japan became a part of the great international advance.
In 1911 there was started the Tohoku M athematical Journal, under
the editorship of T. Hayashi. It is devoted to advanced mathematics,
contains articles in many of our leading modern languages and is quite
international in character.!

Looking back we see that Japan produced some able mathemati-
cians, but on account of her isolation, geographically and socially,
her scientific output did not affect or contribute to the progress of
mathematics in the West. The Babylonians, Hindus, Arabs, and to
some extent even the Chinese through their influence on the Hindus,
contributed to the onward march of mathematics in the West. But
the Japanese stand out in complete isolation.

1 G. A. Miller, Historical Introduction to Mathematical Literature, 1916, p. 24.
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After the time of the ancient Greeks, the first people whose re-
searches wielded a wide influence in the world march of mathematics,
belonged, like the Greeks, to the Aryan race. It was, however, not a
European, but an Asiatic nation, and had its seat in far-off India.

Unlike the Greek, Indian society was fixed into castes. The only
castes enjoying the privilege and leisure for advanced study and
thinking were the Brahmins, whose prime business was religion and
philosophy, and the Kskatriyas, who attended to war and government.

Of the developmeﬁ{_of'lﬁﬁdu mathematics we know but little. A
few manuscripts bear testimony that the Indians had climbed to a
lofty height, but their path of ascent is no longer traceable. It would
seem that Greek mathematics grew up under more favorable condi-
tions than the Hindu, for in Greece it attained an independent exist-
ence, and was studied for its own sake, while Hindu mathematics
always remained merely a servant to astronomy. Furthermore, in
Greece mathematics was a science of the people, free to be cultivated
by all who had a liking for it; in India, as in Egypt, it was in the
hands chiefly of the priests. Again, the Indians were in the habit of
putting into verse all mathematical results they obtained, and of
clothing them in obscure and mystic language, which, though well
adapted to aid the memory of him who already understood the subject,
was often unintelligible to the uninitiated. Although the great Hindu
mathematicians doubtless reasoned out most or all of their discoveries,
yet they were not in the habit of preserving the proofs, so that the
naked theorems and processes of operation are all that have come
down to our time. Very different in these respects were the Greeks.
Obscurity of language was generally avoided, and proofs belonged
to the stock of knowledge quite as much as the theorems themselves.
Very striking was the difference in the bent of mind of the Hindu and
Greek; for, while the Greek mind was pre-eminently geometrical, the
Indian was first of all arithmetical. The Hindu dealt with number, the
Greek with form. Numerical symbolism, the science of numbers,
and algebra attained in India far greater perfection than they had
previously reached in Greece. On the other hand, Hindu geometry
was merely mensuration, unaccompanied by demonstration. Hindu
trigonometry is meritorious, but rests on arithmetic more than on
geometry.

An interesting but difficult task is the tracing of the relation be-
tween Hindu and Greek mathematics. It is well known that more
or less trade was carried on between Greece and India from early
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times. After Egypt had become a Roman province, a more lively
commercial intercourse sprang up between Rome and India, by way
of Alexandria. A priori, it does not seem improbable, that with the
traffic of merchandise there should also be an interchange of ideas.
That communications of thought from the Hindus to the Alexandrians
actually did take place, is evident from the fact that certain philo-
sophic and theologic teachings of the Manicheans, Neo-Platonists,
Gnostics, show unmistakable likeness to Indian tenets. Scientific
facts passed also from Alexandria to India. This is shown plainly
by the Greek origin of some of the technical terms used by the Hindus.
Hindu astronomy was influenced by Greek astronomy. A part of
the geometrical knowledge which they possessed is traceable to Alex-
andria, and to the writings of Heron in particular. In algebra there
was, probably, a mutual giving and receiving.

There is evidence also of an intimate connection between Indian
and Chinese mathematics. In the fourth and succeeding centuries of
our era Indian embassies to China and Chinese visits to India are
recorded by Chinese authorities.! We shall see that undoubtedly
there was an influx of Chinese mathematics into India.

The history of Hindu mathematics may be resolved into two
periods: First the S’wlvastitra period which terminates not later than
200 A. D., second, the astronomical and mathematical period, extending
from about 400 to 1200 A. D.

The term S’ulvasiitra means “the rules of the cord”; it is the name
given to the supplements of the Kalpasiitras which explain the con-
struction of sacrificial altars.? The S’ulvasiitras were composed some-
time between 8co B. C. and 200 A. D. They are known to modern
scholars through three quite modern manuscripts. Their aim is
primarily not mathematical, but religious. The mathematical parts
relate to the construction of squares and rectangles. Strange to say,
none of these geometrical constructions occur in later Hindu works;
later Indian mathematics ignores the S’ulvasiitras!

The second period of Hindu mathematics probably originated
with an influx from Alexandria of western astronomy. To the fifth
century of our era belongs an anonymous Hindu astronomical work,
called the S#rya Siddhanta (“ Knowledge from the sun”) which came
to be regarded a standard work. In the sixth century A. p., Vardha
Mihira wrote his Pancha Siddhantika which gives a summary of the
Stirya Siddhanta and four other astronomical works then in use; it
contains matters of mathematical interest.

In 1881 there was found at Bakhkskalr, in northwest India, buried
in the earth, an anonymous arithmetic, supposed, from the peculiar-

1G. R. Kaye, Indian Mathemalics, Calcutta & Simla, 1915, p. 38. We are draw-
ing heavily upon this book which embodies the results of recent studies of Hindu
mathematics.

2G. R. Kaye, 0p. ¢it., p. 3.
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ities of its verses, to date from the third or fourth century after Christ.
The document that was found is of birch bark, and is an incomplete
copy, ?repared probably about the eighth century, of an older manu-
script.! It contains arithmetical computation.

The noted Hindu astronomer Aryabhata was born 476 A. D. at
Pataliputra, on the upper Ganges. His celebrity rests on a work
entitled Aryabhatiya, of which the third chapter is devoted to mathe-
matics. About one hundred years later, mathematics in India reached
the highest mark. At that time flourished Brahmagupta (born 598).
In 628 he wrote his Brakma-sphuta-siddhanta (*‘The Revised System
of Brahma”), of which the twelfth and eighteenth chapters belong
to mathematics.

Probably to the ninth century belongs Mah#ivira, a Hindu author
on elementary mathematics, whose writings have only recently been
brought to the attention of historians. He is the author of the Ganita-
Sadra-Sangraha which throws light upon Hindu geometry and arith-
metic. The following centuries produced only two names of impor-
tance; namely, S’ridhara, who wrote a Ganzla-sara (“Quintessence
of Calculation”), and Padmanabha, the author of an algebra. The
science seems to have made but little progress at this time; for a
work entitled Siddhanta S’iromani (“Diadem of an Astronomical
System”’), written by Bhaskara in 1150, stands little higher than that
of Brahmagupta, written over 500 years earlier. The two most im-
portant mathematical chapters in this work are the Lddvafi ( =“the
beautiful,” {. e. the noble science) and Vije-ganita ( =‘““root-extrac-
tion”’), devoted to arithmetic and algebra. From now on, the Hindus
in the Brahmin schools seemed to content themselves with studying
the masterpieces of their predecessors. Scientific intelligence de-
creases continually, and in more modern times a very deficient Arabic
work of the sixteenth century has been held in great authority. :

The mathematical chapters of the Brahma-siddhanta and Siddhanta
S’iromani were translated into English by H. T. Colebrooke, London,
1817. The S#rya-siddhdnia was translated by E. Burgess, and anno-
tated by W. D. Whitney, New Haven, Conn., 1860. Mahivira’s
Ganita-Sara-Sangraha was published in 1912 in Madras by M. Ranga-
Carya.

We begin with geometry, the field in which the Hindus were least
proficient. The S’wlvasitras indicate that the Hindus, perhaps as
early as 8oo B. C., applied geometry in the construction of altars.
Kaye 2 states that the mathematical rules found in the S’ulvastitras
‘“ relate to (1) the construction of squares and rectangles, (2) the rela-
tion of the diagonal to the sides, (3) equivalent rectangles and squares,
(4) equivalent circles and squares.” A knowledge of the Pythagorean

1The Bakhshali Manuscript, edited by Rudolf Hoernly in the Indian Antiquary,

xvii, 3348 and 275-279, Bombay, 1888.
2 G. R. Kaye, 0p. cit., p. 4.
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theorem is disclosed in such relations as 32442 =52, 1224162 =20?,
1524362 =392 There is no evidence that these expressions were
obtained from any general rule. It will be remembered that special
cases of the Pythagorean theorem were known as early as 1000 B. C.
in China and as early as 2000 B. C. in Egypt. A curious expression
for the relation of the diagonal to a square, namely,

V2 =1+it5—5se

is explained by Kaye as being “an expression of a direct measure-
ment”’ which may be obtained by the use of a scale of the kind named
in one of the S’ulvasiitra manuscripts, and based upon the change
ratios 3, 4, 34. It is noteworthy that the fractions used are all unit
fractions and that the expression yields a result correct to five decimal
places. The S'ulvasiitra rules yield, by the aid of the Pythagorean
theorem, constructions for finding a square equal to the sum or dif-
ference of two squares; they yield a rectangle equal to a given square,
with ¢v2 and 4av?Z as the sides of the rectangle; they yield by
geometrical construction a square equal to a given rectangle, and
satisfying the relation @b =(b+[a—b]/2)2—1(a—b)? corresponding
to Euclid II, 5. In the S’ulvasiitras the altar building ritual explains
the construction of a square equal to a circle. Let a be the side of
a square and d the diameter of an equivalent circle, then the given
rules may be expressed thus:! d =g +(av2—a)/3, ¢ =d—2d[15, a =
d1—}+555— 5355 +53ues) This third expression may be ob-
tained from the first by the aid of the approximation for v2, given
above. Strange to say, none of these geometrical constructions occur
in later Hindu works; the latter completely ignore the mathematical
contents of the S’ulvasiitras. -

During the six centuries from the time of Aryabhata to that of
Bhiskara, Hindu geometry deals mainly with mensuration. The
Hindu gave no definitions, no postulates, no axioms, no logical chain
of reasoning. His knowledge of mensuration was largely borrowed
from the Mediterranean and from China, through imperfect channels of
communication. Aryabhata gives a rule for the area of triangle which
holds only for the isosceles triangle. Brahmagupta distinguishes
between approximate and exact areas, and gives Heron of Alexan-

dria’s famous formula for the triangular area, vs(s—a)(s—b)(s—c).
Heron’s formula is given also by Mahavira? who advanced be-
yond his predecessors in giving the area of an equilateral triangle as
a>V/3/s. Brahmagupta and Mahavira make a remarkable extension
of Heron’s formula by giving v(s—a)(s—b)(s—c)(s—d) as the area
of a quadrilateral whose sides are a, b, ¢, d, and whose semiperimeter
is s. That this formula is true only for quadrilaterals that can be in-

1G. R. Kaye, op. cit., p. 7.
1 D. E. Smith, in Isis, Vol. 1, 1913, pp. 199, 200.
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scribed in a circle was recognized by Brahmagupta, according to Can-
tor’s ! and Kaye’s ? interpretation of Brahmagupta’s obscure ex-
position, but Hindu commentators did not understand the limitation
and Bhaskara finally pronounced the formula unsound. Remarkable
is “Brahmagupta’s theorem” on cyclic quadrilaterals, x*= (ad+b)c.
(ac+bd)/(ab+-cd) and y*=(ab+cd) (ac+bd)/(ad-+bc), where x and
y are the diagonals and a, b, ¢, d, the lengths of the sides; also the the-
orem that, if @*4b°=c? and A*4B?=C?, then the quadrilateral
(“Brahmagupta’s trapezium”), (aC, ¢B, bC, cA) is cyclic and has its
diagonals at right angles. Kaye says: From the triangles (3, 4, 5)
and (s, 12, 13) a commentator obtains the quadrilateral (39, 60, 52,
25), with diagonals 63 and 56, etc. Brahmagupta (says Kaye) also in-
troduces a proof of Ptolemy’s theorem and in doing this follows Dio-
phantus (III, 19) in constructing from right triangles (a, b, ¢) and
(a, B, ) new right triangles (a7, b7, ¢¥) and (ac, B¢, yc) and
uses the actual examples given by Diophantus, namely (39, 52, 65)
and (25, 60, 65). Parallelisms of this sort show unmistakably that the
Hindus drew from Greek sources.

_In the mensuration of solids remarkable inaccuracies occur in
Aryabhata. He gives the volume of a pyramid as kalf the product of
the base and the height; the volume of a sphere as 7# 7%. Aryab-
hata gives in one place an extremely accurate value for , viz. 3%
(=3.1416), but he himself never utilized it, nor did any other Hindu
mathematician before the twelfth century. A frequent Indian prac-
tice was to take w=3, or vio. Bhiskara gives two values,—the
above mentioned ‘accurate,’ 3327, and the ‘inaccurate,” Archimedean
value, 2. A commentator on Lidvafi says that these values were
calculated by beginning with a regular inscribed hexagon, and apply-

ing repeatedly the formula AD=+/2—V4—AB?, wherein AB is the
side of the given polygon, and 4D that of one with double the number
of sides. In this way were obtained the perimeters of the inscribed
polygons of 12, 24, 48, 96, 192, 384 sides. Taking the radius= 100, the
perimeter of the last one gives the value which Aryabhata used for #.
The empirical nature of Hindu geometry is illustrated by Bhaskara’s
proof of the Pythagorean theorem.
He draws the right triangle four
times in the square of the hypote-
nuse, so that in the middle there re-
mains a square whose side equals
the difference between the two sides
of the right triangle. Arranging this square and the four triangles in
a different way, they are seen, together, to make up the sum of the
square of the two sides. “Behold!” says Bhaskara, without adding

1Cantor, op. cit., Vol. I, 3rd Ed., 1907, pp. 649-653.
2G. R. Kays, o9. cil., pp. 20-22.
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another word of explanation. Bretschneider conjectures that the
Pythagorean proof was substantially the same as this. Recently it
has been shown that this interesting proof is not of Hindu origin, but
was given much earlier (early in the Christian era) by the Chinese
writer Chang Chun-Ch’ing, in his commentary upon the ancient treat-
ise, the Chou-pei.! In another place, Bhiskara gives a second dem-
onstration of this theorem by drawing from the vertex of the right
angle a perpendicular to the hypotenuse, and comparing the two tri-
angles thus obtained with the given triangle to which they are similar.
This proof was unknown in Europe till Wallis rediscovered it. The
only Indian work that touches the subject of the conic sections is Ma-
havira’s book, which gives an inaccurate treatment of the ellipse. It
is readily seen that the Hindus cared little for geometry. Brahma-
gupta’s cyclic quadrilaterals constitute the only gem in their geom-
etry.

The grandest achievement of the Hindus and the one which, of all
mathematical inventions, has contributed most to the progress of
intelligence, is the perfecting of the so-called “Arabic Notation.”
That this notation did not originate with the Arabs is now admitted
by every one. Until recently the preponderance of authority favored
the hypothesis that our numeral system, with its concept of local
value and our symbol for zero, was wholly of Hindu origin. Now it
appears that the principal of local value was used in the sexagesimal
system found on Babylonian tablets dating from 1600 to 2300 B. C.
and that Babylonian records from the centuries immediately preced-
ing the Christian era contain a symbol for zero which, however, was
not used in computation. These sexagesimal fractions appear in
Ptolemy’s Almagest in 130 A. D., where the omicron o is made to des-
ignate blanks in the sexagesimal numbers, but was not used as a reg-
ular zero. The Babylonian origin of the sexagesimal fractions used by
Hindu astronomers is denied by no one. The earliest form of the In-
dian symbol for zero was that of a dot which, according to Biihler,?
was “commonly used in inscriptions and manuscripts in order to
mark a blank.” This restricted early use of the symbol for zero re-
sembles somewhat the still earlier use made of it by the Babylonians
and by Ptolemy. It is therefore probable that an imperfect notation
involving the principle of local value and the use of the zero was im-
ported into India, that it was there transferred from the sexagesimal
to the decimal scale and then, in the course of centuries, brought to
final perfection. If these views are found by further research to be
correct, then the name “Babylonic-Hindu” notation will be more
appropriate than either “Arabic” or “Hindu-Arabic.” It appears

! Yoshio Mikami, “The Pythagorean Theorem” in Archiv d. Math. u. Physik,
3. S., Vol. 22, 1912, pp. 1-4. '

2 Quoted by D. E. Smith and L. C. Karpinski in their Hindu-Arabic Numerals,
Boston and London, 1911, p. 53.
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that in India various numeral forms were used long before the prin-
ciple of local value and the zero came to be used. Early Hindu numer-
als have been classified under three great groups. Numeral forms of
one of these groups date from the third century B. c.! and are helieved
to be the forms from which our present system developed. That the
nine figures were introduced quite early and that the principle of lo-
cal value and the zero were incorporated later is a belief which re-
ceives support from the fact that on the island of Ceylon a notation
resembling the Hindu, but without the zero has been preserved. We
know that Buddhism and Indian culture were transplanted to Ceylon
about the third century after Christ, and that this culture remained
stationary there, while it made progress on the continent. It seems
highly probable, then, that the numerals of Ceylon are the old, im-
perfect numerals of India. In Ceylon, nine figures were used for the
units, nine others for the tens, one for 100, and also one for 1000.
These 20 characters enabled them to write all the numbers up to
9999. Thus, 8725 would have been written with six signs, represent-
ing the following numbers: 8, 1000, 7, 100, 20, 5. These Singhalesian
signs, like the old Hindu numerals, are supposed originally to have
been the initial letters of the corresponding numeral adjectives. There
is a marked resemblance between the notation of Ceylon and the one
used by Aryabha;a in the first chapter of his work, and there only.
Although the zero and the principle of position were unknown to the
scholars of Ceylon, they were probably known to Aryabhata; for, in
the second chapter, he gives directions for extracting the square and
cube roots, which seem to indicate a knowledge of them. The sym-
bol for zero was called sunya (the void). It is found in the form of a
dot in the Bakhshili arithmetic, the date of which is uncertain. The
earliest undoubted occurrence of our zero in India is in 876 A. D.?
The earliest known mention of Hindu numerals outside of India was
made in 662 A. D. by the Syrian writer, Severus Sebokht. He speaks
of Hindu computations “which excel the spoken word and . . . are
done with nine symbols.” 3

There appear to have been several notations in use in different parts
of India, which differed, not in principle, but merely in the forms of
the signs employed. Of interest is also a symbolical system of position,
in which the figures generally were not expressed by numerical adjec-
tives, but by objects suggesting the particular numbers in question.
Thus, for 1 were used the words moon, Brahma, Crealor, or form; for
4, the words Veda, (because it is divided into four parts) or ocean, etc.
The following example, taken from the Strye Siddhanta, illustrates
the idea. The number 1,577,01%,828 is expressed from right to left as

1D. E. Smith and L. C. Karpinski, op. cit., p. 22.

2 Ibid, p. 52.

3 M. F. Nau in Journal Asialique, S. 10, Vol. 16, 1910; D. E. Smith in Bull. Am.
Matk. Soc., Vol. 23, 1917, p. 366.
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follows: Vasu (a class of 8 gods)--two-eight+ mountains (the 7 moun-
tain-chains)-+-form--digits (the ¢ digits)=4seven-+mountains-+lunar
days (half of which equal 15). The use of such notations made it pos-
sible to represent a number in several different ways. This greatly
facilitated the framing of verses containing arithmetical rules or sci-
entific constants, which could thus be more easily remembered.

At an early period the Hindus exhibited great skill in calculating,
even with large numbers. Thus, they tell us of an examination to
which Buddha, the reformer of the Indian religion, had to submit,
when a youth, in order to win the maiden he loved. In arithmetic,
after having astonished his examiners by naming all the periods of
numbers up to the 53d, he was asked whether he could determine the
number of primary atoms which, when placed one against the other,
would form a line one mile in length. Buddha found the required an-
swer in this way: 7 primary atoms make a very minute grain of dust,
7 of these make a minute grain of dust, 7 of these a grain og dust whirled
up by the wind, and so on. Thus he proceeded, step by step, until he
finally reached the length of a mile. The multiplication of all the fac-
tors gave for the multitude of primary atoms in a mile a number con-
sisting of 15 digits. This problem reminds one of the “Sand-Counter”
of Archimedes.

After the numerical symbolism had been perfected, figuring was
made much easier. Many of the Indian modes of operation differ
from ours. The Hindus were generally inclined to follow the motion
from left to right, as in writing. Thus, they added the left-hand col-
umns first, and made the necessarv cotrections as they proceeded.
For instance, they would have added 254 and 663 thus: 24-6=38,
546 =11, which changes 8 into g9, 443=7. Hence the sum 917. In
subtraction they had two methods. Thus in 821 — 348 they would say,
8 from 11=3, 4 from 11=7, 3 from 7=4. Or they would say, 8 from
11=3, 5 from 12=7, 4 from 8=4. In multiplication of a number by
another of only one digit, say 569 by s, they generally said, 5.5= 25,
5.6=30, which changes 25 into 28, 5.9=45, hence the o must be in-
creased by 4. The product is 2845. In the multiplication with each
other of many-figured numbers, they first multiplied, in the manner
just indicated, with the left-hand digit of the multiplier, which was
written above the multiplicand, and placed the product above the
multiplier. On multiplying with the next digit of the multiplier, the
product was not placed in a new row, as with us, but the first product
obtained was corrected, as the process continued, by erasing, when-
ever necessary, the old digits, and replacing them by new ones, until
finally the whole product was obtained. We who possess the modern
luxuries of pencil and paper, would not be likely to fall in love with
this Hindu method. But the Indians wrote “with a cane-pen upon
a small blackboard with a white, thinly liquid paint which made marks
that could be easily erased, or upon a white tablet, less than a foot




THE HINDUS o1

square, strewn with red flour, on which they wrote the figures with a
small stick, so that the figures appeared white on a red ground.” !
Since the digits had to be quite large to he distinctly legible, and
since the boards were small, it was desirable to have a method which
would not require much space. Such a one was the above method
of multiplication. Figures could be easily erased and replaced by
others without sacrificing neatness. But the Hindus had also other
ways of multiplying, of which we mention the following: The tablet
was divided into squares like a chess-board. Diagonals were also
drawn, as seen in the figure. The multiplication of 12X 735=8820 is
exhibited in the adjoining diagram.? According to Kaye,” this mode
of multiplying was not of Hindu origin and was 78 5
known earlier to the Arabs. The manuscripts
extant give no information of how divisions were
executed. . AP AV

Hindu mathematicians of the twelfth century
test the correctness of arithmetical computations8 8 9 @
by “casting out nines,” but this process is not of Hindu origin;
it was known to the Roman bishop Hippolytos in the third cen-
tury.

In the Bakhshali arithmetic a knowledge of the processes of com-
putation is presupposed. In fractions, the numerator is written above
the denominator without a dividing line. Integers are written as
fractions with the denominator 1. In mixed expressions the integral

part is written above the fraction. Thus, i= 13. In place of our=

they used the word phalam, abbreviated into pha. Addition was in-
dicated by yu, abbreviated from yute. Numbers to be combined

were often enclosed in a rectangle. Thus, pha 123 7 yu|means §+1=

12. An unknown quantity is sunve, and is designated thus. by a
heavy dot. The word sunya means ‘“‘empty,” and is the word for
zero, which is here likewise represented by a dot. This double use of
the word and dot rested upon the idea that a position is “empty” if
not filled out. It isalso to be considered “empty’’ so long as the num-
ber to be placed there has not been ascertained.*

The Bakhshali arithmetic contains problems of which some are
solved by reduction to unity or by a sort of false position. Example:
B gives twice as much as A, C three times as much as B, D four times as
much as C; together they give 132; how much did A give? Take 1 for
the unknown (sunyae), thenA=1, B=2, C=6, D=24, their sum=
33. Divide 132 by 33, and the quotient 4 is what A gave.

The method of false position we have encountered before among

1 H. Hankel, op. cit., 1874, p. 186.

2 M. Cantor, op. cil., Vol. I, 3 Aufl., 1907, p. 611.

3G. R. Kaye, op. cil., p. 34.

4 Cantor, I, 3 Ed., 1907, pp. 613-618.

1/8l/8

7
0




92 A HISTORY OF MATHEMATICS

the early Egyptians. With them it was an instinctive procedure;
with the Hindus it had risen to a conscious method. Bhaskara uses
it, but while the Bakhshali document preferably assumes 1 as the
unknown, Bhiskara is partial to 3. Thus, if a certain number is
taken five-fold, 4 of the product be subtracted, the remainder divided
by 10, and 1, % and 1 of the original number added, then 68 is ob-
tained. What is the number? Choose 3, then you get 15, 10, I, and
1+3+3+3=4%" Then (68<1)3=48, the answer.

We shall now proceed to the consideration of some arithmetical
problems and the Indian modes of solution. A favorite method was
that of inversion. With laconic brevity, Aryabhaga describes it thus:
“Multiplication becomes division, division becomes multiplication;
what was gain becomes loss, what loss, gain; inversion.” Quiie different
from this quotation in style is the following problem from Aryabhata,
which illustrates the method: “Beautiful maiden with beaming eyes,
tell me, as thou understandst the right method of inversion, which
is the number which multiplied by 3, then increased by # of the prod-
uct, divided by 7, diminished by % of the quotient, multiplied by it-
self, diminished by 52, the square root extracted, addition of 8, and
division by 10, gives the number 2?” The process consists in begin-
ning with 2 and working backwards. Thus, (2.10—8)*452=196,
V' 196= 14, and 14.3.7.4+ 3 =28, the answer.

Here is another example taken from Ludvafi, a chapter in Bhis-
kara’s great work: “The square root of half the number of bees in a
swarm has flown out upon a jessamine-bush, § of the whole swarm
has remained behind; one female bee flies about a male that is buzz-
ing within a lotus-flower into which he was allured in the night by its
sweet odor, but is now imprisoned in it. Tell me the number of bees.”
Answer, 72. The pleasing poetic garb in which all arithmetical prob-
lems are clothed is due to the Indian practice of writing all school-books
in verse, and especially to the fact that these problems, propounded
as puzzles, were a favorite social amusement. Says Brahmagupta:
“These problems are proposed simply for pleasure; the wise man can
invent a thousand others, or he can solve the problems of others by
the rules given here. As the sun eclipses the stars by his brilliancy,
so the man of knowledge will eclipse the fame of others in assemblies
of the pedple if he proposes algebraic problems, and still more if he -
solves them.”

The Hindus solved problems in interest, discount, partnership,
alligation, summation of arithmeticai and geometric series, and de-
vised rules for determining the nwulers of combinations and permu-
tations. It may here be added that chess, the profoundest of all

es, had 1ts origin 1n India. The invention of magic squares is
sometimes erroneously atiributed to the Hindus. Among the Chi-
nese and Arabs magic squares appear much earlier. The first occur-
rence of a magic square among the Hindus is at Dudhai, Ihansi, in
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northern India. It is engraved upon a stone found in the ruins of
a temple assigned to the eleventh century, A. p.! After the time of
Bhaskara magic squares are mentioned by Hindu writers.

The Hindus made frequent use of the “rule of three.” Their method
of “false position,” is almost identical with that of the ‘“tentative
assumption’ of Diophantus. These and other rules were applied to
a large number of problems. '

Passing now to algebra, we shall first take up the symbols of opera-
tion. Addition was indicated simply by juxtaposition as in Diophan-
tine algebra; subtraction, by placing a dot over the subtrahend; mul-
tiplication, by putting after the factors, bka, the abbreviation of the
word bhavita, “ the product’’; division, by placing the divisor beneath
the dividend; square-root, by writing ke, from the word karana (irra-
tional), before the quantity. The unknown quantity was called by
Brahmagupta y8vattdvat (quanium tantum). When several unknown
quantities occurred, he gave, unlike Diophantus, to each a distinct
name and symbol. The first unknown was designated by the general
term ‘“unknown quantity.” The rest were distinguished by names
of colors, as the black, blue, yellow, red, or green unknown. The ini-
tial syllable of each word constituted the symbol for the respective
unknown quantity. Thus yé8 meant x; k8 (from kdlaka=black) meant
y; y8 k4 bha, “x times y”’; ka 15 ka 10, “ \/1—5— V'10.”

The Indians were the first to recognize the existence of absolutely
negative quantities. They brought out the difference between posi-
tive and negative quantities by attaching to the one the idea of “pos-
session,” to the other that of “debts.” The conception also of oppo-
site directions on a line, as an interpretation of 4 and — quantities,
was not foreign to them. They advanced beyond Diophantus in ob-
serving that a quadratic has always two roots. Thus Bhaskara gives
x=50 and x=—g5 for the roots of 22—45r=250. “But,” says he,
“the second value is in this case not to be taken, for it is inadequate;
people do not approve of negative roots.”” Commentators speak of
this as if negative roots were seen, but not admitted.

Another important generalization, says Hankel, was this, that since
the time of Bhiaskara the Hindus never confined their arithmetical
operations to rational numbers. For instance, Bhaskara showed how,

by the formula \/a+\/_b=\| a+\/a2—b+\ e—Va'~b e square
2 : 2

root of the sum of rational and irrational numbers could be found.

The Hindus never discerned the dividing line between numbers and

magnitudes, set up by the Greeks, which, though the product of a

scientific spirit, greatly retarded the progress of mathematics. They

from magnitudes to numbers and from numbers to magnitudes

without anticipating that gap which to a sharply discriminating mind
1 Bull. Am. Math. Soc., Vol. 24, 1917, p. 106.




94 A HISTORY OF MATHEMATICS

exists between the continuous and discontinuous. Yet by doing so
the Indians greatly aided the general progress of mathematics. ““In-
deed, if one understands by algebra the application of arithmetical
operations to complex magnitudes of all sorts, whether rational or irra-
tional numbers or space-magnitudes, then the learned Brahmins of
Hindostan are the real inventors of algebra.” !

Let us now examine more closely the Indian algebra. In extract-
ing the square and cube roots they used the formulas (a+b)%=a>+
2ab+b? and (a-+0)%= a®+ 3a%+ 3ab?>+0%. 1In this connection Aryab—
hata speaks of dividing a number into periods of two and three digits.
From this we infer that the principle of position and the zero in the
numerical notation were already known to him. In figuring with
zeros, a statement of Bhaskara is interesting. A fraction whose de-
nominator is zero, says he, admits of no alteration, though much be
added or subtracted. Indeed, in the same way, no change takes place
in the infinite and immutable Deity when worlds are destroyed or
created, even though numerous orders of beings be taken up or brought
forth. Though in this he apparently evinces clear mathematical no-
tions, yet in other places he makes a complete failure in figuring with
fractions of zero denominator.

In the Hindu solutions of determinate equations, Cantor thinks
he can see traces of Diophantine methods. Some technical terms be-
tray their Greek origin. Even if it be true that the Indians borrowed
from the Greeks, they deserve credit for improving the solutions of
linear and quadratic equations. Recognizing the existence of neg-
ative numbers, Brahmagupta was able to unify the treatment of
the three forms of quadratic equations considered by Diophantus,
viz., ax>™t+bx=c¢, bx+c=ax? ax’+c=bx, (a, b and ¢ being pos-
itive numbers), by bringing the three under the one general case,
px*4-gx+r=o. To S'ridnara is attributed the “Hindu method”
of completing the square which begins by multiplying both sides
of the equation by 4p. Bhaskara advances beyond the Greeks
and even heyond Brahmagupta when he says that “the square of
a positive, as also of a negative number, is positive; that the square
root of a positive number is twofold, positive and negative. There is
no square root of a negative number, for it is not a square.” Kaye
points out, however, that the Hindus were not the first to give double
solutions of quadratic equations.? The Arab Al-Khowarizmi of the
ninth century gave both solutions of 24 21=102. Of equations of
higher degrees, the Indians succeeded in solving only some special
cases in which both sides of the equation rould be made perfect powers
by the addition of certain terms to each.

Incomparably greater progress than in the solution of determinate
equations was made by the Hindus in the treatment of indeterminate
equations. Indeterminate analysis was a subject to which the Hindu

1 H. Hankel, op. cil., p. 195. 2G. R. Kaye, 0p. cil., p. 34.
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mind showed a happy adaptation. We have seen that this very sub-
ject was a favorite with Diophantus, and that his ingenuity was al-
most inexhaustible in devising solutions for particular cases. But the
glory of having invented general methods in this most subtle branch
of mathematics belongs to the Indians. The Hindu indeterminate
analysis differs from the Greek not only in method, but also in aim.
The object of the former was to find all possible integral solutions.
Greek analysis, on the other hand, demanded not necessarily integral,
but simply rational answers. Diophantus was content with a_single
solution; the Hindus endeavored to find all solutions possible. aAry'ab-
hata gives solutions in integers to linear equations of the form ax==
by=c, where a, b, c are integers. The rule employed is called the pul-
verizer. For this, as for most other rules, the Indians give no proof.
Their solution is essentially the same as the one of Euler. Euler’s

. a . .
process of reducing 3 to a continued fraction amounts to the same as

the Hindu process of finding the greatest common divisor of a and
by division. This is frequently called the Diophantine method. Han-
kel protests against this name, on the ground that Diophantus not
only never knew the method, but did not even aim at solutions purely
integral.! These equations probably grew out of problems in astron-
omy. They were applied, for instance, to determine the time when
a certain constellation of the planets would occur in the heavens.

Passing by the subject of linear equations with more than two un-
known quantities, we come to indcterminate quadratic equations. In
the solution of xy=ax-}by+c, they applied the method re-invented
later by Euler, of decomposing (ab-c) into the product of two integers
m.n and of placing x=m-b and y=n--a.

Remarkable is the Hindu solution of the quadratic equation cy*=
ax’+b. With great keenness of intellect they recognized in the special
case ¥*=ax’+ 1 a fundamental problem in indeterminate quadratics.
They solved it by the cyclic method. ‘It consists,” says De Morgan,
“in a rule for finding an indefinite number of solutions of y*=ax’+1
(a being an integer which is not a square), by means of one solution
given or found, and of feeling for one solution by making a solution
of y*=ax>+b give a solution of y?=ax>+52% It amounts to the fol-
lowing theorem: If p and ¢ be one set of values of x and y in y>=ax*+b
and p’ and ¢’ the same or another set, then gp+pg’ and app’+qq’
are values of x and y in y*=gax?4-5% From this it is obvious that one
solution of y?=ax’+1 may be made to give any number, and that if,
taking b at pleasure, y?=ax?4b? can be solved so that x and y
are divisible by b, then one preliminary solution of y?>=ax?4-1 can be
be found. Another mode of trying for solutions is a combination of
the preceding with the cuttaca l?1')‘ulv<:x'izer).” These calculations were

used in astronomy.
1 H. Hankel, 0p. cit., p. 196.
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Doubtless this “cyclic method” constitutes the greatest invention
in the theory of numbers before the time of Lagrange. The perver-
sity of fate has willed it, that the equation y?=ax?4-1 should now be
called Pell’s equation; the first incisive work on it is due to Brahmin
scholarship, reinforced, perhaps, by Greek research. It is a problem
that has exercised the highest faculties of some of our greatest modern
analysts. By them the work of the Greeks and Hindus was done over
again; for, unfortunately, only a small portion of the Hindu algebra and
the Hindu manuscripts, which we now possess, were known in the
Occident. Hankel attributed the invention of the *“cyclic method”
entirely to the Hindus, but later historians, P. Tannery, M. Cantor,
T. Heath, G. R. Kaye favor the hypothesis of ultimate Greek origin.
If the missing parts of Diophantus are ever found, light will probably
be thrown upon this question.

Greater taste than for geometry was shown by the Hindus for trig-
onometry. Interesting passages are found in Variha Mihira’s Peficha
Siddhantikd@ of the sixth century A. p.,' which, in our notation for
unit radius, gives w=vV10, sin 30°=4}, sin 6c°=v1—}, sin’y=
(sin 27y} %/e+ (1—sin (go°—27))2/s. This is followed by a table of
24 sines, the angles increasing by intervals of 3°45’ (the eighth part
of 30°), obviously taken from Ptolemy’s table of chords. However,
instead of dividing the radius into 6o parts in the manner of Ptolemy,
the Hindu astronomer divides it into 120 parts, which device enabled
him to convert Ptolemy’s table of chords into a table of sines without
changing the numerical values. Aryabhata took a still different value
for the radius, namely, 3438, obtained apparently from the relation
2X 3.1416r=21,600. The Hindus followed the Greeks and Babylo-
nians in the practice of dividing the circle into quadrants, each quad-
rant into go degrees and 5400 minutes—thus dividing the whole circle
into 21,600 equal parts. Each quadrant was divided also into 24 equal
parts, so that each part embraced 225 units of the whole circumference,
and corresponded to 3§ degrees. Notable is the fact that the Indians
never reckoned, like the Greeks, with the whole chord of double the arc,
but always with the sine (joa) and versed sine. Their mode of calcula-
ting tables was theoretically very simple. The sine of go® was equal to
the radius, or 3438; the sine of 30° was evidently half that, or 1719.

'.2
Applying the formula sin%a+- cos?a=r?, they obtained sin 45°= ;=
2431. Substituting for cos a its equal sin (go —a), and making a=60°,

2
they obtained sin 60° = "%= 2978. With the sines of go, 60, 45, and 30

as starting-points, they reckoned the sines of half the angles bfy the
formula ver sin 2 a=2 sin®s, thus obtaining the sines of 22° 30, 15°,

1 G. R. Kaye, op. cit., p. 10.
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11° 15, 7° 30, 3° 45'. They now figured out the sines of the comple-
ments of these angles, namely, the sines of 86° 15/, 82° 30, 78° 45/,
75°, 67° 30’; then they calculated the sines of half these angles; then
of their complements; then, again, of half their complements; and so
on. By this very simple process they got the sines of angles at inter-
vals of 3° 45'. In this table they discovered the unique law that if
@, b, ¢ be three successive arcs such that a—b=>b—c=3° 45’, then
sin ¢—sin b= (sin b—sin ¢) —S:‘—zsé. This formula was afterwards used
whenever a re-calculation of tables had to be made. No Indian trig-
onometrical treatise on the triangle is extant. In astronomy they
solved plane and spherical triangles.!

Now that we have a fairly complete history of Chinese mathematics,
Kaye has been able to point out parallelisms between Hindu and
Chinese mathematics which indicate that India is indebted to China.
The 2 Chiu-chang Suan-shid (“‘ Arithmetic in Nine Sections’’) was com-
posed in China at least as early as 200 B. C.; the Chinese writer Chang
T’sang wrote a commentary on it in 263 A. p. The “Nine Sections”
gives the approximate area of a segment of a circle=} (¢4 a)a, where
cis the chord and a is the perpendicular. This rule occurs in the work
of the later Hindu author Mahivira. Again, the Chinese problerh of
the bamboo 10 ft. high, the upper end of which being broken reaches the
ground three feet from the stem; to determine the height of the break—
occurs in all Hindu books after the sixth century. The Chinese arith-
metical treatise, Sun-Ts@i Suan-ching, of about the first century A.
D. has an example asking for a number which, divided by 3 yields the
remainder 2, by 5 the remainder 3, and by 7 the remainder 2. Exam-
ples of this type occur in Indian works of the seventh and ninth cen-
turies, particularly in Brahmagupta and Mahidvira. On a preceding
page we called attention to the fact that Bhaskara’s dissection proof
of the Pythagorean theorem is found much earlier in China. Kaye
gives several other examples of Chinese origin that are found later in
Hindu books.

Notwithstanding the Hindu indebtedness to other nations, it is
remarkable to what extent Indian mathematics enters into the
science of our time. Both the form and the spirit of the arithmetic
and algebra of modern times are essentially Indian. Think of our
notation of numbers, brought to perfection by the Hindus, think of
the Indian arithmetical operations nearly as perfect as our own, think
of their elegant algebraical methods, and then judge whether the
Brahmins on the banks of the Ganges are not entitled to some credit.
Unfortunately, some of the most brilliant results in indeterminate an-
alysis, found in Hindu works, reached Europe too late to exert the in-

1 A. Ameth, Geschichte der reinen Mathematik. Stuttgart, 1852, p. 174.
2 G. R. Kaye, o0p. cit., pp. 38—41.
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fluence they would have exerted, had they tome two or three centu-
ries earlier.

At the beginning of the twentieth century, mathematical activity
along modern lines sprang up in India. In the year 1907 there was
founded the I'ndian Mathematical Society; in 1909 there was started
_ at Madras the Journal of the Indian M athematical Society.!

1 (Three recent writers have advanced arguments tending t disprove the Hindu
origin of our numerals. We refer (1) to G. R. Kaye’s articles in Scientia, Vol. 24,
1918, pp. 53-55; in Journal Asiatic Soc. Bengal, I11, 1907, pp. 475-508, also VII,
1911, pp. 8o1-816: in Indian Antiquary, 1011, pp. 50-56; (2) to Carra de Vaux’s
article in Scientia, Vol. 21, 1917, pp. 273—282; (3) to a Russian book brought out
by Nikol. Bubnow in 1908 and translated into German in 1914 by Jos. Lezius.
Kaye claims to show that the proofs of the Hindu origin of our numerals are
largely legendary, that the question has been clouded by a confusion between the
words kindi (Indian) and hkindasi (measure geometrical), that the symbols are
not modified letters of the alphabet. We must hold our minds in suspense on
this difficult question and await further evidence.)




THE ARABS

After the flight of Mohammed from Mecca to Medina in 622 A. D.,
an obscure people of Semitic race began to play an important part in
the drama of history. Before the lapse of ten years, the scattered
tribes of the Arabian peninsula were fused by the furnace blast of
religious enthusiasm into a powerful nation. With sword in hand the
united Arabs subdued Syria and Mesopotamia. Distant Persia and
the lands beyond, even unto India, were added to the dominions of
the Saracens. They conquered Northern Africa, and nearly the
whole Spanish peninsula, but were finally checked from further prog-
ress in Western Europe by the firm hand of Charles Martel (732 A. p.).
The Moslem dominion extended now from India to Spain; but a war
of succession to the caliphate ensued, and in 755 the Mohammedan
empire was divided,—one caliph reigning at Bagdad, the other at Cor-
dova in Spain. Astounding as was the grand march of conquest by
the Arabs, still more so was the ease with which they put aside their
former nomadic life, adopted a higher civilization, and assumed the
sovereignty over cultivated peoples. Arabic was made the written
language throughout the conquered lands. With the rule of the Abba-
sides in the East began a new period in the history of learning. The
capital, Bagdad, situated on the Euphrates, lay half-way between
two old centres of scientific thought,—India in the East, and Greece
in the West. The Arabs were destined to be the custodians of the
torch of Greek science, to keep it ablaze during the period of confu-
sion and chaos in the Occident, and afterwards to pass it over to the
Europeans. This remark applies in part also to Hindu science. Thus
science passed from Aryan to Semitic races, and then back again to
the Aryan. Formerly it was held that the Arabs added but little to
the knowledge of mathematics; recent studies indicate that they must
be credited with novelties once thought to be of later origin.

The Abbasides at Bagdad encouraged the introduction of the
sciences by inviting able specialists to their court, irrespective of na-
tionality or religious belief. Medicine and astronomy were their fa-
vorite sciences. Thus Harun-al-Rashid, the most distinguished Sara-
cen ruler, drew Indian physicians to Bagdad. In the year 772 there
came to the court of Caliph Almansur a Hindu astronomer with as-
tronomical tables which were ordered to be translated into Arabic.
These tables, known by the Arabs as the Sindkind, and probably taken
from the Brahma-sphuta-siddhanta of Brahmagupta, stood in great
authority. They contained the important Hindu table of sines.

Doubtless at this time, and along with these astronomical tables,
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the Hindu numerals, with the zero and the principle of position, were
introduced among the Saracens. Before the time of Mohammed the
Arabs had no numerals. Numbers were written out in words. Later,
the numerous computations connected with the financial administra-
tion over the conquered lands made a short symbolism indispensable.
In some localities, the numerals of the more civilized conquered na-
tions were used for a time. Thus, in Syria, the Greek notation was
retained; in Egypt, the Coptic. In some cases, the numeral adjec-
tives may have been abbreviated in writing. The Diwani-numerals,
found in an Arabic-Persian dictionary, are supposed to be such ab-
breviations. Gradually it became the practice to employ the 28 Ara-
bic letters of the alphabet for numerals, in analogy to the Greek sys-
tem. This notation was in turn superseded by the Hindu notation,
which quite early was adopted by merchants, and also by writers on
arithmetic. Its superiority was generally recognized, except in as-
tronomy, where the alphabetic notation continued to be used. Here
the alphabetic notation offered no great disadvantage, since in the
sexagesimal arithmetic, taken from the Almaqcst, numbers of gen-
erally only one or two places had to be written.

As regards the form of the so-called Arabic numerals, the state-
ment of the Arabic writer Al-Biruni (died 1039), who spent many
years in India, is of interest. He says that the shape of the numer-
als, as also of the letters in India, differed in different localities, and
that the Arabs selected from the various forms the most suitable. An
Arabian astronomer says there was among people much difference in
the use of symbols, especially of those for s, 6, 7, and 8. The symbols
used by the Arabs can be traced back to the tenth century. We find
material differences between those used by the Saracens in the East
and those used in the West. But most surprising is the fact that the
symbols of both the East and of the West Arabs deviate so extraordi-
narily from the Hindu Devanagari numerals (=divine numerals) of
to-day, and that they resemble much more closely the apices of the
Roman writer Boethius. This strange similarity on the one hand,
and dissimilarity on the other, is difficult to explain. The most plau-
sible theory is the one of Woepcke: (1) that about the second cen-
tury after Christ, before the zero had been invented, the Indian nu-
merals were brought to Alexandria, whence they spread to Rome
and also to West Africa; (2) that in the eighth century, after the no-
tation in India had been already much modified and perfected by the
invention of the zero, the Arabs at Bagdad got it from the Hindus;
(3) that the Arabs of the West borrowed the Columbus-egg, the zero,
from those in the East, but retained the old forms of the nine numer-
als, if for no other reason, simply to be contrary to their political ene-
mies of the East; (4) that the old forms were remembered by the West-
Arabs to be of Indian origin, and were hence called Gubar-numerals

1 H. Hankel, o0p. cit., p. 255.
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(=dust-numerals, in memory of the Brahmin practice of reckoning
on tablets strewn with dust or sand; (5) that, since the eighth cen-
tury, the numerals in India underwent further changes, and assumed
the greatly modified forms of the modern Devanagari-numerals.! This
is rather a bold theory, but, whether true or not, it explains better
than any other yet propounded, the relations between the apices, the
Gubar, the East-Arabic, and Devanagari numerals.

It has been mentioned that in 772 the Indian Siddhanta was brought
to Bagdad and there translated into Arabic. There is no evidence that
any intercourse existed between Arabic and Indian astronomers either
before or after this time, excepting the travels of Al-Biruni. But
we should be very slow to deny the probability that more extended
communications actually did take place.

Better informed are we regarding the way in which Greek science,
in successive waves, dashed upon and penetrated Arabic soil. In
Syria the sciences, especially philosophy and medicine, were culti-
vated by Greek Christians. Celebrated were the schools at Antioch
and Emesa, and, first of all, the flourishing Nestorian school at Edessa.
From Syria, Greek physicians and scholars were called to Bagdad.
Translations of works from the Greek began to be made. A large
number of Greek manuscripts were secured by Caliph Al-Mamun (813-
833) from the emperor in Constantinople and were turned over to
Syria. The successors of Al-Mamun continued the work so auspi-
ciously begun, until, at the beginning of the tenth century, the more
important philosophic, medical, mathematical, and astronomical
works of the Greeks could all be read in the Arabic tongue. The trans-
lations of mathematical works must have been very deficient at first,
as it was evidently difficult to secure translators who were masters of
both the Greek and Arabic and at the same time proficient in mathe-
matics. The translations had to be revised again and again before
they were satisfactory. The first Greek authors made to speak in
Arabic were Euclid and Ptolemy. This was accomplished during the
reign of the famous Harun-al-Rashid. A revised translation of Eu-
clid’s Elements was ordered by Al-Mamun. As this revision still con-
tained numerous errors, a new translation was made, either by the
learned Hunain ibn Ishak, or by his son, Ishak ibn Hunain. The
word “ibn” means “son.” To the thirteen books of the Elements were
added the fourteenth, written by Hypsicles, and the fifteenth attrib-
uted by some to Damascius. But it remained for Tabit ibn Korra to
bring forth an Arabic Euclid satisfying every need. Still greater dif-
ficulty was experienced in securing an intelligent translation of the
Almagest. Among other important translations into Arabic were the
works of Apollonius, Archimedes, Heron, and Diophantus. Thus we
see that in the course of one century the Arabs gained access to the
vast treasures of Greek science.

1 M. Cantor, op. cit., Vol. 1, 1907, p. 711.
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In astronomy great activity in original research existed as early as
the ninth century. The religious observances demanded by Moham-
medanism presented to astronomers several practical problems. The
Moslem dominions being of such enormous extent, it remained in
some localities for the astronomer to determine which way the “Be-
liever” must turn during prayer that he may be facing Mecca. The
prayers and ablutions had to take place at definite hours during the
day and night. This led to more accurate determinations of time. To
fix the exact date for the Mohammedan feasts it became neces-
sary to observe more closely the motions of the moon. In addition to
all this, the old Oriental superstition that extraordinary occurrences
in the heavens in some mysterious way affect the progress of human
affairs added increased interest to the prediction of eclipses.!

For these reasons considerable progress was made. Astronomical
tables and instruments were perfected, observatories erected, and a
connected series of observations instituted. This intense love for as-
tronomy and astrology continued during the whole Arabic scientific
period. As in India, so here, we hardly ever find a man exclusively
devoted to pure mathematics. Most of the so-called mathematicians
were first of all astronomers.

The first notable author of mathematical books was Mohammed
ibn Musa Al-Khowarizmi, who lived during the reign of Caliph Al-
Mamun (813-833). Our chief source of information about Al-Khow-
rizmi is the book of chronicles, entitled Kitab Al-Fihrist, written by
Al-Nadim, about 987 A. p., and containing biographies of learned
men. Al-Khowarizmi was engaged by the caliph in making extracts
from the Sindhind, in revising the tablets of Ptolemy, in taking ob-
servations at Bagdad and Damascus, and in measuring a degree of
the earth’s meridian. Important to us is his work on algebra and
arithmetic. The portion on arithmetic is not extant in the original,
and it was not till 1857 that a Latin translation of it was found. It
begins thus: “Spoken has Algoritmi. Let us give deserved praise to
God, our leader and defender.” Here the name of the author, Al
Khowarizmi has passed into Algoritmi, from which come our modern
word algorithm, signifying the art of computing in any particular
way, and the obsolete form augrim, used by Chaucer.? The arith-

~metic of Khowarizmi, being based on the principle of position and

the Hindu method of calculation, “excels,” says an Arabic writer,
‘“all others in brevity and easiness, and exhibits the Hindu intellect
and sagacity in the grandest inventions.” This hook was followed
by a large number of arithmetics by later authors, which differed
from the earlier ones chiefly in the greater variety of methods. Ara-
bian arithmetics generally contained the four operations with inte-

1 H. Hankel, op. cit., pp. 226-228.
2See L. C. l\arplnskl ““ Augrimstones” in Modcm Language Notes, Vol. 27,

1912, pp. 206-200.
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gers and fractions, modelled after the Indian processes. They ex-
plained the operation of casting out the ¢’s, also the regula falsa and
the regula duorum falsorum, sometimes called the rules of *false po-
sition”” and of “double position”’ or *“double false position,” by which
algebraical examples could be solved without algebra. The regula
falsa or falsa positio was the assigning of an assumed value to the
unknown quantity, which value, if wrong, was corrected by some
process like the “rule of three.” It was known to the Hindus and to
the Egyptian Ahmes. Diophantus used a method almost identical
with this. The regula duorum falsorum was as follows:! To solve an
equation f(x) =V, assume, for the moment, two values for x; namely,
z=a and x=5. Then form f(a)=A and f(b) =B, and determine the

errors V—A=E; and V—B=E,, then the required x=bg“ Zfb is

—
generally a close approximation, but is absolutely accurate whenever
f(x) is a linear function of x.

We now return to Khowarizmi, and consider the other pa.rt of his
work,—the algebra. This is the first book known to contain this word
itself as title. Really. the title consists of two words, al-jebr w'almu-
qabala, the nearest English translation of which is “restoration and
reduction.” By “restoration’” was meant the transposing of negative
terms to the other side of the equation; by “reduction,” the uniting of
similar terms. Thus, 2 —2x=§x-+6 passes by al-jebr into 2?= x4
2x+6; and this, by almuqabala, into 2*=7x+6. The work on alge-
bra, like the arithmetic, by the same author, contains little that is
original. It explains the elementary operations and the solutions of
linear and quadratic equations. From whom did the author borrow
his knowledge of algebra? That it came entirely from Indian sources
is impossible, for the Hindus had no rules like the “restoration” and
“reduction.” They were, for instance, never in the habit of making
all terms in an equation positive, as is done by the process of “restora-
tion.”” Diophantus gives two rules which resemble somewhat those
of our Arabic author, but the probability that the Arab got all his al-
gebra from Diophantus is lessened by the considerations that he rec-
ognized both roots of a quadratic, while Diophantus noticed only one;
and that the Greek algebraist, unlike the Arab, habitually rejected
irrational solutions. It would seem, therefore, that the algebra of
Al-Khowarizmi was neither purely Indian nor purely Greek. Al-
Khowarizimi’s fame among the Arabs was great. He gave the ex-
amples 1’4 10x= 39, 2’4 21 = 102, 3244 =127 which are used by later
authors, for instance, by the poet and mathematician Omar Khayyam.
“The equation x’4r10x= 39 runs like a thread of gold through the
algebras of several centuries” (L. C. Karpinski). It appears in the
algebra of Abu Kamil who drew extensively upon the work of Al-

1 H. Hankel, op. cil., p. 259.
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Khowarizmi. Abu Kamil, in turn, was the source largely drawn upon
+ by the Italian, Leonardo of Pisa, in his book of 1202.

The algebra of Al-Khowarizmi contains also a few meagre frag-
ments on geomelry. He gives the theorem of the right triangle, but
proves it after Hindu fashion and only for the simplest case, when the
_ right triangle is isosceles. He then calculates the areas of the tri-
" angle, parallelogram, and circle. For 7 he uses the value 34, and also
the two Indian, #=vVicand r=§3§33. Strange to say, the last value
was afterwards forgotten by the Arabs, and replaced by others less
accurate. Al-Khowarizmi prepared astronomical tables, which, about
1000 A. D., were revised by Maslama al-M ajritt and are of importance
as contalmng not only the sine function, but also the langent function. 1
The former is evidéntly of Hindu origin, the latter may be an addi-
tion made by Maslama and was formerly attributed to Abu’l Wefa.

Next to be noticed are the three sons of Musa Sakir, who lived in
Bagdad at the court of the Caliph Al-Mamun. They wrote several
works, of which we mention a geometry containing the well-known
formula for the area of a triangle expressed in terms of its sides. We
are told that one of the sons travelled to Greece, probédbly to collect
astronomical and mathematical manuscripts, and that on his way back
he made acquaintance with Tabit ibn Korra. Recognizing in him a
talented and learned astronomer, Mohammed procured for him a place
among the astronomers at the court in Bagdad. Tabit ibn Korra
(836—go1) was born at Harran in Mesopotamia. He was proficient
not only in astronomy and mathematics, but also in the Greek, Arabic,
and Syrian languages. His translations of Apollonius, Archimedes,
Euclid, Ptolemy, Theodosius, rank among the best. His dissertation
on amicable numbers (of which each is the sum of the factors of the
other) is the first known specimen of original work in mathematics on
Arabic soil. It shows that he was familiar with the Pythagorean the-
ory of numbers. Tabit invented the following rule for finding amicable
numbers, which is related to Euclid’s rule for perfect numbers: If
p=3.2"—1, ¢g=3.2"'—1, r=9.2%—1—1 (n being a whole number)
are three primes, then a=2"pq, b= 2"r are a pair of amicable numbers.
Thus, if n=2, then p=11, ¢g=35, r=71, and =220, b=1284. Tabit
also trisected an angle.

Tabit ibn Korra is the earliest writer outside of China to discuss
magic squares. Other Arabic tracts on this subject are due to Ibn
Al-Haitam and later writers.? )

Foremost among the astronomers of the ninth century ranked Al-

1See H. Suter, “Die astronomischen Tafeln des Muhammed ibn Musa Al-
Khwarizmi in der Bearbeitung des Maslama ibn Ahmed Al-Madjriti und der Latein.
Uebersetzung des Athelhard von Bath,” in Mémoires de I’ Académie R. des Sciences
et des Lelires de Danemark, Copenhague, 7me S, Section des Lettres, t. ITI, no. 1,
1914

%% See H. Suter, Die Mathematiker u. Astronomen der Araber u. thre Werke, 1900,
Pp. 36, 93, 136, 139, 140, 146, 218.
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Battani, called Albategnius by the Latins. Battan in Syria was his
birthplace. His observations were celebrated for great precission.
His work, De scientia stellarum, was translated into Latin by Plato
Tiburtinus, in the twelfth century. Out of this translation sprang the
word ““sinus,” as the name of a trigonometric function. The Arabic
word for “sine,” jiba was derived from the Sanskrit jiva, and resem-
bled the Arabic word jasb, meaning an indentation or gulf. Hence
the Latin “sinus.” ! Al-Battani was a close student of Ptolemy, but
did not follow him altogether. He took an important step for the
better, when he introduced the Indian ‘“sine” or hkalf the chord, in
place of the whole chord of Ptolemy. He was the first to prepare a
table of cotangents. He dealt with horizontal and also vertical sun
dials, and accordingly considered a horizontal shadow (umbra extensa
in Latin translation) and vertical shadow (umbra versa). These de-
noted, respectively, the ‘“cotangent” and ‘“tangent”; the former
came to be called umbra recta by Latin writers. Al-Battani probably
knew the law of sines; that this law was known to Al-Biruni is certain.
Another improvement on Greek trigonometry made by the Arabs
points likewise to Indian influences. Propositions and operations
which were treated by the Greeks geometrically are expressed by the
Arabs algebraically. Thus, Al-Battans at once gets from an equation

sin 0 D

m V?E_’ y—a process
unknown to the ancients. He knows all the formulas for spherical
triangles given in the Almagest, but goes further, and adds an impor-
tant one of his own for oblique-angled triangles; namely, cos a=cos b.
cosc+sinb sinc cos 4.

At the beginning of the tenth century political troubles arose in the
East, and as a result the house of the Abbasides lost power. One prov-
ince after another was taken, till, in 945, all possessions were wrested
from them. Fortunately, the new rulers at Bagdad, the Persian Buy-
ides, were as much interested in astronomy as their predecessors. The
progress of the sciences was no: only unchecked, but the conditions
for it became even more favorable. The Emir Adud-ed-dawla (978-
983) gloried in having studied astronomy himself. His son Saraf-ed-
daula erected an observatory in the garden of his palace, and called
thither a whole group of scholars.? Among them were Abw'l-Wefa,
Al-Kuhi, Al-Sagani. '

Abu’l Wefa (940-998) was born at Buzshan in Chorassan, a region
among the Persian mountains, which has brought forth many Arabic
astronomers. He made the brilliant discovery of the variation of the
moon, an inequality usually supposed to have been first discovered by
Tycho Brahe. Abu’l-Wefa translated Diophantus. He is one of the

1 M. Cantor, op. cit., Vol. I, 3 Aufl., 1907, p. 737.
*H. Hankel, 0p. cil., p. 242.

=D, the value of § by means of sinf=
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last Arabic translators and commentators of Greek authors. The fact
that he esteemed the algebra of Mohammed ibn Musa Al-Khowarizimi
worthy of his commentary indicates that thus far algebra had made
little or no progress on Arabic soil. Abu’l-Wefa invented a method for
computing tables of sines which gives the sine of half a degree correct
to nine decimal places. He used the fangent and calculated a table of
tangents. In considering the shadow-triangle of sun-dials he intro-
duced also the secant and cosecant. Unfortunately, these new trigo-
nometric functions and the discovery of the moon’s variation ex-
cited apparently no notice among his contemporaries and followers.
A treatise by Abu’l-Wefa on ““ geometric constructions” indicates that
efforts were being made at that time to improve draughting. It con-
tains a neat construction of the corners of the regular polyedrons on
the circumscribed sphere. Here, for the first time, appears the con-
dition which afterwards became very famous in the Occident, that
the construction be effected with a single opening of the compasses.

Al-Kuhi, the second astronomer at the observatory of the emir at
Bagdad, was a close student of Archimedes and Apollonius. He solved
the problem, to construct a segment of a sphere equal in volume to
a given segment and having a curved surface equal in area to that of
another given segment. He, Al-Sagani, and Al-Biruni made a study
of the trisection of angles. Abu’l Jud, an able geometer, solved the

rcl)blem by the intersection of a parabola with an equilateral hyper-
a.

The Arabs had already discovered the theorem that the sum of two
cubes can never be a cube. This is a special case of the “last theorem
of Fermat.”” Abu Mohammed Al-Khojandi of Chorassan thought he
had proved this. His proof, now lost, is said to have been defective.
Several centuries later Beha-Eddin declared the impossibility of
#%4y*=2% Creditable work in theory of numbers and algebra was
done by Al-Karkhi of Bagdad, who lived at the beginning of the elev-
enth century. His treatise on algebra is the greatest algebraic work
of the Arabs. In it he appears as a disciple of Diophantus. He was
the first to operate with higher roots and to solve equations of the
form x¥4-ax*=5. For the solution of quadratic equations he gives
both arithmetical and geometrical proofs. He was the first Arabic
author to give and prove the theorems on the summation of the se-
ries:—

1422434 A= (1t 24+ n)%'—l,
4 224334 L= (124 )2

Al-Karkhi also busied himself with indeterminate analysis. He
showed skill in handling the methods of Diophantus, but added no-
thing whatever to the stock of knowledge already on hand. Rather
surprising is the fact that Al-Karkhi’s algebra shows no traces what-
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ever of Hindu indeterminate analysis. But most astonishing it is,
that an arithmetic by the same author completely excludes the Hindu
numerals. It is constructed wholly after Greek pattern. Abu’l-Wefa,
also, in the second half of the tenth century, wrote an arithmetic in
which Hindu numerals find no place. This practice is the very oppo-
site to that of other Arabian authors. The question, why the Hindu
numerals were ignored by so eminent authors, is certainly a puzzle.
Cantor suggests that at one time there may have been rival schools,
of which one followed almost exclusively Greek mathematics, the
other Indian.

The Arabs were familiar with geometric solutions of quadratic equa-
tions. Attempts were now made to solve cubic equations geometri-
cally. They were led to such solutions by the study of questions like
the Archimedean problem, demanding the section of a sphere by a
plane so that the two segments shall be in a prescribed ratio. The
first to state this problem in form of a cubic equation was Al-Mahani
of Bagdad, while Abu Ja'far Alchazin was the first Arab to solve the
equation by conic sections. Solutions were given also by Al-Kuhi,
Al-Hasan ibn Al-Haitam, and others. Another difficult problem, to
determine the side of a regular heptagon, required the construction of
the side from the equation x*—x%—2x+1=0. It was attempted by
many and at last solved by Abu’l Jud.

The one who did most to elevate to a method the solution of alge-
braic equations by intersecting conics, was the poet Omar Khayyam
of Chorassan (about 1045-1123). He divides cubics into two classes,
the trinomial and quadrinomial, and each class into families and spe-
cies. Each species is treated separately but according to a general
plan. He believed that cubics could not be solved by calculation, nor
bi-quadratics by geometry. He rejected negative roots and often
failed to discover all the positive ones. Attempts at bi-quadratic

equations were made by Abu’l-Wefa,! who solved geometrically x*=a

and z*+ax*="b.

The solution of cubic equations by intersecting conics was the great-

est achievement of the Arabs in algebra. The foundation to this work
had been laid by the Greeks, for it was Menachmus who first con-
structed the roots of x*—a=o0 or 2~ 2a%=o0. . It was not his aim to
find the number corresponding to x, but simply to determine the side
x of a cube double another cube of side a. The Arabs, on the other
hand, had another object in view: to find the roots of given numerical
equations. In the Occident, the Arabic solutions of cubics remained
unknown until quite recently. Descartes and Thomas Baker invented
these constructions anew. The works of Al-Khayyam, Al-Karkhi,
Abu’l Jud, show how the Arabs departed further and further from

1L. Matthiessen, Grundzige der Antiken und Modernen Algebra der Lilteralen
Gleichungen, Leipzig, 1878, p. 923. Ludwig Matthiessen (1830~-1906) was professor
of physics at Rostock.
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the Indian methods, and placed themselves more immediately under

Greek influences.
 With Al-Karkhi and Omar Khayyam, mathematics among the
Arabs of the East reached flood-mark, and now it begins to ebb. Be-
tween 1100 and 1300 A. D. come the crusades with war and bloodshed,
during which European Christians profited much by their contact with
Arabian culture, then far superior to their own. The crusaders were
'not the only adversaries of the Arabs. During the first half of the
thirteenth century, they had to encounter the wild Mongolian hordes,
and, in 1256, were conquered by them under the leadership of Hulagu.
The caliphate at Bagdad now ceased to exist. At the close of the four-
teenth century still another empire was formed by Timur or Tamer-
lane, the Tartar. During such sweeping turmoil, it is not surprising
that science declined. Indeed, it is a marvel that it existed at all.
During the supremacy of Hulagu, lived Nasir-Eddin (1201-1274),
a man of broad culture and an able astronomer. He persuaded Hu-
lagu to build him and his associates a large observatory at Maraga.
Treatises on algebra, geometry, arithmetic, and a translation of Eu-
clid’s Elements, were prepared by him. He for the first time elabo-
rated trigonometry independently of astronomy and to such great
perfection that, had his work been known, Europeans of the fifteenth
century might have spared their labors.! He tried his skill at a proof
of the parallel-postulate. His proof assumes that if AB is perpendic-
ular to CD at C, and if another straight line EDF makes an angle
EDC acute, then the perpendiculars to AB, comprehended between
AB and EF, and drawn on the side of CD toward E, are shorter and
shorter, the further they are from CD. His proof, in Latin translation,
was published by Wallis in 1651.2 Even at the court of Tamerlane in
D Samarkand, the sciences were by

E no means neglected. A group of
I astronomers was drawn to this
A B court. Uleg Beg (1393-1449), a
c grandson of Tamerlane, was him-
self an astronomer. Most prominent at this time was Al- i, the

author of an arithmetic. Thus, during intervals of peace, science
continued to be cultivated in the East for several centuries. The
last Oriental writer was Beha-Eddin (1547-1622). His Essence of
Arithmetic stands on about the same level as the work of Mohammed
ibn Musa Khowarizmi, written nearly 8co years before.

“Wonderful is the expansive power of Oriental peoples, with which
upon the wings of the wind they conquer half the world, but more
wonderful the energy with which, in less than two generations, they
raise themselves from the lowest stages of cultivation to scientific

! Bibliotheca mathematica (2), 7, 1893, p. 6.
?R. Bonola, Non-Euclidean Geomelry, transl. by H. S. Carslaw, Chicago, 1917,
PP. 10-12.
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efforts.” During all these centuries, astronomy and mathematics in
the Orient greatly excel these sciences in the Occident. .

Thus far we have spoken only of the Arabs in the East. Between
the Arabs of the East and of the West, which were under separate gov-
ernments, there generally existed considerable political animosity.
In consequence of this, and of the enormous distance between the two
great centres of learning, Bagdad and Cordova, there was less scien-
tific intercourse among them than might be expected to exist between
peoples having the same religion and written language. Thus the
course of science in Spain was quite independent of that in Persia.
While wending our way westward to Cordova, we must stop in Egypt
long enough to observe that there, too, scientific activity was re-
kindled. Not Alexandria, but Cairo with its library and observatory,
was now the home of learning. Foremost among her scientists ranked
Ibn Junos (died 1008), a contemporary of Abu’l-Wefa. He solved
some difficult problems in spherical trigonometry. Another Egyptian
astronomer was Ibn Al-Haitam (died 1038), who computed the vol-
umes of paraboloids formed by revolving a parabola about any diam-
eter or any ordinate; he used the method of exhaustion and gave the
four summa.tlon formulas for the first four powers of the natural num-
bers.! Travelling westward, we meet in Morocco Abu’l Hasan Ali,
whose treatise “on astronomical instruments” discloses a t_horough
knowledge of the Conics of Apollonius. Arriving finally in Spain
at the capital, Cordova, we are struck by the magnificent splendor of
her architecture. At this renowned seat of learning, schools and li-
braries were founded during the tenth century.

Little is known of the progress of mathematics in Spain. The ear-
liest name that has come down to us is Al-Majriti (died 1007), the
author of a mystic paper on “amicable numbers.” His pupils founded
schools at Cordova, Dania, and Granada. But the only great astron-
omer among the Saracens in Spain is Jabir ibn Aflah of Sevilla, fre-
quently called Geber. He lived in the second half of the eleventh cen-
tury. It was formerly believed that he was the inventor of algebra,
and that the word algebra came from “ Jabir” or “ Geber.” He ranks
among the most eminent astronomers of this time, but, like so many
of his contemporaries, his writings contain a great deal of mysticism.
His chief work is an astronomy in nine books, of which the first is de-
voted to trigonometry. In his treatment of spherical trigonometry,
he exercises great independence of thought. He makes war against
the time-honored procedure adopted by Ptolemy of applying “the
rule of six quantities,” and gives a new way of his own, based on the
“rule of four quantities.” This is: If PPy and QQ, be two arcs of great
circles intersecting in 4, and if PQ and P,Q; be arcs of great circles
drawn perpendicular to QQ;, then we have the proportion

sin AP :sin PQ=sin AP, :sin PQ:.
1 H. Suter in Bibliotheca mathematica, 3. S., Vol. 12, 1911~12, pp. 320-332.
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From this he derives the formulas for spherical right triangles. This
sine-formula was probably known before this to Tabit.ibn Korra and
others.! To the four fundamental formulas already given by Ptolemy,
he added a fifth, discovered by himself. If a, b, ¢, be the sides, and
A, B, C, the angles of a spherical triangle, right-angled at A, then
cos B=cos b sin C. This is frequently called “Geber’s Theorem.”
Radical and bold as were his innovations in spherical trigonometry,
in plane trigonometry he followed slavishly the old beaten path of
the Greeks. Not even did he adopt the Indian “sine’ and “cosine,”
but still used the Greek *chord of double the angle.” So painful was
; the departure from old ideas, even to an independent Arab!

It is a remarkable fact that among the early Arabs no trace what-
ever of the use of the abacus can be discovered. At the close of the
thirteenth century, for the first time, do we find an Arabic writer, Ibn
Albanna, who uses processes which are a mixture of abacal and Hindu
computation. Ibn Albanna lived in Bugia, an African seaport, and it
is plain that he came under European influences and thence got a
knowledge of the abacus. Ibn Albanna and Abraham ibn Esra be-
fore him, solved equations of the first degree by the rule of “double
false position.” After Ibn Albanna we find it used by Al-Kalsadi
and Beha-Eddin (1547-1622).2 If ax+b=o0, let m and = be any two
numbers (‘“double false position”), let also em+b=M, an+b=N,
then x=(nM —mN)< (M —N).

Of interest is the approximate solution of the cubic x*+4Q=Px,
which grew out of the computation of x=sin 1°. The method is
shown only in this one numerical example. It is given in Miram
Chelebi in 1498, in his annotations of certain Arabic astronomical
tables. The solution is attributed to Atabeddin Jamshid.> Write
x=(Q4+2%)+P. If Q+P=a+R-+P, then q is the first approxima-
tion, x being snall. We have Q=aP+-R, and consequently x=a--
(R+a%)+ P=a+b+S+ P, say. Then a+b is the second 2 :Pproxuna-
tion. We have R=bP+S—a® and Q=(a+b)P+S—a’. Hence
x= a+b+ (S—a*+(a+b8)3+P=a+b+c+T~+P, say. Here a+b
¢ is the third approximation, and so on. In general, the amount of
computation is considerable, though for finding x=sin 1° the method
answered very well. This example is the only known approximate .
arithmetical solution of an affected equation due to Arabic writers.
Nearly three centuries before this, the Italian, Leonardo of Pisa,
carried the solution of a cubic to a high degree of approximation, but
without disclosing his method.

The latest prominent Spanish-Arabic scholar was Al-Kalsadi of
Granada, who died in 1486. He wrote the Raising of the Veil of the
Science of Gubar. The word “gubar” meant originally “dust” and

1 See Bibliotkeca mathematica, 2 S., Vol. 7, 1893, p.

1 L. Matthiessen, Grundziige d. Antiken u. modernen Algcbra, Leipzig, 1878, p. 275.
3 See Cantor, 0p. cit. Vol. I, 3rd Ed., 1907, p. 782.
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stands here for written arithmetic with numerals, in contrast to men-
tal arithmetic. In addition, subtraction and multiplication, the
result is written above the other figures. The square root was indi-
cated by the initial Arabic letter of the word * jidre,” meaning “root,”
particularly “square root.”” He had symbols for the unknown and
had, in fact, a considerable amount of algebraic symbolism. His

approximation for the square root ¥a?+b, namely (404 3ab)/ (4a*+
b), is believed by S. Gunther to disclose a method of continued frac-
tions, without our modern notation, since (44°+ 3ab)/(4a’+b)=
a+b/(2a+b/sa). Al-Kalsadi’'s work excels other Arabic works in
the amount of algebraic symbolism used. Arabic algebra before him
contained much less symbolism then Hindu algebra. With Nessel-
mann!, we divide algebras, with respect to notation, into three classes:
(1) Rhetorical algebras, in which no symbols are used, everything
being written out in words, (2) Syncopated algebras, in which, as in
the first class, everything is written out in words, except that abbrevia-
tions are used for certain frequently recurring operations and ideas,
(3) Symbolic algebras, in which all forms and operations are repre-
sented by a fully developed algebraic symbolism, as for example,
2%4102+7. According to this classification, Arabic works (excepting
those of the later western Arabs), the Greek works of Iamblichus and
Thymaridas, and the works of the early Italian writers and of Regio-
montanus are rkelorical in form; the works of the later western Arabs,
of Diophantus and of the later European writers down to about the
middle of the seventeenth century (excepting Vieta’s and Oughtred’s)
are syncopaled in form; the Hindu works and those of Vieta and
Oughtred, and of the Europeans since the middle of the seventeenth
century, are symbolic in form. It is thus seen that the western Arabs
took an advanced position in matters of algebraic notation, and were
inferior to none of their predecessors or contemporaries, except the
Hindus.

In the year in which Columbus discovered America, the Moors
lost their last foot-hold on Spanish soil; the productive period of
Arabic science was passed. -

We have witnessed a laudable intellectual activity among the
Arabs. They had the good fortune to possess rulers who, by their
munificence, furthered scientific research. At the courts of the ca-
liphs, scientists were supplied with libraries and observatories. A
large number of astronomical and mathematical works were written
by Arabic authors. It has been said that the Arabs were learned,
but not original, With our present knowledge of their work, this
dictum needs revision; they have to their credit several substantial
accomplishments. They solved cubic equations by geometric con-
struction, perfected trigonometry to a marked degree and made nu-

1G. H. F. Nesselmann, Die Algebra der Griechen, Berlin, 1842, pp. 301-306.
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merous smaller advances all along the line of mathematics, physics
and astronomy. Not least of their services to science consists in this,
that they adopted the learning of Greece and India, and kept what
they received with care. When the love for science began to grow
in the Occident, they transmitted to the Europeans the valuable treas-
ures of antiquity. Thus a Semitic race was, during the Dark Ages,
the custodian of the Aryan intellectual possessions.



EUROPE DURING THE MIDDLE AGES

With the third century after Christ begins an era of migration of
nationsin Europe. The powerful Goths quit their swamps and forests
in the North and sweep onward in steady southwestern current, dis-
lodging the Vandals, Sueves, and Burgundians, crossing the Roman
territory, and stopping and recoiling only when reaching the shores
of the Mediterranean. From the Ural Mountains wild hordes sweep
down on the Danube. The Roman Empire falls to pieces, and the
Dark Ages begin. But dark though they seem, they are the germinat-
ing season of the institutions and nations of modern Europe. The
Teutonic element, partly pure, partly intermixed with the Celtic and
Latin, produces that strong and luxuriant growth, the modern civili-
zation of Europe. Almost all the various nations of Europe belong
to the Aryan stock. As the Greeks and the Hindus—both Aryan races
—were the great thinkers of antiquity, so the nations north of the Alps
and Italy became the great intellectual leaders of modern times.

Introduction of Roman Mathematics

We shall now consider how these as yet barbaric nations of the
North gradually came in possession of the intellectual treasures of
antiquity. With the spread of Christianity the Latin language was
introduced not only in ecclesiastical but also in scientific and all im-
portant worldly transactions. Naturally the science of the Middle
Ages was drawn largely from Latin sources. In fact, during the earlier
of these ages Roman authors were the only ones read in the Occident.
Though Greek was not wholly unknown, yet before the thirteenth
century not a single Greek scientific work had been read or translated
into Latin. Meagre indeed was the science which could be gotten
from Roman writers, and we must wait several centuries before any
substantial progress is made in mathematics.

After the time of Boethius and Cassiodorius mathematical activity
in Italy died out. The first slender blossom of science among tribes
that came from the North was an encyclopadia entitled Origenes,
written by Isidorus (died 636 as bishop of Seville). This work is
modelled after the Roman encyclopedias of Martianus Capella of
Carthage and of Cassiodorius. Part of it is devoted to the quadrivium,
arithmetic, music, geometry, and astronomy. He gives definitions
and grammatical explications of technical terms, but does not de-
scribe the modes of computation then in vogue. After Isidorus there
follows a century of darkness which is at last dissipated by the appear-
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ance of Bede the Venerable (672-735), the most learned man of his
time. He was a native of Wearmouth, in England. His works con-
tain treatises on the Computus, or the computation of Easter-time,
and on finger-reckoning. It appears that a finger-symbolism was then
widely used for calculation. The correct determination of the time
of Easter was a problem which in those days greatly agitated the
Church. It became desirable to have at least one monk at each mon-
astery who could determine the day of religious festivals and could
compute the calendar. Such determinations required some knowledge
of arithmetic. Hence we find that the art of calculating always found
some little corner in the curriculum for the education of monks.

The year in which Bede died is also the year in which Alcuin (735—
804) was born. Alcuin was educated in Ireland, and was called to the
court of Charlemagne to direct the progress of education in the great
Frankish Empire. Charlemagne was a great patron of learning and
of learned men. In the great sees and monasteries he founded schools
in which were taught the psalms, writing, singing, computation (com-
putus), and grammar. By computus was here meant, probably, not
merely the determination of Easter-time, but the art of computation
in general. Exactly what modes of reckoning were then employed
we have no means of knowing. It is not likely that Alcuin was familiar
with the apices of Boethius or with the Roman method of reckoning
on the abacus. He belongs to that long list of scholars who dragged
the theory of numbers into theology. Thus the number of beings
created by God, who created all things well, is 6, because 6 is a perfect
number (the sum of its divisors being 1+2+3=6); 8, on the other
hand, is an imperfect number (1+2-+4<8); hence the second origin
of mankind emanated from the number 8, which is the number of souls
said to have been in Noah's ark.

There is a collection of “Problems for Quickening the Mind” (prop-
ositiones ad acuendos iuvenes), which are certainly as old as 1000 A. D.
and possibly older. Cantor is of the opinion that they were written
much earlier and by Alcuin. The following is a specimen of these
“Problems”: A dog chasing a rabbit, which has a start of 150 feet,
jumps g feet every time the rabbit jumps 7. In order to determine in
how many leaps the dog overtakes the rabbit, 150 is to be divided by 2.
In this collection of problems, the areas of triangular and quadrangular
pieces of land are found by the same formulas of approximation as
those used by the Egyptians and given by Boethius in his geometry.
An old problem is the “cistern-problem” (given the time in which
several pipes can fill a cistern singly, to find the time in which they
fill it jointly), which has been found previously in Heron, in the Greek
Anthology, and in Hindu works. Many of the problems show that
the collection was compiled chiefly from Roman sources. The prob-
lem which, on account of its uniqueness, gives the most positive testi-
mony regarding the Roman origin is that on the interpretation of a
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will in a case where twins are born. The problem is identical with the
Roman, except that different ratios are chosen. Of the exercises for
recreation, we mention the one of the wolf, goat, and cabbage, to be
rowed across a river in a boat holding only one besides the ferry-man.
Query: How must he carry them across so that the goat shall not eat
the cabbage, nor the wolf the goat? ! The solutions of the *problems
for quickening the mind” require no further knowledge than the recol-
lection of some few formulas used in surveying, the ability to solve
linear equations and to perform the four fundamental operations with
integers. Extraction of roots was nowhere demanded; fractions hardly
ever occur.?

The great empire of Charlemagne tottered and fell almost imme-
diately after his death. War and confusion ensued. Scientific pur-
suits were abandoned, not to be resumed until the close of the tenth
century, when under Saxon rule in Germany and Capetian in France,
more peaceful times began. The thick gloom of ignorance commenced
to disappear. The zeal with which the study of mathematics was now
taken up by the monks is due principally to the energy and influence
of one man,—Gerbert. He was born in Aurillac in Auvergne. After
receiving a monastic education, he engaged in study, chiefly of mathe-
matics, in Spain. On his return he taught school at Rheims for ten
years and became distinguished for his profound scholarship. By
King Otto I, and his successors Gerbert was held in highest esteem.
He was elected bishop of Rheims, then of Ravenna, and finally was
made Pope under the name of Sylvester II, by his former Emperor
Otho III. He died in 1003, after a life intricately involved in many
political and ecclesiastical quarrels. Such was the career of the great-
est mathematician of the tenth century in Europe. By his contem-
poraries his mathematical knowledge was considered wonderful.
Many even accused him of criminal intercourse with evil spirits.

Gerbert enlarged the stock of his knowledge by procuring copies
of rare books. Thus in Mantua he found the geometry of Boethius.
Though this is of small scientific value, yet it is of great importance
in history. It was at that time the principal book from which Euro-
pean scholars could learn the elements of geometry. Gerbert studied
it with zeal, and is generally believed himself to be the author of a ge-
ometry. H. Weissenborn denied his authorship, and claimed that the
book in question consists of three parts which cannot come from one
and the same author. More recent study favors the conclusion that
Gerbert is the author and that he compiled it from different sources.?
This geometry contains little more than the one of Boethius, but the
fact that occasional errors in the latter are herein corrected shows that

1S. Giinther, Geschichte des mathem. Unterrichts im deutschen Miltelalter. Berlin,
1887, p. 32.

2 M. Cantor, op. cit., Vol. I, 3. Aufl., 1907, p. 839.

3 S, Giinther, Geschichte der Mathemalik, 1. Teil, Leipzig, 1908, p. 249.
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the author had mastered the subject. ‘The first mathematical paper
of the Middle Ages which deserves this name,” says Hankel, “is a
letter of Gerbert to Adalbold, bishop of Utrecht,” in which is explained
the reason why the area of a triangle, obtained “geometrically” by
taking the product of the base by half its altitude, differs from the
area calculated “arithmetically,” according to the formula }a(a+1),
used by surveyors, where a stands for a side of an equilateral triangle.
He gives the correct explanation that in the latter formula all the
small squares, in which the triangle is supposed to be divided, are
counted in wholly, even though parts of them project beyond it.
D. E. Smith ! calls attention to a great medieval number game, called
rithmomachia, claimed by. some to be of Greek origin. It was played
as late as the sixteenth century. It called for considerable arithmeti-
cal ability, and was known to Gerbert, Oronce Finé, Thomas Brad-
wardine and others. A board resembling a chess board was used. Re-
lations like 81= 724} of 72, 42=36-+} of 36 were involved.

Gerbert made a careful study of the arithmetical works of Boethius.
He himself published the first, perhaps both, of the following two
works,—A Small Book on the Division of Numbers, and Rule of Compu-
tation on the Abacus. They give an insight into the methods of calcu-
lation practised in Europe before the introduction of the Hindu nu-
merals. Gerbert used the abacus, which was probably unknown to
Alcuin. Bernelinus, a pupil of Gerbert, describes it as consisting of
a smooth board upon which geometricians were accustomed to strew
blue sand, and then to draw their diagrams. For arithmetical pur-
poses the board was divided into 30 columns, of which 3 were reserved
for fractions, while the remaining 27 were divided into groups with
3 columns in each. In every group the columns were marked respec-
tively by the letters C (centum), D (decem), and S (simgularis) or
M (monas). Bernelinus gives the nine numerals used, which are the
apices of Boethius, and then remarks that the Greek letters may be
used in their place. By the use of these columns any number can be
written without introducing a zero, and all operations in arithmetic
can be performed in the same way as we execute ours without the col-
umns, but with the symbol for zero. Indeed, the methods of adding,
subtracting, and multiplying in vogue among the abacists agree sub-
stantially with those of to-day. But in a division there is very great
difference. The early rules for division appear to have been framed
to satisfy the following three conditions: (1) The use of the multipli-
cation table shall be restricted as far as possible; at least, it shall never
be required to multiply mentally a figure of two digits by another of
one digit. (2) Subtractions shall be avoided as much as possible and
replaced by additions. (3) The operation shall proceed in a purely
mechanical way, without requiring trials.? That it should be neces-
sary to make such conditions seems strange to us; but it must be re.

L Am. Math. Monihly, Vol. 28, 1911, pp. 73-80. *H. Hankel, op. cit., p. 318.
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remembered that the monks of the Middle Ages did not attend school
during childhood and learn the multiplication table while the memory
was fresh. Gerbert’s rules for division are the oldest extant. They
are so brief as to be very obscure to the uninitiated. They were prob-
ably intended simply to aid the memory by calling to mind the suc-
cessive steps in the work. In later manuscripts they are stated more
fully. In dividing any number by another of one digit, say 668 by 6,
the divisor was first increased to 1o by adding 4. The process is ex-
hibited in the adjoining figure.! As it continues, we must imagine the
digits which are crossed out, to be erased and then replaced by the
ones beneath. It is as follows: 600+ 10=60, but, to rectify the error,
4X 60, or 240, must be added; 200+ 10= 20, but 4X 20, or 80, must
be added. We now write for 60+ 40+ 80, its sum 180, and continue
thus: 100--10=10; the correction necessary is 4X 10, or 40, which,
added to 80, gives 120. Now 100+ 10=10, and the correction 4X 10,
together with the 20, gives 60. Proceeding as before, 60+ 10=6; the
correction is 4X 6 =24. Now 20+ 10= 2, the correction being 4X 2=8.
In the column of units we have now 84448, or 20. As before, 20+
10=2; the correction is 2)X 4= 8, which is not divisible by 10, but only
by 6, giving the quotient 1 and the remainder 2. All the partial quo-
tients taken together give 60+ 204 104104642424 1=111, and
the remainder 2.

Similar but more complicated, is the process when the divisor con-
tains two or more digits. Were the divisor 27, then the next higher
multiple of 10, or 30, would be taken for the divisor, but corrections
would be required for the 3. He who has the patience to carry such
a division through to the end, will understand why it has been said of
Gerbert that “Regulas dedit, quz a sudantibus abacistis vix intelli-
guntur.” He will also perceive why the Arabic method of division,
when first introduced, was called the divisio aurea, but the one on the
abacus, the divisio ferrea.

In his book on the abacus, Bernelinus devotes a chapter to fractions.
These are, of course, the duodecimals, first used by the Romans. For
want of a suitable notation, calculation with them was exceedingly
difficult. It would be so even to us, were we accustomed, like the
early abacists, to express them, not by a numerator or denominator,
but by the application of names, such as uncia for 5, quincunx for %,
dodrans for .

In the tenth century, Gerbert was the central figure among the
learned. In his time the Occident came into secure possession of all
mathematical knowledge of the Romans. During the eleventh cen-
tury it was studied assiduously. Though numerous works were
written on arithmetic and geometry, mathematical knowledge in the
Occident was still very insignificant. Scanty indeed were the mathe-
matical treasures obtained from Roman sources.

1 M. Cantor, 0p. cit., Vol. I, 3. Aufl., 1907, p. 882.
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Translation of Arabic Manuscripts

By his great erudition and phenomenal activity, Gerbert infused
new life into the study not only of mathematics, but also of philosophy.
Pupils from France, Germany, and Italy gathered at Rheims to enjoy
his instruction. When they themselves became teachers, they taught
of course not only the use of the abacus and geometry, but also what
they had learned of the philosophy of Aristotle. His philosophy was
known, at first, only through the writings of Boethius. But the grow-
ing enthusiasm for it created a demand for his complete works. Greek
texts were wanting. But the Latins heard that the Arabs, too, were
great admirers of Peripatetism, and that they possessed translations
of Aristotle’s works and commentaries thereon. This led them finally
to search for and translate Arabic manuscripts. During this search,
mathematical works also came to their notice, and were translated
into Latin. Though some few unimportant works may have been
translated earlier, yet the period of greatest activity began about 1100.
The zeal displayed in acquiring the Mohammedan treasures of knowl-
edge excelled even that of the Arabs themselves, when, in the eighth
century, they plundered the rich coffers of Greek and Hindu science.

Among the earliest scholars engaged in translating manuscripts into
Latin was Athelard of Bath. The period of his activity is the first
quarter of the twelfth century. He travelled extensively in Asia
Minor, Egypt, perhaps also in Spain, and braved a thousand perils,
that he might acquire the language and science of the Mohammedans.
He made one of the earliest translations, from the Arabic, of Euclid’s
Elements. He translated the astronomical tables of Al-Khowarizmi.
In 1857, 2 manuscript was found in the library at Cambridge, which
proved to be the arithmetic by Al-Khowarizmi in Latin. This trans-
lation also is very probably due to Athelard.

At about the same time flourished Plalo of Tivoli or Plato Tiburtinus.
He effected a translation of the astronomy of Al-Battani and of the
Spherica of Theodosius.

About the middle of the twelfth century there was a group of Chris-
tian scholars busily at work at Toledo, under the leadership of Ray-
mond, then archbishop of Toledo. Among those who worked under
his direction, John of Seville was most prominent. He translated
works chiefly on Aristotelian philosophy. Of importance to us is a
liber alghoarismi, compiled by him from Arabic authors. The rule for

the division of one fraction by another is proved as follows: ;—:—2 =

ad . e .
ﬂi+ be_ —. This same explanation is given by the thirteenth cen-
bd " bd b '
tury German writer, Jordanus Nemorarius. On comparing works
like this with those of the abacists, we notice at once the most striking

difference, which shows that the two parties drew from independent
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sources. It is argued by some that Gerbert got his apices and his arith-
metical knowledge, not from Boethius, but from the Arabs in Spain,
and that part or the whole of the geometry of Boethius is a forgery,
dating from the time of Gerbert. If this were the case, then the writ-
ings of Gerbert would betray Arabic sources, as do those of John of
Seville. But no points of resemblance are found. Gerbert could not
have learned from the Arabs the use of the abacus, because all evidence
we have goes to show that they did not employ it. Nor is it probable
that he borrowed from the Arabs the apices, because they were never
used in Europe except on the abacus. In illustrating an example in
division, mathematicians of the tenth and eleventh centuries state
an example in Roman numerals, then draw an abacus and insert in it
the necessary numbers with the apices. Hence it seems probable that
the abacus and apices were borrowed from the same source. The
contrast between authors like John of Seville, drawing from Arabic
works, and the abacists, consists in this, that, unlike the latter, the
former mention the Hindus, use the term algorism, calculate with the
zero, and do not employ the abacus. The former teach the extraction
of roots, the abacists do not; they teach the sexagesimal fractions used
by thei Arabs, while the abacists employ the duodecimals of the Ro-
mans.

A little later than John of Seville flourished Gerard of Cremona.in
Lombardy. Being desirous to gain possession of the Almagest, he
went to Toledo, and there, in 1175, translated this great work of Ptol-
emy. Inspired by the richness of Mohammedan literature, he gave
himself up to its study. He translated into Latin over 70 Arabic works.
Of mathematical treatises, there were among these, besides the Al-
magest, the 15 books of Euclid, the Spherica of Theodosius, a work of
Menelaus, the algebra of Al-Khowarizmi, the astronomy of Jabir ibn
Aflah, and others less important. Through Gerard of Cremona the
term sinus was introduced into trigonometry. Al-Khawarizmi’s al-
gebra was translated also by Robert of Chester; his translation prob-
ably antedated Cremona's.

In the thirteenth century, the zeal for the acquisition of Arabic
learning continued. Foremost among the patrons of science at this
time ranked Emperor Frederick II of Hohenstaufen (died 1250).
Through frequent contact with Mohammedan scholars, he became
familiar with Arabic science. He employed a number of scholars in
translating Arabic manuscripts, and it was through him that we came
in possession of a new translation of the Almagest. Another royal
head deserving mention as a zealous promoter of Arabic science was
Alfonso X of Castile (died 1284). -He gathered around him a number
of Jewish and Christian scholars, who translated and compiled astro-
nomical works from Arabic sources. Astronomical tables prepared
. by two Jews spread rapidly in the Occident, and constituted the basis
1 M. Cantor, op. cit., Vol. I, 3. Aufl., 1907, p. 879, chapter 40.
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of all astronomical calculation till the sixteenth century. The num-
ber of scholars who aided in transplanting Arabic science upon Chris-
tian soil was large. But we mention only one, Giovanni Campano of
Novara (about 1260), who brought out a new translation of Euclid,
which drove the earlier ones from the field, and which formed the
basis of the printed editions.!

At the middle of the twelfth century, the Occident was in possession
of the so-called Arabic notation. At the close of the century, the
Hindu methods of calculation began to supersede the cumbrous meth-
ods inherited from Rome. Algebra, with its rules for solving linear
and quadratic equations, had been made accessible to the Latins. The
geometry of Euclid, the Spherica of Theodosius, the astronomy of
Ptolemy, and other works were now accessible in the Latin tongue.
Thus a great amount of new scientific material had come into the
hands of the Christians. The talent necessary to digest this hetero-
geneous mass of knowledge was not wanting. The figure of Leonardo
of Pisa adorns the vestibule of the thirteenth century.

It is important to notice that no work either on mathematics or
astronomy was translated directly from the Greek previous to the
fifteenth century.

The First Awakening and its Sequel

Thus far, France and the British Isles have been the headquarters
of mathematics in Christian Europe. But at the beginning of the
thirteenth century the talent and activity of one man was sufficient to
assign the mathematical science a new home in Italy. This man was
not a monk, like Bede, Alcuin, or Gerbert, but a layman who found
time for scientific study. Leonardo of Pisa is the man to whom we
owe the first renaissance of mathematics on Christian soil. He is also
called Fibonacci, i.e. son of Bonaccio. His father was secretary at one of
the numerous factories erected on the south and east coast of the Med-
iterranean by the enterprising merchants of Pisa. He made Leonardo,
when a boy, learn the use of the abacus. The boy acquired a strong
taste for mathematics, and, in later years, during extensive travels in
Egypt, Syria, Greece, and Sicily, collected from the various peoples
all the knowledge he could get on this subject. Of all the methods of
calculation, he found the Hindu to be unquestionably the best. Re-
turning to Pisa, he published, in 1202, his great work, the Liber Abaci.
A revised edition of this appeared in 1228. This work contains the
knowledge the Arabs possessed in arithmetic and algebra, and treats
the subject in a free and independent way. This, together with the
other books of Leonardo, shows that he was not merely a compiler,
nor, like other writers of the Middle Ages, a slavish imitator of the
form in which the subject had been previously presented. The extent

1 H. Hankel, 0p. cit., pp. 338, 339.
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of his originality is not definitely known, since the sources from which
he drew have not all been ascertained. Karpinski has shown that
Leonardo drew extensively from Abu Kamil’s algebra. Leonardo’s
Practica geometrie is partly drawn from the Liber embadorum of Sav-
a.sordlf., a learned Jew of Barcelona and a co-worker of Plato of
Tivoli.

Leonardo was the first great mathematician to advocate the adop-
tion of the ‘“Arabic notation.” The calculation with the zero was the
portion of Arabic mathematics earliest adopted by the Christians.
The minds of men had been prepared for the reception of this by the
use of the abacus and the apices. The reckoning with columns was
gradually abandoned, and the very word abacus changed its meaning
and became a synonym for algorism. For the zero, the Latins adopted
the name zephirum, from the Arabic sifr (sifra=empty); hence our
English word cipher. The new notation was accepted readily by the
enlightened masses. but, at first, rejected by the learned circles. The
merchants of Italy used it as early as the thirteenth century, while
the monks in the monasteries adhered to the old forms. In 1299,
nearly 100 years after the publication of Leonardo’s Liber Abact, the
Florentine merchants were forbidden the use of the Arabic numeral
in book-keeping, and ordered either to employ the Roman numerals
or to write the numeral adjectives out in full. This decree is probably
due to the variety of forms of certain digits and the consequent am-
biguity, misunderstanding and fraud. Some interest attaches to the
earliest dates indicating the use of Hindu-Arabic numerals in the Oc-
cident. Many erroneous or doubtful early dates have been given by
writers inexperienced in the reading of manuscripts and inscriptions.
The numerals are first found in manuscripts of the tenth century, but
they were not well known until the beginning of the thirteenth cen-
tury.! About 1275 they began to be widely used. The earliest Arabic
manuscripts containing the numerals are of 874 and 888 A. . They
appear in a work written at Shiraz in Persia in 970 A. . A church-
pillar not far from the Jeremias Monastery in Egypt has the date 349
A. H. (=961 A.D.) The oldest definitely dated European manuscript
known to contain the numerals is the Codex Vigilanus, written in the
Albelda Cloister in Spain in 976 A. p. The nine characters without
the zero are given, as an addition, in a Spanish copy of the Origines
by Isidorus of Seville, g9z A. . A tenth century manuscript with
forms differing materially from those in the Codex Vigilanus was found
in the St. Gall manuscript now in the University Library at Ziirich.
The numerals are contained in a Vatican manuscript of 1077, a Sicilian
coin of 1138, a Regensburg (Bavaria) chronicle of 1197. The earliest
manuscript in French giving the numerals dates about 1275. In the

1 G. F. Hill, The Development of Arabic Numerals in Europe, Oxford, 1915, p. 11.

Our dates are taken from this book and from D. E. Smith and L. C, Karpinski's
Hindu-Arabic Numerals, Boston and London, 1911, pp. 133-146.
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British Museum one English manuscript is of about 1230-50, another
is of 1246. The earliest undoubted Arabic numerals on a gravestone
are at Pforzheim in Baden of 1371 and one at Ulm of 1388. The
earliest coins dated in the Arabic numerals are as follows: Swiss 1424,
Austrian 1484, French 1485, German 1489, Scotch 1539, English 1551.
The earliest calendar with Arabic figures is that of Kobel, 1518. The
forms of the numerals varied considerably. The 5 was the most
freakish. An upright 7 was rare in the earlier centuries.

In the fifteenth century the abacus with its counters ceased to be
used in Spain and Italy. In France it was used later, and it did not
disappear in England and Germany before the middle of the seven-
teenth century.! The method of abacal computation is found in the
English exchequer for the last time in 1676. In the reign of Henry I
the exchequer was distinctly organized as a court of law, but the finan-
cial business of the crown was also carried on there. The term “ex-
chequer” is derived from the chequered cloth which covered the table
at which the accounts were made up. Suppose the sheriff was sum-
moned to answer for the full annual dues “in money or in tallies.”
“The liabilities and the actual payments of the sheriff were balanced
by means of counters placed upon the squares of the chequered table,
those on the one side of the table representing the value of the tallies,
warrants and specie presented by the sheriff, and those on the other
the amount for which he was liable,” so that it was easy to see whether
the sheriff had met his obligations or not. In Tudor times “pen and
ink dots” took the place of counters. These dots were used as late as
1676.2 The “tally” upon which accounts were kept was a peeled
wooden rod split in such a way as to divide certain notches previously
cutinit. One piece of the tally was given to the payer; the other piece
was kept by the exchequer. The transaction could be verified easily
by fitting the two halves together and noticing whether the notches
‘““tallied” or nor. Such tallies remained in use as late as 1783.

In the Winter’s Tale (IV. 3), Shakespeare lets the clown be embar-
rassed by a problem which he could not do without counters. Iago (in
Othello, i, 1) expresses his contempt for Michael Cassio, ‘““forsooth a
great mathematician,” by calling him a “counter-caster.” * So gen-
eral, indeed, says Peacock, appears to have been the practice of this
species of arithmetic, that its rules and principles form an essential
part of the arithmetical treatises of that day. The real fact seems to
be that the old methods were used long after the Hindu numerals were

1 George Peacock, “Arithmetic” in the Encyclopedia of Pure Mathemalics,

London, 1847, p. 408.

8;4Article ‘““Exchequer” in Palgrave’s Dictionary of Political Economy, London,
1894.
3 For additional information, consult F. P. Barnard, The Casting-Counter and
the Counting-Board, Oxford, 1916. He gives a list of 159 extracts from English
inventories referring to counting boards and also photographs of reckoning tables
at Basel and Niirnberg, of reckoning cloths at Munich, etc.
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in common and general use. With such dogged persistency does man
cling to the old!

The Liber Abaci was, for centuries, one of the storehouses from
which authors got material for works on arithmetic and algebra. In
it are set forth the most perfect methods of calculation with integers
and fractions, known at that time; the square and cube root are ex-
plained, cube root nor having been considered in the Christian occi-
dent before; equations of the first and second degree leading to prob-
lems, either determinate or indeterminate, are solved by the methods

of “single” or “double position,” and also by real algebra. He recog-
nized that the quadratic x*+¢=bx may be satisfied by two values of z.
He took no cognizance of negative and imaginary roots. The book
contains a large number of problems. The following was proposed to
Leonardo of Pisa by a magister in Constantinople, as a difficult prob-
lem: If A gets from B 7 denare, then A’s sum is five-fold B’s; if B gets
from A 5 denare, then B’s sum is seven-fold A’s. How much has each?
The Liber Abaci contains another problem, which is of historical in-
terest, because it was given with some variations by Ahmes, 3000 years
earlier: 7 old women go to Rome; each woman has 7 mules, each mule
carries 7 sacks, each sack contains 7 loaves, with each loaf are 7 knives,
each knife is put up in 7 sheaths. What is the sum total of all named?
Ans. 137,256. ! Following the practice of Arabic and of Greek and
Egyptian writers, Leonardo frequently uses unit fractions. This was
done also by other European writers of the Middle Ages. He ex-
plained how to resolve a fraction into the sum of unit fractions. He
was one of the first to separate the numerator from the denominator
by a fractional line. Before his time, when fractions were written in
Hindu-Arabic numerals, the denominator was written beneath the
numerator, without any sign of separation.

In 1220, Leonardo of Pisa published his Practica Geometrie, which
contains all the knowledge of geometry and trigonometry transmitted
to him. The writings of Euclid and of some other Greek masters were
known to him, either from Arabic manuscripts directly or from the
translations made by his countrymen, Gerard of Cremona and Plato
of Tivoli. As previously stated, a principal source of his geometrical
knowledge was Plato of Tivolis’ translation in 11 16, from the Hebrew
into Latin, of the Liber embadorum of Abraham Sa.vasorda Leo-
nardo’s Geomeiry contains an elegant geometrical demonstration of
Heron’s formula for the area of a triangle, as a function of its three
sides; the proof resembles Heron’s. Leonardo treats the rich material
before him with skill, some originality and Euclidean rigor.

Of still greater interest than the preceding works are those contain-

1 M. Cantor, 0p. cit., Vol. IT, 2. Aufl., 1900, p. 26. See a problem in the Ahmes
papyrus believed to be of the same type as this.
2See M. Curtze, Urkunden zur Geschichte der Mathematik, I Theil, Leipzig, 1902,

p- s



124 A HISTORY OF MATHEMATICS

ing Fibonacci’s more original investigations. We must here preface
that after the publication of the Liber Abaci, Leonardo was presented
by the astronomer Dominicus to Emperor Frederick II of Hohen-
staufen. On that occasion, John of Palermo, an imperial notary,
proposed several problems, which Leonardo solved promptly. The
first (probably an old familiar problem to him) was to find a number x,
such that x>45 and x>— 5 are each square numbers. The answer is
x=34; for (3,%)+5=(41%)" (3:%)°—5=(2v%)* His masterly so-
lution of this is given in his liber quadratorum, a manuscript which was
not printed, but to which reference is made in the second edition of
his Liber Abaci. The problem was not original with John of Palermo,
since the Arabs had already solved similar ones. Some parts of Leo-
nardo’s solution may have been borrowed from the Arabs, but the
method which he employed of building squares by the summation of
odd numbers is original with him.

The second problem proposed to Leonardo at the famous scientific
tournament which accompanied the presentation of this celebrated al-
gebraist to that great patron of learning, Emperor Frederick II, was
the solving of the equation x4 22?4 10x=120. As yet cubic equations
had not been solved algebraically. Instead of brooding stubbornly
over this knotty problem, and after many failures still entertaining
new hopes of success, he changed his method of inquiry and showed
by clear and rigorous demonstration that the roots of this equation
could not be represented by the Euclidean irrational quantities, or, in
other words, that they could not be constructed with the ruler and
compass only. He contented himself with finding a very close ap-
proximation to the required root. His work on this cubic is found in
the Flos, together with the solution of the following third problem
given him by John of Palermo: Three men possess in common an un-

known sum of money #; the share of the first is -:—; that of the second, é;
that of the third, é Desirous of depositing the sum at a safer place,
each takes at hazard a certain amount; the first takes x, but deposits
only -'E' ; the second carries y, but deposits only %; the third takes z, and

2
6
in order to possess his share of the whole sum. Find #, y, 3. Leonardo
shows the problem to be indeterminate. Assuming 7 for the sum
.drawn by each from the deposit, he finds =47, x=33, y=13, s=1.

One would have thought that after so brilliant a beginning, the
sciences transplanted from Mohammedan to Christian soil would
have enjoyed a steady and vigorous development. But this was not
the case. During the fourteenth and fifteenth centuries, the mathe-

deposits =. Of the amount deposited each one must receive exactly 4,
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matical science was almost stationary. Long wars absorbed the ener-
gies of the people and thereby kept back the growth of the sciences.
The death of Frederick II in 1254 was followed by a period of con-
fusion in Germany. The German emperors and the popes were con-
tinually quarrelling, and Italy was inevitably drawn into the struggles
between the Guelphs and the Ghibellines. France and England were
engaged in the Hundred Years’ War (1338-1453). Then followed in
England the Wars of the Roses. The growth of science was retarded
not only by war, but also by the injurious influence of scholastic phi-
losophy. The intellectual leaders of those times quarrelled over subtle
subjects in metaphysics and theology. Frivolous questions, such as
“How many angels can stand on the point of a needle?”’ were discussed
with great interest. Indistinctness and confusion of ideas charac-
terized the reasoning during this period. The writers on mathematics
during this period were not few in number, but their scientific efforts
were vitiated by the method of scholastic thinking. Though they
possessed the Elemenis of Euclid, yet the true nature of a mathematical
proof was so little understood, that Hankel believes it no exaggeration
to say that “since Fibonacci, not a single proof, not borrowed from
Euclid, can be found in the whole literature of these ages, which fulfils
all necessary conditions.”

The only noticeable advance is a simplification of numerical opera-
tions and a more extended application of them. Among the Italians
are evidences of an early maturity of arithmetic. Peacock ! says:
The Tuscans generally, and the Florentines in particular, whose city
was the cradle of the literature and arts of the thirteenth and four-
teenth centuries, were celebrated for their knowledge of arithmetic
and book-keeping, which were so necessary for their extensive com-
merce; the Italians were in familiar possession of commercial arith-
metic long before the other nations of Europe; to them we are indebted
for the formal introduction into books of arithmetic, under distinct
heads, of questions in the single and double rule of three, loss and gain,
fellowship, exchange, simple and compound interest, discount, and
so on.

There was also a slow improvement in the algebraic notation. The
Hindu algebra possessed a tolerable symbolic notation, which was,
however, completely ignored by the Mohammedans. In this respect,
Arabic algebra approached much more closely to that of Diophantus,
which can scarcely be said to employ symbols in a systematic way.
Leonardo of Pisa possessed no algebraic symbolism. Like the early
Arabs, he expressed the relations of magnitudes to each other by lines
or in words. But in the mathematical writings of Chuquet (1484), of
Widmann (1489) and of the monk Luca Pacioli (also called Lucas de
Burgo sepulchri) symbols began to appear. Pascioli’s consisted merely

1 G. Peacock, op. cil., 1847, p. 429.
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in abbreviations of Italian words, such as p for piu (more), m for meno
(less), co for cosa (the unknown x), ce for censo (x%), cece for censocenso
(#%), “Our present notation has arisen by almost insensible degrees
as convenience suggested different marks of abbreviation to different
authors; and that perfect symbolic language which addresses itself
solely to the eye, and enables us to take in at a glance the most com-
plicated relations of quantity, is the result of a large series of small im-
provements.” 1

We shall now mention a few authors who lived during the thirteenth
and fourteenth and the first half of the fifteenth centuries.

We begin with the philosophic writings of Thomas Aquinas (1225-
1274), the great Italian philosopher of the Middle Ages, who gave in
the completest form the ideas of Origen on infinity. Aquinas’ notion
of a continuum, particularly a linear continuum, made it potentially
divisible to infinity, since practically the divisions could not be carried
out to infinity. There was, therefore, no minimum line. On the other
hand, the point is not a constituent part of the line, since it does not
possess the property of infinite divisibility that parts of a line possess,
nor can the continuum be constructed out of points. However, a
point by its motion has the capacity of generating a line.? This con-
tinuum held a firm ascendancy over the ancient atomistic doctrine
which assumed matter to be composed of very small, indivisible par-
ticles. No continuum superior to this was created before the nine-
teenth century. Aquinas explains Zeno’s arguments against motion,
as they are given by Aristotle, but hardly presents any new point of
view. The Englishman, Roger Bacon [1214(?)-1294] likewise argued
against a continuum of indivisible parts difterent from points. Re-
newing arguments presented by the Greeks and early Arabs, he held
that the doctrine of indivisible parts of uniform size would make the
diagonal of a square commensurable with a side. Likewise, if through
the ends of an indivisible arc of a circle radii are drawn, these radii
intercept an arc on a concentric circle of smaller radius; from this it
would follow that the inner circle is of thz same length as the outer
circle, which is impossible. Bacon argued against infinity. If time
were infinite, the absurdity would follow that the part is equal to the
whole. Bacon’s views were made known more widely through Duns
Scotus (1265-1308), the theological and philosophical opponent of
Thomas Aquinas. However, both argued against the existence of
indivisible parts (points). Duns Scotus wrote on Zeno’s paradoxies,
but without reaching new points of view. His commentaries were
annotated later by the Italian theologian, Franciscus de Pitigianis,
who expressed himself in favor of the admission of the actual infinity
to explain the “Dichotomy” and the ‘Achilles,” but fails to ade-
quately elaborate the subject. Scholastic ideas on infinity and the

17. F. W. Herschel, ‘“Mathematics” in Edinburgh Encyclopedia.
*C. R. Wallner, in Bibliotheca mathematica, 3. F., Bd. IV, 1903, pp. 29, 30.
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continuum find expression in the writings of Bradwardine, the Eng-
lish doctor profundss.!

About the time of Leonardo of Pisa (1200 A. D.), lived the German
monk Jordanus Nemorarius (?-1237), who wrote a once famous work
on the properties of numbers, printed in 1496 and modelled after the
arithmetic of Boethius. The most trifling numeral properties are
treated with nauseating pedantry and prolixity. A practical arith-
metic based on the Hindu notation was also written by him. John
Halifax (Sacro Bosco, died 1256) taught in Paris and made an extract
from the Almagest containing only the most elementary parts of that
work. This extract was for nearly 400 years a work of great popular-
ity and standard authority, as was also his arithmetical work, the
Tractatus de arte numerandi. Other prominent writers are Albertus
Magnus (11937-1280) and Georg Peurbach (1423-1461) in Ger-
many. It appears that here and there some of our modern ideas were
anticipated by writers of the Middle Ages. Thus, Nicole Oresme
(about 1323-1382), a bishop in Normandy, first conceived the notion of
fractional powers, afterwards rediscovered by Stevin, and suggested a
notation. Since 43=064, and 64> =8, Oresme concluded that 4!>$=38.

In his notation, 4% is expressed, |xp.,|4, or |*;—_; l4. Some of the

mathematicians of the Middle Ages possessed some idea of a function.
Oresme even attempted a graphic representation. But of a numeric
dependance of one quantity upon another, as found in Descartes,
there is no trace among them.?

In an unpublished manuscript Oresme found the sum of the infinite
series 3+ 3+ 3§+ 1%+ %+ . . ininf. Such recurrent infinite series were
formerly supposed to have made their first appearance in the eight-
eenth century. The use of infinite series is explained also in the Liber
de iriplici motu, by the Portuguese mathematician Alvarus Thomas,?
in 1509. He gives the division of a line-segment into parts represent-
ing the terms of a convergent geometric series; that is, a segment AB
is divided into parts such that AB : P,B=P\B : Py,B= —P,B Pty
B= .. Such a division of a line-segment occurs later in Napier’s
kinematlca.l discussion of logarithms.

Thomas Bradwardine (ahout 1290-1349), archbishop of Canter-
bury, studied star-polygons. The first appearance of such polygons was
with Pythagoras and his school. We next meet with such polygons
in the geometry of Boethius and also in the translation of Euclid from
the Arabic by Athelard of Bath. To England falls the honor of hav-
ing produced the earliest European writers on trigonometry. The

1 F. Cajori, Americ. Math. Monthly, Vol. 22, 1915, pp. 45-47.

2 H. Wieleitner in Bibliotheca mathemalica, 3. S., Vol. 13, 1913, pp. 115-145.

3See Eludes sur Léonard da Vinci, Vol. III, Pa.ns, 1913, Pp- 393, 540, 541, by
Pierre Duhem (1861-1916) of the University of Bordeaux; see also Wieleitner in
Bibliotheca mathematica, Vol. 14, 1914, pp. 150-168.
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writings of Bradwardine, of Richard of Wallingford, and John Maud-
ith, both professors at Oxford, and of Simon Bredon of Winchecombe,
_ contain trigonometry drawn from Arabic sources.

The works of the Greek monk Maximus Planudes (about 1260—
1310), are of interest only as showing that the Hindu numerals were
then known in Greece. A writer belonging, like Planudes, to the By-
zantine school, was Manuel Moschopulus who lived in Constantino-
ple in the early part of the fourteenth century. To him appears to be
due the introduction into Europe of magic squares. He wrote a treatise
on this subject. Magic squares were known before this to the Arabs
and Japanese; they originated with the Chinese. Medi®val astrol-
ogers and physicians believed them to possess mystical properties and
to be a charm against plague, when engraved on silver plate.

Recently there has been printed a Hebrew arithmetical work by
the French Jew, Levi ben Gerson, written in 1321,! and handed down
in several manuscripts. It contains formulas for the number of per-
mutations and combinations of » things taken k at a time. Itis worthy
of note that the earliest practical arithmetic known to have been
brought out in print appeared anonymously in Treviso, Italy, in 1478,
and is referred to as the “Treviso arithmetic.” Four years later, in
1482, came out at Bamberg the first printed German arithmetic. It
is by Ulrick Wagner, a teacher of arithmetic at Nirnberg. It was
printed on parchment, but only fragments of one copy are now extant.?

According to Enestrém, Ph. Calandri’s De arithmetrica opusculum,
Florence, 1491, is the first printed treatise containing the word “zero”’;
it is found in some fourteenth century manuscripts.

In 1494 was printed the Summa de Arithmetica, Geomelria, Propor-
tione et Proporiionalita, written by the Tuscan monk Luca Pacioli
(1445-1514?), who, as we remarked, introduced several symbols in
algebra. This contains all the knowledge of his day on arithmetic,
algebra, and trigonometry, and is the first comprehensive work which
appeared after the Liber Abaci of Fibonacci. It contains little of im-
portance which cannot be found in Fibonacci’s great work, published
three centuries earlier. Pacioli came in personal touch with two ar-
tists who were also mathematicians, Leonardo da Vinci ® (1452-1519)
and Pier della Francesca (1416-1492). Da Vinci inscribed regular
polygons in circles, but did not distinguish between accurate and ap-
proximate constructions. It is interesting to note that da Vinci was
familiar with the Greek text of Archimedes on the measurement of
the circle. Pier della Francesca advanced the theory of perspective,
and left a manuscript on regular solids which was published by

! Bibliotheca mathemaltica, 3. S., Vol. 14, 1916, p. 261.
*See D. E. Smith, Rara arithmeclica, Boston and London, 1908, pp. 3, 12, 15;
F. Unger, Methodik der Praktischen Arithmetik in Historischer Entwickelung, Leip-

zig, 1888, p. 39.
3 Consult P. Duhem’s Btudes sur Léonard de Vinci, Paris, 190g.
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Pacioli in 1509 as his own work, in a book entitled, Divina pro-
portione.

Perhaps the greatest result of the influx of Arabic learning was the
establishment of universities. What was their attitude toward mathe-
matics? The University of Paris, so famous at the beginning of the
twelfth century under the teachings of Abelard paid but little atten-
tion to this science during the Middle Ages. Geometry was neglected,
and Aristotle’s logic was the favorite study. In 1336, a rule was in-
troduced that no student should take a degree without attending lec-
tures on mathematics, and from a commentary on the first six books
of Euclid, dated 1536, it appears that candidates for the degree of
A. M. had to give an oath that they had attended lectures on these
books.! Examinations, when held at all, probably did not extend be-
yond the first book, as is shown by the nickname ‘““magister mathe-
seos,” applied to the Theorem of Pythagoras, the last in the first book.
More attention was paid to mathematics at the Universily of Prague,
founded 1384. For the Baccalaureate degree, students were required
to take lectures on Sacro Bosco’s famous work on astronomy. Of can-
didates for the A.M. were required not only the six books of Euclid,
but an additional knowledge of applied mathematics. Lectures were
given on the Almagest. At the University of Leipzig, the daughter of
Prague, and at Cologne, less work was required, and, as late as the
sixteenth century, the same requirements were made at these as at
Prague in the fourteenth. The universities of Bologna, Padua, Pisa,
occupied similar positions to the ones in Germany, only that purely
astrological lectures were given in place of lectures on the Almagest.
At Oxford, in the middle of the fifteenth century, the first two books
of Euclid were read.?

Thus it will be seen that the study of mathematics was maintained
at the universities only in a half-hearted manner. No great mathe-
matician and teacher appeared, to inspire the students. The best
energies of the schoolmen were expended upon the stupid subtleties of
their philosophy. The genius of Leonardo of Pisa left no permanent
impress upon the age, and another Renaissance of mathematics was
wanted.

1 H. Hankel, 0p. cil., p. 355. *J. Gow, op. cil., p. 207.



EUROPE DURING THE SIXTEENTH, SEVENTEENTH
AND EIGHTEENTH CENTURIES

We find it convenient to choose the time of the capture of Constan-
tinople by the Turks as the date at which the Middle Ages ended and
Modern Times began. In 1453, the Turks battered the walls of this
celebrated metropolis with cannon, and finally captured the city; the
Byzantine Empire fell, to rise no more. Calamitous as was this event
to the East, it acted favorably upon the progress of learning in the
West. A great number of learned Greeks fled into Italy, bringing with
them precious manuscripts of Greek literature. This contributed
vastly to the reviving of classic learning. Up to this time, Greek mas-
ters were known only through the often very corrupt Arabic manu-
scripts, but now they began to be studied from original sources and
in their own language. The first English translation of Euclid was
made in 1 s70 from the Greek by Sir Henry Billingsley, assisted by
John Dee.!  About the middle of the fifteenth century, printing was
invented; books became cheap and plentiful; the printing-press trans-
formed Europe into an audience-room. Near the close of the fifteenth
century, America was discovered, and, soon after, the earth was cir-
cumnavigated. The pulse and pace of the world began to quicken.
Men’s minds became less servile; they became clearer and stronger.
The indistinctness of thought, which was the characteristic feature of
medizval learning, began to be remedied chiefly by the steady cultiva-
tion of Pure Mathematics and Astronomy. Dogmatism was attacked;
there arose a long struggle with the authority of the Church and the
established schools of philosophy. The Copernican System was set
up in opposition to the time-honored Ptolemaic System. The long
and eager contest between the two culminated in a crisis at the time
of Galileo, and resulted in the victory of the new system. Thus, by
slow degrees, the minds of men were cut adrift from their old scholastic
moorings and sent forth on the wide sea of scientific inquiry, to dis-
cover new islands and continents of truth.

The Renaissance

With the sixteenth century began a period of increased intellectual
activity. The human mind made a vast effort to achieve its freedom.
Attempts at its emancipation from Church authority had been made
before, but they were stifled and rendered abortive. The first great
and successful revolt against ecclesiastical authority was made in

1G. B. Halsted in Am. Jour. of Math., Vol. TI, 1879.
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Germany. The new desire for judging freely and independently in
matters of religion was preceded and accompanied by a growing spirit
of scientific inquiry. Thus it was that, for a time, Germany led the
van in science. She produced Regiomontanus, Copernicus, Rheticus
and Kepler, at a period when France and England had, as yet, brought
forth hardly any great scientific thinkers. This remarkable scientific
productiveness was no doubt due, to a great extent, to the commercial
prosperity of Germany. Material prosperity is an essential condition
for the progress of knowledge. As long as every individual is obliged
to collect the necessaries for his subsistence, there can be no leisure
for higher pursuits. At this time, Germany had accumulated con-
siderable wealth. The Hanseatic League commanded the trade of
the North. Close commercial relations existed between Germany and
Italy. Italy, too, excelled in commercial activity and enterprise.
We need only mention Venice, whose glory began with the crusades,
and Florence, with her bankers and her manufacturers of silk and wool.
These two cities became great intellectual centres. Thus, Italy, too,
produced men in art, literature, and science, who shone forth in fullest
splendor. In fact, Italy was the fatherland of what is termed the Re-
naissance.

For the first great contributions to the mathematical sciences we
must, therefore, look to Italy and Germany. In Italy brilliant acces-
sions were made to algebra, in Germany progress was made in astron-
omy and trigonometry.

On the threshold of this new era we meet in Germany with the figure
of John Mueller, more generally called Regiomontanus (1436-1476).
Chiefly to him we owe the revival of trigonometry. He studied as-
tronomy and trigonometry at Vienna under the celebrated George
Peurbach. The latter perceived that the existing Latin translations
of the Almagest were full of errors, and that Arabic authors had not
remained true to the Greek original. Peurbach therefore began to
make a translation directly from the Greek. But he did not live to
finish it. His work was continued by Regiomontanus, who went be-
yond his master. Regiomontanus learned the Greek language from
Cardinal Bessarion, whom he followed to Italy, where he remained
eight years collecting manuscripts from Greeks who had fled thither
from the Turks. In addition to the translation of and the commen-
tary on the Almagest, he prepared translations of the Conics of Apol-
lonius, of Archimedes, and of the mechanical works of Heron. Regio-
montanus and Peurbach adopted the Hindu sine in place of the Greek
chord of double the arc. The Greeks and afterwards the Arabs divided
the radius into 60 equal parts, and each of these again into 6o smaller
ones. The Hindu expressed the length of the radius by parts of the
circumference, saying that of the 21,600 equal divisions of the latter,
it took 3438 to measure the radius. Regiomontanus, to secure greater
precision, constructed one table of sines on a radius divided into
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600,000 parts, and another on a radius divided decimally into
10,000,000 divisions. He emphasized the use of the fangent in trigo-
nometry. Following out some ideas of his master, he calculated a
table of tangents. German mathematicians were not the first Euro-
peans to use this function. In England it was known a century earlier
to Bradwardine, who speaks of tangent (umbra versa) and cotangent
(umbra recta), and to John Maudith. Even earlier, in the twelfth
century, the umbra versa and umbra recta are used in a translation from
Arabic into Latin, effected by Gerard of Cremona, of the Toledian
Tables of Al-Zarkali, who lived in"Toredoabout 108. Regiomontanus
was the author of an arithmetic and also of a complete treatise on
trigonometry, containing solutions of both plane and spherical tri-
angles. Some innovations in trigonometry, formerly attributed to
Regiomontanus, are now known to have been introduced by the Arabs
before him. Nevertheless, much credit is due to him. His complete
mastery of astronomy and mathematics, and his enthusiasm for them,
were of far-reaching influence throughout Germany. So great was his
reputation, that Pope Sixtus IV called him to Italy to improve the
calendar. Regiomontanus left his beloved city of Niirnberg for Rome,
where he died in the following year.

After the time of Peurbach and Regiomontanus, trigonometry and
especially the calculation of tables continued to occupy German schol-
ars. More refined astronomical instruments were made, which gave
observations of greater precision; but these would have been useless
without trigonometrical tables of corresponding accuracy. Of the sev-
eral tables calculated, that by Georg Joachim of Feldkirch in Tyrol, gen-
erally called Rheeticus (1514-1567) deserves special mention. He cal-
culated a table of sines with the radius=10,000,000,000 and from 10"
to 10”’; and, later on, another with the radius=1,000,000,000,000,000,
and proceeding from 10" to 10”. He began also the construction of
tables of tangents and secants, to be carried to the same degree of
accuracy; but he died before finishing them. For twelve years he had
had in continual employment several calculators. The work was com-
pleted in 1596 by his pupil, Valentine Otho (1550P-1605). This was
indeed a gigantic work,—a monument of German diligence and inde-
fatigable perseverance. The tables were republished in 1613 by Bar-
tholom#us Pitiscus (1561-1613) of Heidelberg, who spared no pains
to free them of errors. Pitiscus was perhaps the first to use the word
“trigonometry.” Astronomical tables of so great a degree of accu-
racy had never been dreamed of by the Greeks, Hindus, or Arabs.
That Rhaticus was not a ready calculator only, is indicated by his
views on trigonometrical lines. Up to his time, the trigonometric
functions had been considered always with relation to the arc; he was
the first to construct the right triangle and to make them depend di-
rectly upon its angles. It was from the right triangle that Rhaticus
got his idea of calculating the hypotenuse; +. e. he was the first to plan
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a table of secants. Good work in trigonometry was done also by Vieta
and Romanus.

We shall now leave the subject of trigonometry to witness the prog-
ress in the solution of algebraical equations. To do so, we must quit
Germany for Italy. The first comprehensive algebra printed was that
of Luca Pacioli. He closes his book by saying that the solution of the
equations x3+mx=n, x>4-n=mx is as impossible at the present state
of science as the quadrature of the circle. This remark doubtless stim-
ulated thought. The first step in the algebraic solution of cubics was
taken by Scipione del Ferro (1465-1526), a professor of mathematics
at Bologna, who solved the equation x*4mx=n. He imparted it to
his pupil, Floridas, in 1505, but did not publish it. It was the practice
in those days and for two centuries afterwards to keep discoveries
secret, in order to secure by that means an advantage over rivals by
proposing problems beyond their reach. This practice gave rise to
numberless disputes regarding the priority of inventions. A second
solution of cubics was given by Nicolo of Brescia [1499(?)-1557].
When a boy of six, Nicolo was so badly cut by a French soldier that
he never again gained the free use of his tongue. Hence he was called
T ia, 1. e. the stammerer. His widowed mother being too poor to
pay his tuition in school, he learned to read and picked up a knowledge
of Latin, Greek, and mathematics by himself. Possessing a mind of
extraordinary power, he was able to appear as teacher of mathematics
at an early age. He taught in Venice, then in Brescia, and later again
in Venice. In 1530, one Colla proposed him several problems, one
leading to the equation x’4-px*=gq. Tartaglia found an imperfect
method for solving this, but kept it secret. He spoke about his secret
in public and thus caused Del Ferro’s pupil, Floridas, to proclaim his
own knowledge of the form x*+mx=n. Tartaglia, believing him to
be a mediocrist and braggart, challenged him to a public discussion, to
take place on the 22d of February, 1535. Hearing, meanwhile, that
his rival had gotten the method from a deceased master, and fearing
that he would be beaten in the contest, Tartaglia put in all the zeal,
industry, and skill to find the rule for the equations, and he succeeded
in it ten days before the appointed date, as he himself modestly says.!
The most difficult step was, no doubt, the passing from quadratic ir-
rationals, used in operating from time of old, to cubic irrationals.
Placing x=+/1—+/u, Tartaglia perceived that the irrationals dis-
appeared from the equation x*=mx—n, making n=¢—u. But this
last equality, together with (3m)3=tu, gives at once

-, - (O
=) +(3> +2 o= )+ G) -3
This is Tartaglia’s solution of 2*+mx=n. On the 13th of February,

he found a similar solution for #=mx-+n. The contest began on the
! H. Hankel, o0p. cst., p. 36a2.
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22d. Each contestant proposed thirty problems. The one who could
solve the greatest number within fifty days should be the victor. Tar-
taglia solved the thirty problems proposed by Floridas in two hours;
Floridas could not solve any of Tartaglia’s. From now on, Tartaglia
studied cubic equations with a will. In 1541 he discovered a general
solution for the cubic 2% px®===¢, by transforming it into the form
2’=mx==n. The news of Tartaglia’s victory spread all over Italy.
Tartaglia was entreated to make known his method, but he declined
to do so, saying that after his completion of the ‘-anslation from the
Greek of Euclid and Archimedes, he would publish a large algebra
containing his method. But a scholar from Milan, named Hieronimo
Cardano (1501-1576), after many solicitations, and after giving the
most solemn and sacred promises of secrecy, succeeded in obtaining
from Tartaglia a knowledge of his rules. Cardan was a singular mix-
ture of genius, folly, self-conceit and mysticism. He was successively
professor of mathematics and medicine at Milan, Pavia and Bologna,
In 1570 he was imprisoned for debt. Later he went to Rome, was
admitted to the college of physicians and was pensioned by the pope.

At this time Cardan was writing his Ars Magna, and he knew no
better way to crown his work than by inserting the much sought for
rules for solving cubics. Thus Cardan broke his most solemn vows,
and published in 1545 in his Ars Magna Tartaglia’s solution of cubics.
However, Cardan did credit *his friend Tartaglia’ with the discovery
of the rule. Nevertheless, Tartaglia hecame desperate. His most
cherished hope, of giving to the world an immortal work which should
be the monument of his deep learning and power for original research,
was suddenly destroyed; for the crown intended for his work had
been snatched away. His first step was to write a history of his in-
vention; but, to completely annihilate his enemies, he challenged
Cardan and his pupil Lodovico Ferrari to a contest: each party
should propose thirty-one questions to be solved by the other within
fifteen days. Tartaglia solved most questions in seven days, but the
other party did not send in their solutions before the expiration of the
fifth month; moreover, all their solutions except one were wrong. A
replication and a rejoinder followed. Endless were the problems pro-
posed and solved on both sides. The dispute produced much chagrin
and heart-burnings to the parfies, and to Tartaglia especially, who
met with many other disappointments. After having recovered him-
self again, Tartaglia began, in 1556, the publication of the work which
he had had in his mind for so long; but he died before he reached the
consideration of cubic equations. Thus the fondest wish of his life re-
mained unfulfilled. How much credit for the algebraic solution of the
general cubic is due to Tartaglia and how much to Del Ferro it is now
impossible to ascertain definitely. Del Ferro’s researches were never
published and were lost. We know of them only through the remarks
of Cardan and his pupil L. Ferrari who say that Del Ferro’s and Tar-
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taglia’s methods were alike. Certain it is that the customary desig-
nation, ““Cardan’s solution of the cubic” ascribes to Cardan what
belongs to one or the other of his predecessors.

Remarkable is the great interest that the solution of cubics excited
throughout Italy. It is but natural that after this great conquest
mathematicians should attack bi-quadratic equations. As in the case
of cubics, so here, the first impulse was given by Colla, who, in 1540,
proposed for solution the equation x!4-6x*436=60x. To be sure,
Cardan had studied particular cases as early as 1539. Thus he solved
the equation 13x%2=x'4 22%+ 20+ 1 by a process similar to that em-
ployed by Diophantus and the Hindus; namely, by adding to both
sides 3242 and thereby rendering both numbers complete squares. But
Cardan failed to find a general solution; it remained for his pupil
Lodovico Ferrari (1522-1565) of Bologna to make the brilliant dis-
covery of the general solution of bi-quadratic equations. Ferrari re-
duced Colla’s equation to the form (x4 6)2=60x+6x% In order to
give also the right member the form of a complete square he added to
both members the expression 2(x*46)y+y®, containing a new un-
known quantity y. This gave him (¥*+4 6+ 1y)%2= (64 2y)2>46ox+
(12y+y?). The condition that the right member be a complete square
is expressed by the cubic equation (2y+6) (12y-+y%)=goo. Extract-
ing the square root of the bi-quadratic, he got x?}6+4y=xv2y+6

9o . Solving the cubic for y and substituting, it remained
vV2y+6

only to determine x from the resulting quadratic. L. Ferrari pursued
a similar method with other numerical bi-quadratic equations.! Car-
dan had the pleasure of publishing this discovery in his Ars Magna
in 1545. Ferrari’s solution is sometimes ascribed to R. Bombelli, but
he is no more the discoverer of it than Cardan is of the solution called
by his name. :

To Cardan algebra is much indebted. In his 4rs Magna he takes
notice of negative roots of an equation, calling them fictitious, while
the positive roots are called real. He paid some attention to compu-
tations involving the square root of negative numbers, but failed
to recognize imaginary roots. Cardan also observed the difficulty
in the irreducible case in the cubics, which, like the quadrature of the
circle, has since “‘so much tormented the perverse ingenuity of mathe-
maticians.” But he did not understand its nature. It remained for
Raphael Bombelli of Bologna, who published in 1572 an algebra of
great merit, to point out the reality of the apparently imaginary ex-
pression which a root assumes, also to assign its value, when rational,
and thus to lay the foundation of a more intimate knowledge of imagi-
nary quantities. Cardan was an inveterate gambler. In 1663 there
was published posthumously his gambler’s manual, De ludo dlee,

1 H. Hankel, op. cit., p. 368.
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which contains discussions relating to the chances favorable for throw-
ing a particular number with two dice and also with three dice. Car-
dan considered another problem in probabilities. Stated in general
terms, the problem is: What is the proper division of a stake between
two players, if the game is interrupted and one player has taken s;
points, the other s; points, s points being required to win.! Cardan
gives the ratio (1+2+ . . +[s—s2])/(x42+ . . +[s—si1)), Tartaglia
gives (s+s1—s2)/(s+s2—s1). Both of these answers are wrong. Car-
dan considered also what later became known as the “Petersburg
problem.”

After the brilliant success in solving equations of the third and
fourth degrees, there was probably no one who doubted, that with
aid of irrationals of higher degrees, the solution of equations of any
degree whatever could be found. But all attempts at the algebraic
solution of the quintic were fruitless, and, finally, Abel demonstrated
that all hopes of finding algebraic solutions to equations of higher
than the fourth degree were purely Utopian.

Since no solution by radicals of equations of higher degrees could
be found, there remained nothing else to be done than the devising of
processes by which the real roots of numerical equations could be
‘found by approximation. The Chinese method used by them as early
as the thirteenth century was unknown in the Occident. We have
seen that in the early part of the thirteenth century Leonardo of Pisa
solved a cubic to a high degree of approximation, but we are ignorant
of his method. The earliest known process in the Occident of ap-
proaching to a root of an affected numerical equation was invented by
Nicolas Chuquet, who, in 1484 at Lyons, wrote a work of high rank,
entitled Le triparty en la science des nombres. It was not printed until
1880.2 If ‘—:>x<2, then Chuquet takes the intermediate value %’;
as a closer approximation to the root x. He finds a series of successive
intermediate values. We stated earlier that in 1498 the Arabic writer
Miram Chelebi gave a method of solving *+4 Q= Px which he attrib-
utes to 1°\ta.beddin Jamshid. This cubic arose in the computation of
x=sin 1°.

The earliest printed method of approximation to the roots of af-
fected equations is that of Cardan, who gave it in the Ars Magna,
1545, under the title of regula aurea. It is a skilful application of
the rule of “false position,” and is applicable to equations of any de-
gree. This mode of approximation was exceedingly rough, yet this
fact hardly explains why Clavius, Stevin and Vieta did not refer to it.

! M. Cantor, IT, 2 Aufl,, 1900, pp. 501, 520, §37.

2 Printed in the Bulletino Boncompagni, T xiii, 1880; see pp. 653-654. See also
F. Cajori, “A History of the Arithmetical Methods of Approximation to the

Roots of Numerical Iquations of one Unknown Quantity” in Colorado College
Publication, General Series Nos. 51 and 52, 1910.
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Processes of approximation were given by the Frenchman J. Peletier
(1554), the Italian R. Bombelli (1572), the German R. Ursus (1601),
the Swiss Joost Biirgi, the German Pitiscus (1612), and the Belgian
Simon Stevin. But far more important than the processes of these
men was that of the Frenchman, Francis Vieta (1540-1603), which
initiates a new era. It is contained in a work published at Paris in
1600 by Marino Ghetaldi as editor, with Vieta’s consent, under the
title: De numerosa protestatum purarum alque adfectarum ad exegesin
resolutione tractatus. His method is not of the nature of the rule of
“double false position,” used by Cardan and Biirgi, but resembles
the method of ordinary root-extraction. Taking f(x) =%, where £ is
taken positive, Vieta separates the required root from the rest, then
substitutes an approximate value for it and shows that another figure
of the root can be obtained by division. A repetition of this process
gives the next figure, and so on. Thus, in 2°— 52’4 s00x= 7905504,
he takes r=20, then computes 7905504 — %+ 57— s0or and divides
the result by a value which in our modern notation takes the form
|(ftr+59 —f(r))| — s1*, where n is the degree of the equation and s, is
a unit of the denomination of the digit next to be found. Thus, if the
required root is 243, and 7 has been taken to be 200, then s, is 10; but
if r is taken as 240, then s; is 1. In our example, where =20, the
divisor is 878295, and the quotient yields the next digit of the root
equal to 4. We obtain x=2044=24, the required root. Vieta’s
procedure was greatly admired by his contemporaries, particularly
the Englishmen, T. Harriot, W. Oughtred and J. Wallis, each of whom
introduced some minor improvements.

We pause a moment to sketch the life of Vieta, the most eminent
French mathematician of the sixteenth century. He was born in
Poitou and died at Paris. He was employed throughout life in the
service of the state, under Henry III. and Henry IV. He was, there-
fore, not a mathematician by profession, but his love for the science
was so great that he remained in his chamber studying, sometimes
several days in succession, without eating and sleeping more than was
necessary to sustain himself. So great devotion to abstract science
is the more remarkable, because he lived at a time of incessant po-
litical and religious turmoil. During the war against Spain, Vieta
rendered service to Henry IV by deciphering intercepted letters writ-
ten in a species of cipher, and addressed by the Spanish Court to their
governor of Netherlands. The Spaniards attributed the discovery of
the key to magic.

In 1579 Vieta published his Canon mathematicus seu ad triangula
cum appendicibus, which contains very remarkable contributions to
trigonometry. It gives the first systematic elaboration in the Occi-
dent of the methods of computing plane and spherical triangles by
the aid of the six trigonometric functions.! He paid special attention

1 A, v. Braunmithl, Geschichic der Trigonomclry, I, Leipzig, 1900, p. 160.
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also to goniometry, developing such relations as sina=sin (60°+ a)
—sin (60°— a), cscatcina= ctng, —cnatcsca= tan;—", with the

aid of which he could compute from the functions of angles below
30° or 45°, the functions of the remaining angles below go°, essentially
by addition and subtraction alone. Vieta is the first to apply alge-
braic transformation to trigonometry, particularly to the multisection
of angles. Letting 2 cosa=x, he expresses cos na as a function of
for all integers n<11; letting 2 sina=x and 2 sin 2 a=y, he expresses
22*%in na in terms of x and y. Vieta exclaims: “Thus the analysis
of angular sections involves geometric and arithmetic secrets which
hitherto have been penetrated by no one.”

An ambassador from Netherlands once told Henry IV that France
did not possess a single geometer capable of solving a problem pro-
pounded to geometers by a Belgian mathematician, Adrianus Ro-
manus. It was the solution of the equation of the forty-fifth degree:—

45y—37957*+95634y°— . . . +945y"' —45y**+y**=C.
Henry IV called Vieta, who, having already pursued similar investi-
gations, saw at oncc that this awe-inspiring problem was simply the
equation by which C=2 sin ¢ was expressed in terms of y=2 singy ¢;
that, since 45=3.3.5, it was necessary only to divide an angle once
into 5 equal parts, and then twice into 3,—a division which could be
effected by corresponding equations of the fifth and third degrees.
Brilliant was the discovery by Vieta of 23 roots to this equation, in-
stead of only one. The reason why he did not find 45 solutions, is
that the remaining ones involve negative sines, which were unintel-
ligible to him. Detailed investigations on the famous old problem
of the section of an angle into an odd number of equal parts, led Vieta
to the discovery of a trigonometrical solution of Cardan’s irreducible

case in cubics. He applied the equation (2 cos 4 ¢)’—3(2 cos id)) =

2 cos¢ to the solution of x*— 3a*x=a%, when a>4b, by placing x=
2a cos} ¢, and determining ¢from b=2a cos¢.

The main principle employed by him in the solution of equations
is that of reduction. He solves the quadratic by making a suitable
substitution which will remove the term containing x to the first de-
gree. Like Cardan, he reduces the general expression of the cubic to
the form x%+mx+4n=o0; then, assuming x=(}a—2?)+z and substi-
tuting, he gets z8—bz3— 4 a%=0. Putting z3=y, he has a quadratic.
In the solution of bi-quadratics, Vieta still remains true to his principle
of reduction. This gives him the well-known cubic resolvent. He
thus adheres throughout to his favorite principle, and thereby in-
troduces into algebra a uniformity of method which claims our lively
admiration. In Vieta’s algebra we discover a partial knowledge of
the relations existing between the coefficients and the roots of an equa-
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tion. He shows that if the coefficient of the second term in an equa-
tion of the second degree is minus the sum of two numbers whose
product is the third term, then the two numbers are roots of the equa-
tion. Vieta rejected all except positive roots; hence it was impossible
for him to fully perceive the relations in question.

The most epoch-making innovation in algebra due to Vieta is the
denoting of general or indefinite quantities by letters of the alphabet.
To be sure, Regiomontanus and Stifel in Germany, and Cardan in
Italy, used letters before him, but Vieta extended the idea and first
made it an essential part of algebra. The new algebra was called by
him logistica speciosa in distinction to the old logistica numerosa.
Vieta’s formalism differed considerably from that of to-day. The
equation a®+3a%+38b*+b6%=(a+b)® was written by him “a cubus
+b in a quadr. 3+a in b quadr. 3+b cubo ®qualia ¢+b cubo.” In
numerical equations the unknown quantity was denoted by W, its
square by Q, and its cube by C. Thus the equation x®— 8x®+16x=40
was written 1 C—8Q+16 N equal. 40. Vieta used the term ‘“co-
efficient,” but it was little used before the close of the seventeenth
century.! Sometimes he uses also the term “polynomial.” Observe
that exponents and our symbol (=) for equality were not yet in use;
but that Vieta employed the Maltese cross (+) as the short-hand
symbol for addition, and the (—) for subtraction. These two char-
acters had not been in very general use before the time of Vieta. “It
is very singular,” says Hallam, “that discoveries of the greatest con-
venience, and, apparently, not above the ingenuity of a village school-
master, should have been overlooked by men of extraordinary acute-
ness like Tartaglia, Cardan, and L. Ferrari; and, hardly less so that, by
dint of that acuteness, they dispensed with the aid of these contriv-
ances in which we suppose that so much of the utility of algebraic ex-
pression consists.” Even after improvements in notation were once
proposed, it was with extreme slowness that they were admitted into
general use. They were made oftener by accident than design, and
their authors had little notion of the effect of the change which they
were making. The introduction of the + and — symbols seems to be
due to the Germans, who, although they did not enrich algebra dur-
ing the Renaissance with great inventions, as did the Italians, still cul-
tivated it with great zeal. The arithmetic of John Widmann, brought
out in 1489 in Leipzig, is the earliest printed book in which the + and
—symbols have been found. The + sign is not restricted by him to
ordinary addition; it has the more general meaning “et” or “and”
as in the heading, “regula augmenti + decrementi.” The — sign is
used to indicate subtraction, but not regularly so. The word “plus”
does not occur in Widmann’s text; the word “ minus” is used only two
or three times. The symbols + and — are used regularly for addi-

 Encyclopédic des sciences mathématiques, Tome I, Vol. 2, 1907, p. 2.
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tion and subtraction, in rs521,' in the arithmetic of Grammateus,
(Heinrich Schreiber, died 1525) a teacher at the University of Vienna.
His pupil, Christoff Rudolff, the writer of the first text-book on algebra
in the German language (printed in 1525), employs these symbols also.
So did Stifel, who brought out a second edition of Rudolfi’s Coss in
1553. Thus, by slow degrees, their adoption became universal. Sev-
eral independent paleographic studies of Latin manuscripts of the
fourteenth and fifteenth centuries make it almost certain that the
sign + comes from the Latin ef, as it was cursively written in manu-
scripts just before the time of the invention of printing.? The ori-
gin of the sign — is still uncertain. There is another short-hand
symbol of which we owe the origin to the Germans. In a manu-
script published sometime in the fifteenth century, a dot placed
before a number is made to signify the extraction of a root of
that number. This dot is the embryo of our present symbol for the
square root. Christoff Rudolff, in his algebra, remarks that ‘‘the
radix quadrata is, for brevity, designated in his algorithm with the
character v, as v4.” Here the dot has grown into a symbol much
like our own. This same symbol was used by Michael Stifel. Our
sign of equality is due to Robert Recorde (1510-1558), the author of
The Whetstone of Wilte (1557), which is the first English treatise on
algebra. He selected this symbol because no two things could be
more equal than two parallel lines =. The sign + for division was
first used by Jokann Heinrich Rahn, a Swiss, in his Teutsche Algebra,
Zurich, 1659, and was introduced in England through Thomas
Brancker’s translation of Rahn’s book, London, 1668.

Michael Stifel (14867-1567), the greatest German algebraist of the
sixteenth century, was born in Esslingen, and died in Jena. He was
educated in the monastery of his native place, and afterwards be-
came Protestant minister. The study of the significance of mystic
numbers in Revelation and in Daniel drew him to mathematics. He
studied German and Italian works, and published in 1544, in Latin,
a book entitled Arithmetica integra. Melanchthon wrote a preface to
it. Its three parts treat respectively of rational numbers, irrational
numbers, and algebra. Stifel gives a table containing the numerical
values of the binomial coefficients for powers below the 18th. He ob-
serves an advantage in letting a geometric progression correspond to
an arithmetical progression, and arrives at the designation of integral
powers by numbers. Here are the germs of the theory of exponents
and of Jogarithms. In 1545 Stifel published an arithmetic in German.
His edition of Rudolff’s Coss contains rules for solving cubic equations,
derived from the writings of Cardan.

1G. Enestrdm in Bibliothcca mathematica, 3. S., Vol. 9, 190809, pp. 155-157;
Vol. 14, 1914, p. 278.

2 For references see M. Cantor, op. cit., Vol. II, 2. Ed., 1900, p. 231; J. Tropfke,
op. cit., Vol. I, 1902, pp. 133, 134.
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We remarked above that Vieta discarded negative roots of equa-
tions. Indeed, we find few algebraists before and during the Renais-
sance who understood the significance even of negative quantities.
Fibonacci seldom uses them. Pacioli states the rule that “minus times
minus gives plus,” but applies it really only to the development of the
product of (¢—b) (c—d); purely negative quantities do not appear
in his work. The German “Cossist” (algebraist), Michael Stifel,
speaks as early as 1544 of numbers which are “absurd” or “fictitious
below zero,” and which arise when “real numbers above zero” are
subtracted from zero. Cardan, at last, speaks of a “pure minus”’;
“but these ideas,” says H. Hankel, “remained sparsely, and until
the beginning of the seventeenth century, mathematicians dealt ex-
clusively with absolute positive quantities.” One of the first alge-
braists who occasionally place a purely negative quantity by itself on
one side of an equation, is 7. Harriot in England. As regards the rec-
ognition of negative roots, Cardan and Bombelli were far in advance
of all writers of the Renaissance, including Vieta. Yet even they
mentioned these so-called false or fictitious roots only in passing, and
without grasping their real significance and importance. On this
subject Cardan and Bombelli had advanced to about the same point
as had the Hindu Bhiaskara, who saw negative roots, but did not ap-
prove of them. The generalization of the conception of quantity so
as to include the negative, was an exceedingly slow and difficult process
in the development of algebra.

We shall now consider the history of geometry during the Renais-
sance. Unlike algebra, it made hardly any progress. The greatest
gain was a more intimate knowledge of Greek geometry. No essen-
tial progress was made before the time of Descartes. Regiomontanus,
Xylander (Wilhelm Holzmann, 1532-1576) of Augsburg, Tartaglia,
Federigo Commandino (1509-1575) of Urbino in Italy, Maurolycus
and others, made translations of geometrical works from the Greek.
The description and instrumental construction of a new curve, the
epicycloid, is explained by Albrecht Diirer (1471-1528), the celebrated
painter and sculptor of Niirnberg, in a book, Underweysung der Mes-
sung mit dem Zyrkel und rychischeyd, 1525. The idea of such a curve
goes back at least as far as Hipparchus who used it in his astronomical
theory of epicycles. The epicycloid does not again appear in history
until the time of G. Desargues and P. La Hire. Direr is the earliest
writer in the Occident to call attention to magic squares. A simple
magic square appears in his celebrated painting called “ Melancholia.”

Johannes Werner (1468-1528) of Niirnberg published in 1522 the
first work on conics which appeared in Christian Europe. Unlike the
geometers of old, he studied the sections in relation with the cone, and
derived their properties directly from it. This mode of studying the
conics was followed by Franciscus Maurolycus (1494-1575) of Mes-
sina. The latteris, doubtless, the greatest geometer of the sixteenth
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century. From the notes of Pappus, he attempted to restore the miss-
ing fifth book of Apollonius on maxima and minima. His chief work is
his masterly and original treatment of the conic sections, wherein he
discusses tangents and asymptotes more fully than Apollonius had
done, and applies them to various physical and astronomical problems.
To Maurolycus has been ascribed also the discovery of the inference
by mathematical induction.! It occurs in his introduction to his Opus-
cula mathemaltica, Venice, 1575. Later, mathematical induction was
used by Pascal in his Traité du triangle arithmétiqgue (1662). Processes
akin to mathematical induction, some of which would yield the mod-
ern mathematical induction by introducing some slight change in the
mode of presentation or in the point of view, were given before Mau-
rolycus. Giovanni Campano (latinized form, Campanus) of Novara
in Italy, in his edition of Euclid (1260), proves the irrationality of the
golden section by a recurrent mode of inference resulting in a reductio
ad absurdum. But he does not descend by a regular progression from n
to n— 1, n—2, etc., but leaps irregularly over, perhaps, several integers.
Campano’s process was used later by Fermat. A recurrent mode of
inference is found in Bhiskara’s “cyclic method” of solving inde-
terminate equations, in Theon of Smyrna (about 130 A. D.) and in
Proclus’s process for finding numbers representing the sides and di-
agonals of squares; it is found in Euclid’s proof (Elements IX, 20) that
the number of primes is infinite.

The foremost geometrician of Portugal was Pedro Nunes ? (1502-
1578) or Nonius. He showed that a ship sailing so as to make equal
angles with the meridians does not travel in a straight line, nor usually
along the arc of a great circle, but describes a path called the loxo-
dromic curve. Nunes invented the ‘“nonius’ and described it in
his De crepusculis, Lisbon, 1542. It consists in the juxtaposition of
equal arcs, one arc divided into m equal parts and the other into m+1
equal parts. Nonius took m=89. The instrument is also called
a “vernier,” after the Frenchman Pierre Vernier, who re-invented it
in 1631. The foremost French mathematician before Vieta was Peter
Ramus (1515-1572), who perished in the massacre of St. Bartholomew.

ieta possessed great familiarity with ancient geometry. The new
{(,)rm which he gave to algebra, by representing general quantities by
etters, enabled him to point out more easily how the construction of

! the roots of cubics depended upon the celebrated ancient problems of

the duplication of the cube and the trisection of an angle. He reached
‘ the interesting conclusion that the former problem includes the solu-
\UOHS of all cubics in which the radical in Tartaglia’s formula is real,
.but that the latter problem includes only those leading to the irredu-
«cible case.

1 G. Vacca in Bulletin Am. Math. Socicty, 2. S., Vol. 16, 1909, p. 70. See also
F. Cajori in Vol. 15, pp. 407-400.
*See R. Guimaraes, Pedro Nunes, Colmpre, 1915.
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The problem of the quadrature of the circle was revived in this age,
and was zealously studied even by men of eminence and mathematical
ability. The army of circle-squarers became most formidable during
the seventeenth century. Among the first to revive this problem was
the German Cardinal Nicolaus Cusanus (1401-1464), who had the
reputation of being a great logician. His fallacies were exposed to
full view by Regiomontanus. As in this case, so in others, every quad-
rator of note raised up an opposing mathematician: Oronce Fine was
met by Jean Buteo (c. 1492-1572) and P. Nunes; Joseph Scaliger by
Vieta, Adrianus Romanus, and Clavius; a Quercu by Adriaen An-
thonisz (1527-1607). Two mathematicians of Netherlands, Adrianus
Romanus (1561-1615) and Ludolph van Ceulen (1540-1610), occu-
pied themselves with approximating to the ratio between the circumfer-
ence and the diameter. The former carried the value ¥ to 15, the lat-
ter to 35, places. The value of « is therefore often named “Ludolph’s
number.” His performance was considered so extraordinary, that the
numbers were cut on his tomb-stone (now lost) in St. Peter’s church-
yard, at Leyden. These men had used the Archimedian method of
in- and circum-scribed polygons, a method refined in 1621 by Wille-
brord Smellius (1580-1626) who showed how narrower limits may be
obtained for w without increasing the number of sides of the poly-
gons. Snellius used two theorems equivalent to } (2 sin § tan §) £ 6£
3/(2 csc@+cot @). The greatest refinements in the use of the geo-
metrical method of Archimedes were reached by C. Huyghens in his
De circuli magnitudine inventa, 1654, and by James Gregory (1638-
1675), professor at St. Andrews and Edinburgh, in his Exercitationes
geomelrice, 1668, and Vera circuli et hyperbolae quadratura, 1667.
Gregory gave several formulas for approximating to # and in the
second of these publications boldly attempted to prove by the Ar-
chimedean algorithm that the quadrature of the circle is impossible.
Huyghens showed that Gregory’s proof is not conclusive, although
he himself believed that the quadrature is impossible. Other attempts
to prove this impossibility were made by Thomas Fautat De Lagny
(1660-1734) of Paris, in 1727, Joseph Saurin (1659-1737) in 1720,
Isaac Newton in his Principia 1, 6, lemma 28, E. Waring, L. Euler,
1771.

7That these proofs would lack rigor was almost to be expected, as
long as no distinction was made between algebraical and transcen-
dental numbers.

The earliest explicit expression for o by an infinite number of op-
erations was found by Vieta. Considering regular polygons of 4, 8
16, . . . sides, inscribed in a circle of unit radius, he found that the
area of the circle is

I
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from which we obtain

. , which may be derived from Euler’s formula !
2 ViVi+ivy.
sin @

= ot cosf/s codle ! (64 ), by taking f=m/2 .

As mentioned earlier,it was Adrianus Romanus (1561-1615) of Lou-
vain who propounded for solution that equation of the forty-fifth degree
solved by Vieta. On receiving Vieta’s solution, he at once departed for
Paris, to make his acquaintance with so great a master. Vieta proposed
to him the Apollonian problem, to draw a circle touching three given
circles. “Adrianus Romanus solved the problem by the intersection of
two hyperbolas; but this solution did not possess the rigor of the ancient
geometry. Vieta caused him to see this, and then, in his turn, pre-
sented a solution which had all the rigor desirable.” > Romanus
did much toward simplifying spherical trigonometry by reducing, by
means of certain projections, the 28 cases in triangles then considered
to only six.

Mention must here be made of the improvements of the Julian
calendar. The yearly determination of the movable feasts had for
a long time been connected with an untold amount of confusion. The
rapid progress of astronomy led to the consideration of this subject,
and many new calendars were proposed. Pope Gregory XIII con-
voked a large number of mathematicians, astronomers, and prelates,
who decided upon the adoption of the calendar proposed by the Jesuit
Christophorus Clavius (1537-1612) of Rome. To rectify the errors of
the Julian calendar it was agreed to write in the new calendar the 15th
of October immediately after the 4th of October of the year 1582.
The Gregorian calendar met with a great deal of opposition both
among scientists and among Protestants. Clavius, who ranked high
as a geometer, met the objections of the former most ably and effec-
tively; the prejudices of the latter passed away with time.

The passion for the study of mystical properties of numbers de-
scended from the ancients to the moderns. Much was written on
numerical mysticism even by such eminent men as Pacioli and Stifel.
The Numerorum M ysteria of Peter Bungus covered 700 quarto pages.
He worked with great industry and satisfaction on 666, which is the
number of the beast in Revelation (xiii, 18), the symbol of Antichrist.
He reduced the name of the “impious” Martin Luther to a form which
may express this formidable number. Placing a=1, =2, etc., k=10,
=20, etc., he finds, after misspelling the name, that M 3o)A (1R 80y T(100)
I9)N 0yL(20) V(200) T 100) E(5)R 80yA (1) constitutes the number required.
These attacks on the great reformer were not unprovoked, for his

1E. W. Hobson, Squaring the Circle, Cambridge, 1913, pp 26, 27, 31.

t A. Quetelet, Hisloire des Sciences mathématiques et physiques ches les Bdgc:
Bruxelles, 1864, p. 137.
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friend, Michael Stifel, the most acute and original of the early mathe-
maticians of Germany, exercised an equal ingenuity in showing that
the above number referred to Pope Leo X,—a demonstration which
gave Stifel unspeakable comfort.!

Astrology also was still a favorite study. It is well known that Car-
dan, Maurolycus, Regiomontanus, and many other eminent scientists
who lived at a period even later than this, engaged in deep astrological
study; but it is not so generally known that besides the occult sciences
already named, men engaged in the mystic study of star-polygons
and magic squares. ‘“‘The pentagramma gives you pain,” says Faust
to Mephistopheles. It is of deep psychological interest to see scientists,
like the great Kepler, demonstrate on one page a theorem on star-
polygons, with strict geometric rigor, while on the next page, perhaps,
he explains their use as amulets or in conjurations. Playfair, speaking
of Cardan as an astrologer, calls him “a melancholy proof that there
is no folly or weakness too great to be united to high intellectual at-
tainments.” 2 Let our judgment not be too harsh. The period under
consideration is too near the Middle Ages to admit of complete eman-
cipation from mysticism even among scientists. Scholars like Kepler,
Napier, Albrecht Diirer, while in the van of progress and planting
one foot upon the firm ground of truly scientific inquiry, were still
resting with the other foot upon the scholastic ideas of preceding ages.

Vieta to Descartes

The ecclesiastical power, which in the ignorant ages was an unmixed
benefit, in more enlightened ages hecame a serious evil. Thus, in
France, during the reigns preceding that of Henry IV, the theological
spirit predominated. This is painfully shown by the massacres of
Vassy and of St. Bartholomew. Being engaged in religious disputes,
people had no leisure for science and for secular literature. Hence,
down to the time of Henry IV, the French “had not put forth a single
work, the destruction of which would now be a loss to Europe.” In
England, on the other hand, no religious wars were waged. The people
were comparatively indifferent about religious strifes; they concen-
trated their ability upon secular matters, and acquired, in the six-
teenth century, a literature which is immortalized by the genius of
Shakespeare and Spenser. This great literary age in England was
followed by a great scientific age. At the close of the sixteenth cen-
tury, the shackles of ecclesiastical authority were thrown off by France.
The ascension of Henry IV to the throne was followed in 1598 by the
Edict of Nantes, granting freedom of worship to the Huguenots, and
thereby terminating religious wars. The genius of the French nation

1 G. Peacock, op. cil., p. 424. . . .
2 John Playfair, ‘‘ Progress of the Mathematical and P!lyslcal Sciences” in En-
cyclopedia Britannica, 7th ed., continued in 8th Ed., by Sir John Leslie.
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now began to blossom. Cardinal Richelieu, during the reign of Louis
XIII, pursued the broad policy of not favoring the opinions of any
sect, but of promoting the interests of the nation. His age was re-
markable for the progress of knowledge. It produced that great secu-
lar literature, the counterpart of which was found in England in the
sixteenth century. The seventeenth century was made illustrious
also by the great French mathematicians, Roberval, Descartes, Des-
argues, Fermat, and Pascal.

More gloomy is the picture in Germany. The great changes which
-revolutionized the world in the sixteenth century, and which led Eng-
land to national greatness, led Germany to degradation. The first
effects of the Reformation there were salutary. At the close of the
fifteenth and during the sixteenth century, Germany had been con-
spicuous for her scientific pursuits. She had been a leader in as-
tronomy and trigonometry. Algebra also, excepting for the discoveries
in cubic equations, was, before the time of Vieta, in a more advanced
state there than elsewhere. But at the beginning of the seventeenth
century, when the sun of science began to rise in France, it set in Ger-
many. Theologic disputes and religious strife ensued. The Thirty
Years’ War (1618-1648) proved ruinous. The German empire was
shattered, and became a mere lax confederation of petty despotisms.
Commerce was destroyed; national feeling died out. Art disappeared,
and in literature there was only a slavish imitation of French arti-
ficiality. Nor did Germany recover from this low state for 200 years;
for in 1756 began another struggle, the Seven Years’ War, which
turned Prussia into a wasted land. Thus it followed that at the be-
ginning of the seventeenth century, the great Kepler was the only
German mathematician of eminence, and that in the interval of 200
years between Kepler and Gauss, there arose no great mathematician
in Germany excepting Leibniz.

Up to the seventeenth century, mathematics was cultivated but little
in Great Britain. During the sixteenth century, she brought forth
no mathematician comparable with Vieta, Stifel, or Tartaglia. But
with the time of Recorde, the English became conspicuous for numeri-
cal skill. The first important arithmetical work of English authorship
was published in Latin in 1522 by Cuthbert Tonstall (1474-1550). He
had studied at Oxford, Cambridge, and Padua, and drew freely from
the works of Pacioli and Regiomontanus. Reprints of his arithmetic
appeared in England and France. After Recorde the higher branches
of mathematics began to be studied. Later, Scotland brought forth
John Napier, the inventor of logarithms. The instantaneous appre-
ciation of their value is doubtless the result of superiority in calcula-
tion. In Italy, and especially in France, geometry, which for a long
time had been an almost stationary science, began to be studied with
success. Galileo, Torricelli, Roberval, Fermat, Desargues, Pascal,
Descartes, and the English Wallis are the great revolutioners of this
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science. Theoretical mechanics began to be studied. The foundations
were laid by Fermat and Pascal for the theory of numbers and the
theory of probability.

We shall first consider the improvements made in the art of calcu-
lating. The nations of antiquity experimented thousands of years
upon numeral notations before they happened to strike upon the so-
called “Arabic notation.” In the simple expedient of the cipher,
which was permanently introduced by the Hindus, mathematics re-
ceived one of the most powerful impulses. It would seem that after
the “Arabic notation” was once thoroughly understood, decimal
fractions would occur at once as an obvious extension of it. But “it
is curious to think how much science had attempted in physical re-
search and how deeply numbers had been pondered, before it was per-
ceived that the all-powerful simplicity of the ‘ Arabic notation’ was as
valuable and as manageable in an infinitely descending as in an in-
finitely ascending progression.” ! Simple as decimal fractions ap-
pear to us, the invention of them is not the result of one mind or even
of oneage. They came into use by almost imperceptible degrees. The
first mathematicians identified with their history did not perceive
their true nature and importance, and failed to invent a suitable no-
tation. The idea of decimal fractions makes its first appearance in
methods for approximating to the square roots of numbers. Thus
John of Seville, presumably in imitation of Hindu rules, adds 2n ci-
phers to the number, then finds the square root, and takes this as the
numerator of a fraction whose denominator is 1 followed by 7 ciphers.
The same method was followed by Cardan, but it failed to be generally
adopted even by his Italian contemporaries; for otherwise it would
certainly have been at least mentioned by Pietro Cataldi (died 1626)
in a work devoted exclusively to the extraction of roots. Cataldi,
and before him Bombelli in 1572, find the square root by means of
continued fractions—a method ingenious and novel, but for practical
purposes inferior to Cardan’s. Oronce Fine (1494-1555) in France
(called also Orontius Finaeus), and William Buckley (died about
1550) in England extracted the square root in the same way as
Cardan and John of Seville. The invention of decimals has been
frequently attributed to Regiomontanus, on the ground that in-
stead of placing the sinus totus, in trigonometry, equal to a multiple
of 60, like the Greeks, he put it=100,000. But here the trigonomet-
rical lines were expressed in Znfegers, and not in fractions. Though
he adopted a decimal division of the radius, he and his successors
did not apply the idea outside of trigonometry and, indeed, had no
notion whatever of decimal fractions. To Simon Stevin (1548
1620) of Bruges in Belgium, a man who did a great deal of work in
most diverse fields of science, we owe the first systematic treatment of
decimal fractions. In his La Disme (1585) he describes in very express

! Mark Napier, Memoirs of John Napier of Merchiston. Edinburgh, 1834.
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terms the advantages, not only of decimal fractions, but also of the
decimal division in systems of weights and measures. Stevin applied
the new fractions “to all the operations of ordinary arithmetic.” !
What he lacked was a suitable notation. In place of our decimal point,
he used a cipher; to each place in the fraction was attached the cor-
responding index. Thus, in his notation, the number 5.912 would be
ora3

5912 or 5@9®1®2®. These indices, though cumbrous in practice, are
of interest, because they embody the notion of powers of numbers.
Stevin considered also fractional powers. He says that “#” placed
within a circle would mean 2%, but he does not actually use his nota-
tion. This notion had been advanced much earlier by Oresme, but
it had remained unnoticed. Stevin found the greatest common di-
visor of x’4+x? and x®47x+6 by the process of continual division,
thereby applying to polynomials Euclid’s mode of finding the greatest
common divisor of numbers, as explained in Book VII of his Elements.
Stevin was enthusiastic not only over decimal fractions, but also over
the decimal division of weights and measures. He considered it the
duty of governments to establish the latter. He advocated the deci-
mal subdivision of the degree. No improvement was made in the
notation of decimals till the beginning of the seventeenth century.
After Stevin, decimals were used by Joost Biirgi (1552-1632), a Swiss
by birth, who prepared a manuscript on arithmetic soon after 1592, and
by Johann Hartmann Beyer, who assumes the invention as his own.
In 1603, he published at Frankfurt on the Main a Logistica Decimalis.
Historians ‘'of mathematics do not yet agree to whom the first intro-
duction of the decimal point or comma should be ascribed. Among
the candidates for the honor are Pellos (1492), Biirgi (1592), Pitiscus
(1608, 1612), Kepler (1616), Napier (1616, 1617). This divergence
of opinion is due mainly to different standards of judgment. If the
requirement made of candidates is not only that the decimal point or
comma was actually used by them, but that they must give evidence
that the numbers used were actually decimal fractions, that the point
or comma was with them not merely a general symbol to indicate
a separation, that they must actually use the decimal point in opera-
tions including multiplication or division of decimal fractions, then
it would seem that the honor falls to John Napier, who exhibits such
use in his Rabdologia, 1617. Perhaps Napier received the suggestion
for this notation from Pitiscus who, according to G. Enestrém,? uses
the point in his Trigonometria of 1608 and 1612, not as a regular deci-
mal point, but as a more general sign of separation. Napier’s decimal
point did not meet with immediate adoption. W. Oughtred in 1631
designates the fraction .56 thus, o{56. Albert Girard, a pupil of Stevin,

in 1629 uses the point on one occasion. John Wallis in 1657 writes

1 A. Quetelet, op. cit., p. 158.
3 Bibliotheca mathematica, 3. S., Vol. 6, 1905, p. 109.
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12|345, but afterwards in his algebra adopts the usual point. A. De

Morgan says that “to the first quarter of the eighteenth century we
must refer not only the complete and final victory of the decimal point,
but also that of the now universal method of performing the operations
of division and extraction of the square root.” ! We have dwelt at
some length on the progress of the decimal notation, because ‘“the
history of language . . . is of the highest order of interest, as well as
utility: its suggestions are the best lesson for the future which a reflect-
ing mind can have.” ,

The miraculous powers of modern calculation are due to three in-
ventions: the Arabic Notation, Decimal Fractions, and Logarithms.
The invention of logarithms in the first quarter of the seventeenth
century was admirably timed, for Kepler was then examining plane-
tary orbits, and Galileo had just turned the telescope to the stars.
During the Renaissance German mathematicians had constructed
trigonometrical tables of great accuracy, but its greater precision
enormously increased the work of the calculator. It is no exaggera-
tion to say that the invention of logarithms “by shortening the labors
doubled the life of the astronomer.” Logarithms were invented by
John Napier (1550-1617), Baron of Merchiston, in Scotland. It is
one of the greatest curiosities of the history of science that Napier
constructed logarithms before exponents were used. To be sure,
Stifel and Stevin made some attempts {o denote powers by indices,
but this notation was not generally known,—not even to T. Harriot,
whose algebra appeared long after Napier’s death. That logarithms
flow naturally from the exponential symbol was not observed until
much later. What, then, was Napier’s line of thought?

Let AB be a definite line, DE a line extending from D indefinitely.
Imagine two points starting at the same moment; the one moving

A c B

|
D F E
fram A toward B, the other from D toward E. Let the velocity during
the first moment be the same for hoth: let that of the point on line DE
be uniform; but the velocity of the point on AB decreasing in such
a way that when it arrives at any point C, its velocity is proportional
to the remaining distance BC. While the first point moves over a dis-
tance AC, the second one moves over a distance DF. Napier calls
DF the logarithm of BC.
He first sought the logarithms only of sines; the line AB was the
sine of go° and was taken =10"; BC was the sine of the arc, and
1 A. De Morgan, Arithmetical Books from the Invention of Printing to the Present
Time, London, 1847, p. xxvii.
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DF its logarithm. We notice that as the motion proceeds, BC
decreases in geometrical progression, while DF increases in arith-
metical progression. Let AB=g=10", let x=DF, y=BC, then

AC=a—y. The velocity of the point C is ‘-I(%L)=y; this gives
—nat. log y=¢+c. When ¢=0, then y=a and c= —nat. log ¢. Again,

let :—:-a be the velocity of the point F, then x=af. Substituting for

. ¢ and ¢ their values and remembering that a=10" and that by defini-
tion x=Nap. log y, we get

. 10’
Nap. log y=10' nat. log 3

It is evident from this formula that Napier’s logarithms are not the
same as the natural logarithms. Napier’s logarithms increase as the
number itself decreases. He took the logarithm of sin go°=o; i. e.
the logarithm of 10’=0. The logarithm of sin a increased from zero
asa decreased from go°. Napier’s genesis of logarithms from the con-
ception of two flowing points reminds us of Newton’s doctrine of
fluxions. The relation between geometric and arithmetical progres- -
sions, so skilfully utilized by Napier, had been observed by Archi-
medes, Stifel, and others. What was the base of Napier’s system of
logarithms? To this we reply that not only did the notion of a
‘“base” never suggest itself to him, but it is inapplicable to his
system. This notion demands that zero be the logarithm of 1; in
Napier’s system, zero is the logarithm of 10’. Napier’s great in-
vention was given to the world in 1614 in a work entitled Mirificé
logarithmorum canonis descriptio. In it he explained the nature of
his logarithms, and gave a logarithmic table of the natural sines of
a quadrant from minute to minute. In 1619 appeared Napier’s
Mirifici logarithmorum canonis construclio, as a posthumous work, in
which his method of calculating logarithms is explained. An English
translation of the Comsiructio, by W. R. Macdonald, appeared in
Edinburgh, in 1889.

Henry Briggs (1556-1631), in Napier’s time professor of geometry
at Gresham College, London, and afterwards professor at Oxford,
was so struck with admiration of Napier’s book, that he left his studies
in London to do homage to the Scottish philosopher. Briggs was de-
layed in his journey, and Napier complained to a common friend, “Ah,
{ohn, Mr. Briggs will not come.” At that very moment knocks were

eard at the gate, and Briggs was brought into the lord’s chamber.
Almost one-quarter of an hour was spent, each beholding the other
without speaking a word. At last Briggs began: “My lord, I have
undertaken this long journey purposely to see your person, and to
know by what engine of wit or ingenuity you came first to think of
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this most excellent help in astronomy, viz. the logarithms; but, my
lord, being by you found out, I wonder nobody found it out before,
when now known it is so easy.” Briggs suggested to Napier the ad-
vantage that would result from retaining zero for the logarithm of the
whole sine, but choosing 10,000,000,000 for the logarithm of the 1oth
part of that same sine, i. e. of 5° 44" 22"’. Napier said that he had al- -
ready thought of the change, and he pointed out a slight improvement
on Briggs’ idea; viz. that zero should be the logarithm of 1, and
10,000,000,000 that of the whole sine, thereby making the character-
istic of numbers greater than unity positive and not negative, as sug-
gested by Briggs. Briggs admitted this to be more convenient. The
invention of ‘Briggian logarithms’ occurred, therefore, to Briggs
and Napier independently. The great practical advantage of the new
system was that its fundamental progression was accommodated to
the base, 1o, of our numerical scale. Briggs devoted all his energies
to the construction of tables upon the new plan. Napier died in 1617,
with the satisfaction of having found in Briggs an able friend to bring
to completion his unfinished plans. In 1624 Briggs published his
Arithmetica logarithmica, containing the logarithms to 14 places of
numbers, from 1 to 20,000 and from ¢o,000 to 100,000. The gap from
20,000 to go,000 was filled up by that illustrious successor of Napier
and Briggs, Adrian Viacg (1600?-1667). He was born at Gouda in
Holland and lived ten years in London as a bookseller and publisher.
Being driven out by London bookdealers, he settled in Paris where he
met opposition again, for selling foreign books. He died at The Hague.
John Milton, in his Defensio secunda, published an abuse of him.
Vlacq published in 1628 a table of logarithms from 1 to 100,000, of
which 70,000 were calculated by himself. The first publication of
Briggian logarithms of trigonometric functions was made in 1620 by
Edmund Gunter (1581-1626) of London, a colleague of Briggs, who
found the logarithmic sines and tangents for every minute to seven
places. Gunter was the inventor of the words cosine and cotangent
(1620).

The word cosine was an abbreviation of complemental sine. The
invention of the words fangent and secant is due to the physician and
mathematician, Thomas Finck, a native of Flensburg, who used them
in his Geometria rotundi, Basel, 1583. Gunter is known to engineers
for his “Gunter’s chain.” It is told of him that “When he was a stu-
dent at Christ College, it fell to his lot to preach the Passion sermon,
which some old divines that I knew did hear, but they said that it
was said of him then in the University that our Savior never suffered
so much since his passion as in that sermon, it was such a lamented
one.” 1 Briggs devoted the last years of his life to calculating more
extensive Briggian logarithms of trigonometric functions, but he died
in 1631, leaving his work unfinished. It was carried on by Henry Gel-

1 Aubrey’s Brief Lives, Edition A. Clark, 1898, Vol. I, p. 276.
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librand (1597-1637) of Gresham College in London, and then pub-
lished by Vlacq at his own expense. Briggs divided a degree into
100 parts, as was done also by N. Roe in 1633, W. Oughtred in 1657,
John Newton in 1658, but owing to the publication by Vlacq of trigo-
nometrical tables constructed on the old sexagesimal division, Briggs’
innovation did not prevail. Briggs and Vlacq published four funda-
mental works, the results of which have not been superseded by any
subsequent calculations until very recently.

The word “characteristic,” as used in logarithms, first occurs in
Briggs’ Arithmetica logarithmica, 1624; the word ‘“mantissa’” was in-
troduced by John Wallis in the Latin edition of his Algebra, 1693,
P- 41, and was used by L. Euler in his Infroductio in analysin in 1748,
p. 8s.

The only rival of John Napier in the invention of logarithms was the
Swiss Joost Biirgi (1552-1632). He published a table of logarithms,
Arithmetische und Geomelrische Progresstabulen, Prague, 1620, but he
conceived the idea and constructed his table independently of Napier.
He neglected to have it published until Napier’s logarithms were
known and admired throughout Europe.

Among the various inventions of Napier to assist the memory of
the student or calculator, is “Napier’s rule of circular parts” for the
solution of spherical right triangles. It is, perhaps, “the happiest
example of artificial memory that is known.” Napier gives in the
Descriptio a proof of his rule; proofs were given later by Johann
Heinrich Lambert (1765) and Leslie Ellis (1863).! Of the four for-
mulas for oblique spherical triangles which are sometimes called ‘‘ Na-
pier’s Analogies,” only two are due to Napier himself; they are given
in his Constructio. The other two were added by Briggs in his an-
notations to the Constructio.

A modification of Napier’s logarithms was made by John Speidell,
a teacher of mathematics in London, who published the New Loga-
rithmes, London, 1619, containing the logarithms of sines, tangents
and secants. Speidell did not advance a new theory. He simply
aimed to improve on Napier’s tables by making all logarithms posi-
tive. To achieve this end he subtracted Napier’s logarithmic numbers
from 10® and then discarded the last two digits. Napier gave log sin
30'=47413852. Subtracting this from 10® leaves 52586148. Speidell
wrote log sin 30’=525861. It has been said that Speidell’s logarithms
of 1619 are logarithms to the natural base e. This is not quite true,
on account of complications arising from the fact that the logarithms
in Speidell’s table appear as integral numbers and that the natural
trigonometric values (not printed in Speidell’s tables) are likewise
written as integral numbers. If the last five figures in Speidell’s log-
arithms are taken as decimals (mantissas), then the logarithms are
the natural logarithms (with 10 added to every negative character-

1R. Mortiz, Am. Math. Monthly, Vol. 22, 1915, p. 221.



VIETA TO DESCARTES 153

istic) of the trigonometric values, provided the latter are expressed
decimally as ratios. For instance, Napier gives sin 30’=87265, the
radius being 10”. In reality, sin 30’=.0087265. The natural log-
arithm of this fraction is approximately 5.25861. Adding 10 gives
5.25861. As seen above, Speidell writes log sin 30’=525861. The
relation between the natural logarithms and the logarithms in Spei-
dell’s trigonometric tables is shown by the formula, Sp. log x=10°

(xo+loge %,). For secants and the latter half of the tangents the

addition of 10 is omitted. In Speidell’s table, log fan 89°=404812, the
natural logarithm of fan 89° being 4.04812. In the 1622 edition of his
New Logarithmes, Speidell included also a table of logarithms of the
numbers 1-1000. Except for the omission of the decimal point, the loga-
rithms in this table are genuinely natural logarithms. Thus, he gives log
10=2302584; in modern notation, loge1o=2.302584. J. W.L. Glaisher
has pointed out ! that these are not the earliest natural logarithms. The
second (1618) edition of Edward Wright’s translation of Napier’s De-
scriptio contains an anonymous A ppendix, very probably written by
William Qughtred, describing a process of interpolation with the aid
of a small table containing the logarithms of 72 sines. The latter
are natural logarithms with the decimal point omitted. Thus, log
10=2302584, log s0=3911021. This Appendix is noteworthy also as
containing the earliest account of the radix method of computing log-
arithms. After the time of Speidell no tables of natural logarithms
were published until 1770, when J. H. Lambert inserted a seven place
table of natural logarithms of the numbers 1-100 in his Zusdlze 24 den
Logarithmischen und Trigonomeirischen Tabellen. Most of the early
methods of computing logarithms originated in England. Napier
begins the computations of his logarithms of 1614 by forming a geo-
metric progression of 101 terms, the first term being 10’ and the com-

mon ratio(x—%,) and the last term 9,999,900.0004950. This progres-

sion constitutes the “First Table” given in his Constructfo. Omitting
the decimal part of the last term, he takes 9,999,900 as the second
term of a new progression of 51 terms whose first term is 107, the com-

mon ratio being (1- ;ﬁ) and the last term g,995,001.222927 (should

be 9,095001.224804). A third geometric progression of 21 terms has
10’ as its first term, 9,995000 for its second term, the common ratio

(1—-2:70) and 9,000,473.57808 as its last term. This progression of

21 terms constitutes the first of 69 columns of numbers in Napier’s

1 Quarierly Jour. of Pure & Appl. Math., Vol. 46, 1915, p. 145.
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“Third Table.” Each column is a geometric progression of 21 terms
with (1- ﬁ) as the common ratio. The 69 first or top numbers in

the 69 columns themselves constitute a geometric progression having

the ratio(r—;-;—o) , the first top number being 107, the second ggooooo,

and so on. The last number in the 69th column is 4998609.4034.
Thus this “Third Table’ gives a series of numbers very nearly, but
not exactly in geometrical progression, and lying between 10’ and
very nearly 4.10°. Says Hutton, these tables were “found in the
most simple manner, by little more than easy subtractions.” The
numbers are taken as the sines of angles between go° and 30°. Kine-
matical considerations yield him an upper and a lower limit for the
logarithm of a given sine. By these limits he obtains the logarithm
of each number in his “ Third Table.” To obtain the logarithms of
sines between o° and 30° Napier indicates two methods. By one of
them he computes log sin 0, 15°< 0<30° by the aid of his “Third
Table” and the formula sin 2 0=2 sin 6 sin(go°— #). A repetition
of this process gives the logarithms of sines down to 6=7° 30’, and
so on.

Biirgi’s method of computation was more primitive than Napier’s.
In his table the logarithms were printed in red and were called “red
numbers”’; the antilogarithms were in black. The expressions 7, =101,

bn=bp—s (x%), where 7,=0, bo=100,000,000, and =1, 2, 3,...,
indicate the mode of computation. Any term b, of the geometric
series is obtained by adding to the preceding term b,—,, the %;th part

of that term. Proceeding thus Biirgi arrives at r=230,270,022 and
b=1,000,000,000, this last pair of numbers being obtained by inter-
polation.

In the Appendix to the Constructio there are described three meth-
ods of computing logarithms which are probably the result of the
joint labors of Napier and Briggs. The first method rests on the
successive extractions of fifth roots. The second calls for square
roots only. Taking log 1=0 and log 10=10", find the logarithm
of the mean proportion between 1 and 10. There follows log V1 x10
=log 3.16227766017=% (10'%); then log V/10x3.16227766017=log
5.62341325191=% (10!%), and so on. Substantially this method was
used by Kepler in his book on logarithms of 1624 and by Vlacq. The
third method in the Appendix to the Constructio lets log 1=0, log 10=
10", and takes 2 as a factor 10 times, yielding a number composed
of 301029996 figures; hence log 2=0,301029996.
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A famous method of computing logarithms is the so-called “radix
method.” It requires the aid of a table of radices or numbers of the

form 1= #, with their logarithms. The logarithm of a number is

found by resolving the number into factors of the form r—'h-I%; and

then adding the logarithms of the factors. The earliest appearance
of this method is in the anonymous “ Appendix” (very probably due
to Oughtred) to Edward Wright’s 1618 edition of Napier’s Descriptio.!
It is fully developed by Briggs who, in his Arithmetica logarithmica,
1624, gives a table of radices. The method has been frequently re-
discovered and given in various forms.?2 A slight simplification of
Briggs’ process was given as one of three methods by Robert Flower in
a tract, The Radix @ new way of making Logarithms, London, 1771.
He divides a given number by a power of 10 and a single digit, so as
to reduce the first figure to .9, and then multiplies by a procession of
radices until all the digits become nines. The radix method was re-
discovered in 1786 by George Atwood (1746-1807), the inventor of
“Atwood’s machine,” in An essay on the Arithmetic of Factors, and
again by Zecchini Leonelli in 1802, by Thomas Manning (1772-1840),
scholar of Caius College, Cambridge, in 1806, by Thomas Weddle in
1845, Hearn in 1847 and Orchard in 1848. Extensions and variations
of the radix method have been published by Peter Gray (18077-1887),
a writer on life contingencies, Thoman, A. J. Ellis (1814-1890), and
others. The three distinct methods of its application are due to Briggs,
Flower and Weddle.

Another method of computing common logarithms is by the re-
peated formation of geometric means. If A=1, B=10, then C=

V/ AB=3.162278 has the logarithm .5, D=+/BC=5.623413 has the
logarithm .75, etc. Perhaps suggested by Napier’s remarks in the
Constructio, this method was developed by French writers, of whom
Jacques Ozanam (1640-1717) in 1670 was perhaps the first.®> Ozanam
is best known for his Récréations mathématiques et phvsiques, 1694.

Still different devices for the computation of logarithms were in-
vented by Brook Taylor (1717), John Long (1714), William Jones,
Roger Cotes (1722), Andrew Reid (1767), James Dodson (1742), Abel
Biirja (1786), and others.*

1]. W. L. Glaisher, in Quarterly Jour. of Matk’s, Vol. 46, 1915, p. 125.

2 For the detailed history of this method consult also A. J. Ellis in Proceedings
of the Royal Society (London), Vol. 31, 1881, pp. 398~413; S. Lupton, Mathematical

, Vol. 7, 1913, pp. 147-150, 170-173; Ch. Hutton’s Introduction to his

Mathematical Tables.

3See J. W. L. Glaisher in Quarterly Journal of Pure and Appl. Matk’s, Vol. 47,
1916, pp. 249—301.

¢ For details see Ch. Hutton’s Introduction to his Mathematical Tables, also the
Encyclopédie des sciences mathémaltigues, 1908; I, 23, ‘ Tables de logarithmes.”
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After the labor of computing logarithms was practically over, the
facile methods of computing by infinite series came to be discovered.
James Gregory, Lord William Brounker (1620-1684), Nicholas Mer-
cator (1620-1687), John Wallis and Edmund Halley are the pioneer
workers. Mercator in 1668 derived what amounts to the infinite
series for log (1+a). Transformations of this series yielded rapidly
converging results. Wallis in 1695 obtained % log (1+2)/log (1—2)=
z+3 2843 2%+ . ... G. Vega in his Thesaurus of 1794 lets z=1/(2y*—1).

The theoretic view point of the logarithm was broadened somewhat
during the seventeenth century by the graphic representation, both
in rectangular and polar codrdinates, of a variable and its variable
logarithm. Thus were invented the logarithmic curve and the loga-
rithmic spiral. It has been thought that the earliest reference to the
logarithmic curve was made by the Italian Evangelista Torricelli in
a letter of the year 1644, but Paul Tannery made it practically certain
that Descartes knew the curve in 1639.! Descartes described the log-
arithmic spiral in 1638 in a letter to P. Mersenne, but does not give its
equation, nor connect it with logarithms. He describes it as the curve
which makes equal angles with all the radii drawn through the origin.
The name “logarithmic spiral” was coined by Pierre Varignon in a
paper presented to the Paris academy in 1704 and published in 1722.2

The most brilliant conquest in algebra during the sixteenth century
had been the solution of cubic and biquadratic equations. All at-
tempts at solving algebraically equations of higher degrees remaining
fruitless, a new line of inquiry—the properties of equations and their
roots—was gradually opened up. We have seen that Vieta had at-
tained a partial knowledge of the relations between roots and co-
efficients. Jacques Peletier (1517-1582), a French man of letters, poet
and mathematician, had observed as early as 1558, that the root of
an equation is a divisor of the last term. In passing he writes equa-
tions with all terms on one side, and equated to zero. This was done
also by Buteo and Harriot. One who extended the theory of equa-
tions somewhat further than Vieta, was Albert Girard (15907-1633?),
a mathematician of Lorraine. Like Vieta, this ingenious author ap-
plied algebra to geometry, and was the first who understood the use
of negative roots in the solution of geometric problems. He spoke of
imaginary quantities, inferred by induction that every equation has
as many roots as there are units in the number expressing its degree,
and first showed how to express the sums of their powers in terms of
the coefficients. Another algebraist of considerable power was the
English Thomas Harriot (1560-1621). He accompanied the first
colony sent out by Sir Walter Raleigh to Virginia. After having sur-

1See G. Loria, Bibliotheca math., 3. S., Vol. 1, 1900, p. 75; L'intermédiaire des
mathématiciens, Vol. 7, 1900, p. 05.

?For details and references, see F. Cajori, “History of the Exponential and
Logarithmic Concepts,” Am. Math. Monthly, Vol. 20, 1913, pp. 10, II.
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veyed that country he returned to England. As a mathematician, he
was the boast of his country. He brought the theory of equations
under one comprehensive point of view by grasping that truth in its
full extent to which Vieta and Girard only approximated; viz. that
in an equation in its simplest form, the coefficient of the second term
with its sign changed is equal to the sum of the roots; the coefficient
of the third is equal to the sum of the products of every two of the
roots, etc. He was the first to decompose equations into their simple
factors; but, since he failed to recognize imaginary and even negative
roots, he failed also to prove that every equation could be thus de-
composed. Harriot made some changes in algebraic notation, adopt-
ing small letters of the alphabet in place of the capitals used by Vieta.
The symbols of inequality > and < were introduced by him. The
signs 2 and < were first used about a century later by the Parisian
hydrographer, Pierre Bouguer.! Harriot’s work, Artis Analytice praxis,
was published in 1631, ten years after his death. William Oughtred
(1574-1660) contributed vastly to the propagation of mathematical
knowledge in England by his treatises, the Clavis mathematice, 1631
(later Latin editions, 1648, 1652, 1667, 1693; English editions, 1647,
1694), Circles of Proportion, 1632, Trigonometrie, 1657.2 Oughtred
was an episcopal minister at Albury, near London, and gave private
lessons, free of charge, to pupils interested in mathematics. Among
his most noted pupils are the mathematician John Wallis and the
astronomer Seth Ward. OQughtred laid extraordinary emphasis upon
the use of mathematical symbols; altogether he used over 150 of them.
Only three have come down to modern times, namely X as the symbol
of multiplication, :: as that of proportion, and — as that for “differ-
ence.” The symbol X occurs in the Clavis, but the letter X which
closely resembles it, occurs as a sign of multiplication in the anony-
mous ‘“Appendix to the Logarithmes” in Edward Wright’s transla-
tion of Napier’s Descriptio, published in 1618.2 This appendix was
most probably written by Oughtred. A proportion A:B=C:D he
wrote A°B::C-D. Oughtred’s notation for ratio and proportion was
widely used in England and on the Continent, but as early as 1651
the English astronomer Vincent Wing began to use (:) for ratio,* a
notation which gained ground and freed the dot (.) for use as the sym-
bol of separation in decimal fractions. It is interesting to note the
attitude of Leibniz toward some of these symbols. On July 29, 1698,
he wrote in a letter to John Bernoulli: “I do not like X as a symbol
for multiplication, as it is easily confounded with «; . . . often I simply
relate two quantities by an interposed dot and indicate multiplication

1 P.H. Fuss, Corresp. math. phys., I, 1843, p. 304; Encyclopédie des sciences mathé-
matiques, T. I, Vol. I, 1904, p. 23.

’gfr. Cajori, William Oughired, Chicago and London, 1916.

3 F. Cajori, in Nature, Vol. XCIV, 1914, p. 363.

4 Ibid., p. 477.
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by ZC-LM. Hence in designating ratio I use not one point but two
points, which I use, at the same time, for division; thus, for your
dy.x::dt.a I write dy:x=dt: a; for, y is to x as d¢ is to g, is indeed the
same as, dy divided by x is equal to d# divided by a. From this equa-
tion follow then all the rules of proportion.” This conception of
ratio and proportion was far in advance of that in contemporary
arithmetics. Through the aid of Christian Wolf the dot was generally
adopted in the eighteenth century as a symbol of multiplication.
Presumably Leibniz had no knowledge that Harriot in his Aris
analylicee praxis, 1631, used a dot for multiplication, as in aaa—3.
bba=+2.ccc. Harriot’s dot received no attention, not even from Wallis.

Oughtred and some of his English contemporaries, Richard Nor-
wood, John Speidell and others were prominent in introducing abbre-
viations for the trigonometric functions: s, sz, or sin for sine; s co or
si co for “sine complement” or cosine; se for secant, etc. Qughtred
did not use parentheses. Terms to be aggregated were enclosed be-
tween double colons. He wrote V(4 +E) thus, Vg:A+E: The two
dots at the end were sometimes omitted. Thus, C:A+B—E meant
(A+B—E).? Before Oughtred the use of parentheses had been sug-
gested by Clavius in 1608 and Girard in 1629. In fact, as early as

1556 Tartaglia wrote v/ V28— v 1o thus R v. (R28 men R10), where

R v. means “radix universalis,” but he did not use parentheses in in-
dicating the product of two expressions.! Parentheses were used by
1. Errard de Bar-le-Duc (1619), Jacobo de Billy (1643), Richard
Norwood (1631), Samuel Foster (1659); nevertheless parentheses did
not become popular in algebra before the time of Leibniz and the
Bernoullis.

It is noteworthy that Qughtred denotes 3% and {{§, the approxi-

mate ratios of the circumference to the diameter, by the symbol 38; it

occurs in the 1647 edition and in the later editions of his Clavis mathe-
matice. Oughtred’s notation was adopted and used extensively by
Isaac Barrow. It was the forerunner of the notation r=3.14159...,
first used by William Jones in 1706 in his Synopsis palmariorum ma-
theseos, London, 1706, p. 263. L. Euler first used w=3.14159 . . . in
1737. In his time, the symbol met with general adoption.

Oughtred stands out prominently as the inventor of the circular
and the rectilinear slide rules. The circular slide rule was described
in print in his book, the Circles of Proportion, 1632. His rectilinear
slide rule was described in 1633 in an Addition to the above work.
But Oughtred was not the first to describe the circular slide rule in
print; this was done by one of his pupils, Richard Delamain, in 1630,
in a booklet, entitled Grammelogia.? A bitter controversy arose be-

1 G. Enestrdm in Bibliotheca mathematica, 3. S., Vol. 7, p. 296.
2See F. Cajori, William Oughtred, Chicago and Londbn, 1916, p. 46.
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tween Delamain and Oughtred. Each accused the other of having
stolen the invention from him. Most probably each was an in-
dependent inventor. To the invention of the rectilinear slide rule
Oughtred has a clear title. He states that he designed his slide rules
as early as 1621. The slide rule was improved in England during the
seventeenth and eighteenth centuries and was used quite extensively.!

Some of the stories told about Oughtred are doubtless apocryphal,
as for instance, that his economical wife denied him the use of a candle
for study in the evening, and that he died of joy at the Restoration,
after drinking “a glass of sack” to his Majesty’s health. De Morgan
humorously remarks, “It should be added, by way of excuse, that he
was eighty-six years old.”

Algebra was now in a state of sufficient perfection to enable Des-
cartes and others to take that important step which forms one of the
grand epochs in the history of mathematics,—the application of alge-
braic analysis to define the nature and investigate the properties of
algebraic curves.

In geometry, the determination of the areas of curvilinear figures
was diligently studied at this period. Paul Guldin (1577-1643), a
Swiss mathematician of considerable note, rediscovered the following
theorem, published in his Centrobaryca, which has been named after
him, though first found in the Mathematical Collections of Pappus:
The volume of a solid of revolution is equal to the area of the generat-
ing figure, multiplied by the circumference described by the centre of
gravity. We shall see that this method excels that of Kepler and
Cavalieri in following a more exact and natural course; but it has the
disadvantage of necessitating the determination of the centre of grav-
ity, which in itself may be a more difficult problem than the original
one of finding the volume. Guldin made some attempts to prove his
theorem, but Cavalieri pointed out the weakness of his demonstration.

Johannes Kepler (1571-1630) was a native of Wiirtemberg and im-
bibed Copernican principles while at the University of Tibingen. His
pursuit of science was repeatedly interrupted by war, religious perse-
cution, pecuniary embarrassments, frequent changes of residence,
and family troubles. In 1600 he became for one year assistant to the
Danish astronomer, Tycho Brahe, in the observatory near Prague.
The relation between the two great astronomers was not always of an
agreeable character. Kepler’s publications are voluminous. His first at-
tempt to explain the solar system was made in 1596, when he thought
he had discovered a curious relation between the five regular solids
and the number and distance of the planets. The publication of this
pseudo-discovery brought him much fame. At one time he tried to
represent the orbit of Mars by the oval curve which we now write in
polar cobrdinates, p=2r cos®f. Maturer reflection and intercourse
with Tycho Brahe and Galileo led him to investigations and results

1 See F. Cajori, History of the Logarithmic Slide Rule, New York, 1909.
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worthy of his genius—*Kepler’s laws.”” He enriched pure mathe-
matics as well as astronomy. It is not strange that he was interested
in the mathematical science which had done him so much service; for
“if the Greeks had not cultivated conic sections, Kepler could not
have superseded Ptolemy.” ! The Greeks never dreamed that these
curves would ever be of practical use; Aristeus and Apollonius
studied them merely to satisfy their intellectual cravings after the
ideal; yet the conic sections assisted Kepler in tracing the march of
the planets in their elliptic orbits. Kepler made also extended use of
logarithms and decimal fractions, and was enthusiastic in diffusing
a knowledge of them. At one time, while purchasing wine, he was
struck by the inaccuracy of the ordinary modes of determining the
contents of kegs. This led him to the study of the volumes of solids
of revolution and to the publication of the Stereometria Doliorum in
1615. In it he deals first with the solids known to Archimedes and
then takes up others. Kepler made wide application of an old but
neglected idea, that of infinitely great and infinitely small quantities.
Greek mathematicians usually shunned this notion, but with it modern
mathematicians completely revolutionized the science. In comparing
rectilinear figures, the method of superposition was employed by the
ancients, but in comparing rectilinear and curvilinear figures with
each other, this method failed because no addition or subtraction of
rectilinear figures could ever produce curvilinear ones. To meet this
case, they devised the Method of Exhaustion, which was long and
difficult; it was purely synthetical, and in general required that the
conclusion should be known at the outset. The new notion of infinity
led gradually to the invention of methods immeasurably more power-
ful. Kepler conceived the circle to be composed of an infinite number
of triangles having their common vertices at the centre, and their
bases in the circumference; and the sphere to consist of an infinite
number of pyramids. He applied conceptions of this kind to the de-
termination of the areas and volumes of figures generated by curves
revolving about any line as axis, but succeeded in solving only a few
of the simplest out of the 84 problems which he proposed for investi-
gation in his Stereometria.

Other points of mathematical interest in Kepler’s works are (1) the
assertion that the circumference of an ellipse, whose axes are 2a and
2b, is nearly 7 (a+b); (2) a passage from which it has been inferred
that Kepler knew the variation of a function near its maximum value
to disappear; (3) the assumption of the principle of continuity (which
differentiates modern from ancient geometry), when he shows that
a parabola has a focus at infinity, that lines radiating from this “cacus
focus’’ are parallel and have no other point at infinity.

The Stereomelria led Cavalieri, an Italian Jesuit, to the consideration

1 William Whewell, History of the Inductive Sciences, 3rd Ed., New York, 1858,
Vol. I, p. 311.
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of infinitely small quantities. Bonaventura Cavalieri (1598-1647),
a pupil of Galileo and professor at Bologna, is celebrated for his Geo-
melria indivisibilibus continuorum nova quadam ratione promota, 1635.
This work expounds his method of Indivisibles, which occupies an
intermediate place between the method of exhaustion of the Greeks
and the methods of Newton and Leibniz. ‘“Indivisibles” were dis-
cussed by Aristotle and the scholastic philosophers. They commanded
the attention of Galileo. Cavalieri does not define the term. He
borrows the concept from the scholastic philosophy of Bradwardine
and Thomas Aquinas, in which a point is the indivisible of a line, a line
the indivisible of a surface, etc. Each indivisible is capable of gener-
ating the next higher continuum by motion; a moving point generates
a line, etc. The relative magnitude of two solids or surfaces could
then be found simply by the summation of series of planes or lines.
For example, Cavalieri finds the sum of the squares of all lines making
up a triangle equal to one-third the sum of the squares of all lines of
a parallelogram of equal base and altitude; for if in a triangle, the first
line at the apex be 1, then the second is 2, the third is 3, and so on;
and the sum of their squares is

12422432+ . . . +n?=n(n+1) (2n+1)+6.
In the parallelogram, each of the lines is # and their number is #; hence
the total sum of their squares is #3. The ratio between the two sums
is therefore
n(n+1) (2n+1)+6n%=4,

since # is infinite. From this he concludes that the pyramid or cone is
respectively 4 of a prism or cylinder of equal base and altitude, since
the polygons or circles composing the former decrease from the base
to the apex in the same way as the squares of the lines parallel to the
base in a triangle decrease from base to apex. By the Method of In-
divisibles, Cavalieri solved the majority of the problems proposed by
Kepler. Though expeditious and yielding correct results, Cavalieri’s
method lacks a scientific foundation. If a line has absolutely no width,
then the addition of no number, however great, of lines can ever yield
an area; if a plane has no thickness whatever, then even an infinite
number of planes cannot form a solid. Though unphilosophical,
Cavalieri’s method was used for fifty years as a sort of integral
calculus. It yielded solutions to some difficult problems. Guldin
made a severe attack on Cavalieri and his method. The latter
published in 1647, after the death of Guldin, a treatise entitled
Exercitationes geomelrice sex, in which he replied to the objections
of his opponent and attempted to give a clearer explanation of his
method. Guldin had never been able to demonstrate the theorem
named after him, except by metaphysical reasoning, but Cavalieri
proved it by the method of indivisibles. A revised edition of the
Geometria appeared in 1653.
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There is an important curve, not known to the ancients, which now
began to be studied with great zeal. Roberval gave it the name of
‘“trochoid,” Pascal the name of “roulette,” Galileo the name of “cy-
cloid.” The invention of this curve seems to be due to Charles Bou-
velles who in a geometry published in Paris in 1501 refers to this curve
in connection with the problem of the squaring of the circle. Galileo
valued it for the graceful form it would give to arches in architecture.
He ascertained its area by weighing paper figures of the cycloid against
that of the generating circle, and found thereby the first area to be
nearly but not exactly thrice the latter. A mathematical determina-
tion was made by his pupil, Evangelista Torricelli (1608-1647), who
is more widely known as a physicist than as a mathematician.

By the Method of Indivisibles he demonstrated its area to be triple
that of the revolving circle, and published his solution. This same
quadrature had been effected a few years earlier (about 1636) by
Roberval in France, but his solution was not known to the Italians.
Roberval, being a man of irritable and violent disposition, unjustly
accused the mild and amiable Torricelli of stealing the proof. This
accusation of plagiarism created so much chagrin with Torricelli that
it is considered to have been the cause of his early death. Vincenzo
Viviani (1622-1703), another prominent pupil of Galileo, determined
the tangent to the cycloid. This was accomplished in France by
Descartes and Fermat.

In France, where geometry began to be cultivated with greatest
success, Roberval, Fermat, Pascal, employed the Method of Indivis-
ibles and made new improvements in it. Giles Persone de Roberval
(1602-1675), for forty years professor of mathematics at the College
of France in Paris, claimed for himself the invention of the Method of
Indivisibles. Since his complete works were not published until after
his death, it is difficult to settle questions of priority. Montucla and
Chasles are of the opinion that he invented the method independently
of and earlier than the Italian geometer, though the work of the latter
was published much earlier than Roberval’'s. Marie finds it difficult
to believe that the Frenchman borrowed nothing whatever from the
Italian, for both could not have hit independently upon the word
Indivisibles, which is applicable to infinitely small quantities, as con-
ceived by Cavalieri, but not as conceived by Roberval. Roberval
and Pascal improved the rational basis of the Method of Indivisibles,
by considering an area as made up of an indefinite number of rectangles
instead of lines, and a solid as composed of indefinitely small solids
instead of surfaces. Roberval applied the method to the finding of
areas, volumes, and centres of gravity. He effected the quadrature
of a parabola of any degree y®=a™"'x, and also of a parabola y==
a™"x%, We have already mentioned his quadrature of the cycloid.
Roberval is best known for his method of drawing tangents, which,
however, was invented at the same time, if not earlier, by Torricelli.
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Torricelli’s ap, ?eared in 1644 under the title Opera geometrica. Rober-
val gives the fuller exposition of it. Some of his special applications
were published at Paris as early as 1644 in Mersenne’s Cogélata physico-
mathematica. Roberval presented the full development of the sub-
ject to the French Academy of Sciences in 1668 which published it
in its Mémotres. This academy had grown out of scientific meetings
held with Mersenne at Paris. It was founded by Minister Richelieu
in 1635 and reorganized by Minister Colbert in 1666. Marin Mersenne
(1588-1648) rendered great services to science. His polite and en-
gaging manners procured him many friends, including Descartes and
Fermat. He encouraged scientific research, carried on an extensive
correspondence, and thereby was the medium for the intercommunica-
tion of scientific intelligence.

Roberval’s method of drawing tangents is allied to Newton’s prin-
ciple of fluxions. Archimedes conceived his spiral to be generated by
a double motion. This idea Roberval extended to all curves. Plane
curves, as for instance the conic sections, may be generated by a point
acted upon by two forces, and are the resultant of two motions. If
at any point of the curve the resultant be resolved into its components,
then the diagonal of the parallelogram determined by them is the tan-
gent to the curve at that point. The greatest difficulty connected
with this ingenious method consisted in resolving the resultant into
components having the proper lengths and directions. Roberval did
not always succeed in doing this, yet his new idea was a great step in
advance. He broke off from the ancient definition of a tangent as
a straight line having only one point in common with a curve,—a defi-
nition which by the methods then available was not adapted to bring
out the properties of tangents to curves of higher degrees, nor even of
curves of the second degree and the parts they may be made to play
in the generation of the curves. The subject of tangents received
special attention also from Fermat, Descartes, and Barrow, and
reached its highest development after the invention of the differential
calculus. Fermat and Descartes defined tangents as secants whose
two points of intersection with the curve coincide; Barrow considered
a curve a polygon, and called one of its sides produced a tangent.

A profound scholar in all branches of learning and a mathematician
of exceptional powers was Pierre de Fermat (1601-1665). He studied
law at Toulouse, and in 1631 was made councillor for the parliament
of Toulouse. His leisure time was mostly devoted to mathematics,
which he studied with irresistible passion. Unlike Descartes and
Pascal, he led a quiet and unaggressive life. Fermat has left the im-
press of his genius upon all branches of mathematics then known.
A great contribution to geometry was his De maximis et minimis.
About twenty years earlier, Kepler had first observed that the incre-
ment of a variable, as, for instance, the ordinate of a curve, is evan-
escent for values very near a maximum or a minimum value of the
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variable. Developing this idea, Fermat obtained his rule for maxima
and minima. He substituted x+-¢ for x in the given function of x and
then equated to each other the two consecutive values of the function
and divided the equation by e. If e be taken o, then the roots of this
equation are the values of x, making the function a maximum or a
minimum. Fermat was in possession of this rule in 1629. The main
difference between it and the rule of the differential calculus is that it
introduces the indefinite quantity e instead of the infinitely small dx.
Fermat made it the basis for his method of drawing tangents, which
involved the determination of the length of the subtangent for a given
point of a curve.

Owing to a want of explicitness in statement, Fermat’s method of
maxima and minima, and of tangents, was severely attacked by his
great contemporary, Descartes, who could never be brought to render
due justice to his merit. In the ensuing dispute, Fermat found two
zealous defenders in Roberval and Pascal, the father; while C. My-
dorge, G. Desargues, and Claude Hardy supported Descartes.

Since Fermat introduced the conception of infinitely small differ-
ences between consecutive ‘values of a function and arrived at the
principle for finding the maxima and minima, it was maintained by
Lagrange, Laplace, and Fourier, that Fermat may be regarded as the
first inventor of the differential calculus. This point is not well taken,
as will be seen from the words of Poisson, himself a Frenchman, who
rightly says that the differential calculus “consists in a system of rules
proper for finding the differentials of all functions, rather than in the
use which may be made of these infinitely small variations in the so-
lution of one or two isolated problems.””)

A contemporary mathematician, whose genius perhaps equalled that
of the great Fermat, was Blaise Pascal (1623-1662). He was born at
Clermont in Auvergne. In 1626 his father retired to Paris, where he
devoted himself to teaching his son, for he would not trust his educa-
tion to others. Blaise Pascal’s genius for geometry showed itself when
he was but twelve years old. His father was well skilled in mathe-
matics, but did not wish his son to study it until he was perfectly
acquainted with Latin and Greek. All mathematical books were
hidden out of his sight. The boy once asked his father what mathe-
matics treated of, and was answered, in general, “that it was the
method of making figures with exactness, and of finding out what
proportions they relatively had to one another.” He was at the same
time forbidden to talk any more about it, or ever to think of it. But
his genius could not submit to be confined within these bounds. Start-
ing with the bare fact that mathematics taught the means of making
figures infallibly exact, he employed his thoughts about it and with
a piece of charcoal drew figures upon the tiles of the pavement, trying
the methods of drawing, for example, an exact circle or equilateral
triangle. He gave names of his own to these figures and then formed
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axioms, and, in short, came to make demonstrations. In this way he
is reported to have arrived unaided at the theorem that the sum of
the three angles of a triangle is equal to two right angles. His father
caught him in the act of studying this theorem, and was so astonished
at the sublimity and force of his genius as to weep for joy. The father
now gave him Euclid’s Elemenis, which he, without assistance, mas-
tered easily. His regular studies being languages, the boy employed
only his hours of amusement on the study of geometry, yet he had so
ready and lively a penetration that, at the age of sixteen, he wrote
a treatise upon conics, which passed for such a surprising effort of
genius, that it was said nothing equal to it in strength had been pro-
duced since the time of Archimedes. Descartes refused to believe
that it was written by one so young as Pascal. This treatise was never
published, and is now lost. Leibniz saw it in Paris and reported on
a portion of its contents. The precocious youth made vast progress
in all the sciences, but the constant application at so tender an age
greatly impaired his health. Yet he continued working, and at nine-
teen invented his famous machine for performing arithmetical opera-
tions mechanically. This continued strain from overwork resulted in
a permanent indisposition, and he would sometimes say that from the
time he was eighteen, he never passed a day free from pain. At the
age of twenty-four he resolved to lay aside the study of the human
sciences and to consecrate his talents to religion. His Provincial
Letters against the Jesuits are celebrated. But at times he returned
to the favorite study of his youth. Being kept awake one night by
a toothache, some thoughts undesignedly came into his head concern-
ing the roulette or cycloid; one idea followed another; and he thus
discovered g;operties of this curve even to demonstration. A corre-
spondence between him and Fermat on certain problems was the
beginning of the theory of probability. Pascal’s illness increased, and
he died at Paris at the early age of thirty-nine years. By him the
answer to the objection to Cavalieri’s Method of Indivisibles was put
in clearer form. Like Roberval, he explained “the sum of right lines”
to mean “the sum of infinitely small rectangles.” Pascal greatly ad-
vanced the knowledge of the cycloid. He determined the area of a
section produced by any line parallel to the base; the volume gener-
ated by it revolving around its base or around the axis; and, finally,
the centres of gravity of these volumes, and also of half these volumes
cut by planes of symmetry. Before publishing his results, he sent,
in 1658, to all mathematicians that famous challenge offering prizes
for the first two solutions of these problems. Only Wallis and A. La
Louvére competed for them. The latter was quite unequal to the task;
the former, being pressed for time, made numerous mistakes: neither
got a prize. Pascal then published his own solutions, which produced
a great sensation among scientific men. Wallis, too, published his,
with the errors corrected. Though not competing for the prizes,
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Huygens, Wren, and Fermat solved some of the questions. The chief
discoveries of Christopher Wren (1632-1723), the celebrated architect
of St. Paul’s Cathedral in London, were the rectification of a cycloidal
arc and the determination of its centre of gravity. Fermat found the
area generated by an arc of the cycloid. Huygens invented the cy-
cloidal pendulum.

The beginning of the seventeenth century witnessed also a revival of
synthetic geometry. One who treated conics still by ancient methods,
but who succeeded in greatly simplifying many prolix proofs of Apollo-
nius, was Claude Mydorge (1585-1647),in Paris, a friend of Descartes.
But it remained for Girard Desargues (1593-1662) of Lyons, and for
Pascal, to leave the beaten track and cut out fresh paths. They intro-
duced the important method of Perspective. All conics on a cone with
circular base appear circular to an eye at the apex. Hence Desargues
and Pascal conceived the treatment of the conic sections as projections
of circles. Two important and beautiful theorems were given by Des-
argues: The one is on the “involution of the six points,” in which a
transversal meets a conic and an inscribed quadrangle; the other is
that, if the vertices of two triangles, situated either in space or in
a plane, lie on three lines meeting in a point, then their sides meet in
three points lying on a line; and conversely. This last theorem has
been employed in recent times by Brianchon, C. Sturm, Gergonne,
and Poncelet. Poncelet made it the basis of his beautiful theory of
homological figures. We owe to Desargues the theory of involution
and of transversals; also the beautiful conception that the two ex-
tremities of a straight line may be considered as meeting at infinity,
and that parallels differ from other pairs of lines only in having their
points of intersection at infinity. He re-invented the epicycloid and
showed its application to the construction of gear teeth, a subject
elaborated more fully later by La Hire. Pascal greatly admired
Desargues’ results, saying (in his Essais pour les Coniques), ‘1 wish to
acknowledge that I owe the little that I have discovered on this sub-
ject, to his writings.” Pascal’s and Desargues’ writings contained
some of the fundamental ideas of modern synthetic geometry. In
Pascal’s wonderful work on conics, written at the age of sixteen and
now lost, were given the theorem on the anharmonic ratio, first found
in Pappus, and also that celebrated proposition on the mystic hexagon,
known as “Pascal’s theorem,” viz. that the opposite sides of a hexa-
gon inscribed in a conic intersect in three points which are collinear.
This theorem formed the keystone to his theory. He himself said
that from this alone he deduced over 400 corollaries, embracing the
conics of Apollonius and many other results. Less gifted than Des-
argues and Pascal was Philippe de la Hire (1640-1718). At first
active as a painter, he afterwards devoted himself to astronomy and
mathematics, and became professor of the Collége de France in Paris.
He wrote three works on conic sections, published in 1673, 1679 and
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1685. The last of these, the Sectiones Conicae, was best known. La
Hire gave the polar properties of circles, and, by projection, transferred
his polar theory from the circle to the conic sections. In the construc-
tion of maps De la Hire used “globular” projection in which the eye
is not at the pole of the sphere, as in the Ptolemaic stereographic pro-
jection, but on the radius produced through the pole at a distance
r sin 45° outside the sphere. Globular projection has the advantage
that everywhere on the map there is approximately the same degree
of exaggeration of distances. This mode of projection was modified
by his countryman A. Parent. De la Hire wrote on roulettes, on
graphic methods, epicycloids, conchoids, and on magic squares. The
labors of De la Hire, the genius of Desargues and Pascal, uncovered
several of the rich treasures of modern synthetic geometry; but owing
to the absorbing interest taken in the analytical geometry of Descartes
and later in the differential calculus, the subject was almost entirely
neglected until the nineteenth century.

In the theory of numbers no new results of scientific value had been
reached for over 1000 years, extending from the times of Diophantus
and the Hindus until the beginning of the seventeenth century. But
the illustrious period we are now considering produced men who
rescued this science from the realm of mysticism and superstition,
in which it had been so long imprisoned; the properties of numbers
began again to be studied scientifically. Not being in possession of
the Hindu indeterminate analysis, many beautiful results of the
Brahmins had to be re-discovered by the Europeans. Thus a solution
in integers of linear indeterminate equations was re-discovered by the
Frenchman Bachet de Méziriac (1581-1638), who was the earliest
noteworthy European Diophantist. In 1612 he published Problémes
Plaisants et délectables qui se font par les nombres, and in 1621 a Greek
edition of Diophantus with notes. An interest in prime numbers is
disclosed in the so-called ‘“Mersenne’s numbers,” of the form M=
2P—1, with p prime. Marin Mersenne asserted in the preface to his
Cogitata Physico-Mathematica, 1644, that the only values of p not
greater than 257 which make M, a prime are 1, 2, 3, §, 7, 13, 17, 19,
31, 67, 127, and 257. Four mistakes have now been detected in
Mersenne’s classification, viz., Me7r is composite; Me1, Ms9 and Mior
are prime. Mis1 has been found to be composite. Mersenne gave in
1644 also the first eight perfect numbers 6, 28, 496, 8128, 33550336,
8589869056, 137438691328, 2305843008139952128 In Euchd s Ele-
menis, Bk. 9, Prop. 36, is given the formula for perfect numbers
29—‘(29— 1), where -1 1is prime. The above eight perfect numbers
are reproduced by taking p=2, 3, 5, 7, 13, 17, 19, 31. A ninth perfect
number was found in 1885 by P. Seelhoff, for which p=61, a tenth
in 1912 by R. E. Powers, for which p=89. The father of the modern
theory of numbers is Fermat. He was so uncommunicative in dis-
position, that he generally concealed his methods and made known
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his results only. In some cases later analysts have been greatly
puzzled in the attempt of supplying the proofs. Fermat owned a copy
of Bachet’s Diophantus, in which he entered numerous marginal notes.
In 1670 these notes were incorporated in a new edition of Diophantus,
brought out by his son. Other theorems on numbers, due to Fermat,
were published in his Opera varia (edited by his son) and in Wallis’s
Commercium epistolicum of 1658. Of the following theorems, the
first seven are found in the marginal notes: '—

(1) a"+y*=2" is impossible for integral values of x, y, and s, when
n>2.

This famous theorem was appended by Fermat to the problem of
Diophantus II, 8: “ To divide a given square number into two squares.”
Fermat’s marginal note is as follows: “On the other hand it is im-
possible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or generally any power except a square into two powers
with the same exponent. I have discovered a truly marvelous proof
of this, which however the margin is not large enough to contain.”
That Fermat actually possessed a proof is doubtful. No general
proof has yet been published. Euler proved the theorem for n=3
and n=4; Dirichlet for n=5 and n=14, G. Lamé for n=7 and Kum-
mer for many other values. Repeatedly was the theorem made the
prize question of learned societies, by the Academy of Sciences in
Paris in 1823 and 1850, by the Academy of Brussels in 1883. The
recent history of the theorem follows later.

(2) A prime of the form 4n+1 is only once the hypothenuse of a
right tnangle its Square is twice; its cube is three times, etc. Ex-
ample 5 =32+4 25%=15%+20"=7%424% 1257=75%+100%=35%+
120 =442+1

3) A pnme of the form 4n+1 can be expressed once, and only
once, as the sum of two squares. Proved by Euler.

(4) A number composed of two cubes can be resolved into two
other cubes in an infinite multiplicity of ways.

(5) Every number is either a triangular number or the sum of two
or three triangular numbers; either a square or the sum of two, three,
or four squares; either a pentagonal number or the sum of two, three,
four, or five pentagonal numbers; similarly for polygonal numbers
in general. The proof of this and other theorems is promised by
Fermat in a future work which never appeared. This theorem is
also given, with others, in a letter of 1637 (?) addressed to Pater
Mersenne.

(6) As many numbers as you please may be found, such that the
square of each remains a square on the addition to or subtraction from
it of the sum of all the numbers.

1 For a fuller historical account o: fermat’s Diophantine theorems and prob-
lems, see T. L. Heath, Diophantus of Alcxandria, 2. Ed., 1910, pp. 267-328. See
also Annals of Mathematics, 2. S., Vol. 18, 1917, pp. 161-187.
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(7) x*+y*=2?is impossible.

(8) In a letter of 1640 he gives the celebrated theorem generally
known as “Fermat’s theorem,” which we state in Gauss’s notation:
If p is prime, and a is prime to p, then a#—'=1 (mod p). It was proved
by Leibniz and by Euler.

(9) Fermat died with the belief that he had found a long-sought-for
law of prime numbers in the formula 27+ 1=a prime, but he admitted
that he was unable to prove it rigorously. The law is not true, as was
pointed out by Euler in the example 2:°+1=4,294,967,297=6,700,417
times 641. The American lightning calculator Zerah Colburn, when
a boy, readily found the factors, but was unable to explain the method
by which he made his marvellous mental computation.

(10) An odd prime number can be expressed as the difference of
two squares in one, and only one, way. This theorem, given in the
Relation, was used by Fermat for the decomposition of large numbers
into prime factors.

(11) If the integers a, b, ¢ represent the sides of a right triangle,
then its area cannot be a square number. This was proved by La-
grange.

(12) Fermat’s solution of ax?+1=v2, where a is integral but not
a square, has come down in only the broadest outline, as given in the
Relation. He proposed the problem to the Frenchman, Bernhard
Frenicle de Bessy, and in 1657 to all living mathematicians. In Eng-
land, Wallis and Lord Brouncker conjointly found a laborious solution,
which was published in 1658, and also in 1668 in Thomas Brancker’s
translation of Rahn’s Algebra, “altered and augmented” by John
Pell (1610-1685). The first solution was given by the Hindus.
Though Pell had no other connection with the problem, it went by
the name of “Pell’s problem.” Pell held at one time the mathematical
chair at Amsterdam. In a controversy with Longomontanus who
claimed to have effected the quadrature of the circle, Pell first used
the now familiar trigonometric formula tan24 =2tand /(1—tan?4).

We are not sure that Fermat subjected all his theorems to rigorous
proof. His methods of proof were entirely lost until 1879, when a
document was found buried among the manuscripts of Huygens in
the library of Leyden, entitled Relation des découvertes en la science des
nombres. It appears from it that he used an inductive method, called
by him la descente infinie ou indefinie. He says that this was particu-
larly applicable in proving the impossibility of certain relations, as,
for instance, Theorem 11, given above, but that he succeeded in using
the method also in proving affirmative statements. Thus he proved
Theorem 3 by showing that if we suppose there be a prime 4n+1
which does not possess this property, then there will be a smaller
prime of the form 4n+1 not possessing it; and a third one smaller
than the second, not possessing it; and so on. Thus descending in-
definitely, he arrives at the number 5, which is the smallest prime
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factor of the form 47+1. From the above supposition it would follow
that 5 is not the sum of two squares—a conclusion contrary to fact.
Hence the supposition is false, and the theorem is established. Fermat
applied this method of descent with success in a large number of
theorems. By this method L. Euler, A. M. Legendre, P. G. L. Dirich-
let, proved several of his enunciations and many other numerical
propositions.

Fermat was interested in magic squares. These squares, to which
the Chinese and Arabs were so partial, reached the Occident not later
than the fifteenth century. A magic square of 25 cells was found by
M. Curtze in a German manuscript of that time. The artist, Albrecht
Diirer, exhibits one of 16 cells in 1514 in his painting called “Melan-
cholie.” The above-named Bernhard Frenicle de Bessy (about 1602-
1675) brought out the fact that the number of magic squares increased
enormously with the order by writing down 880 magic squares of
the order four. Fermat gave a general rule for finding the number of
magic squares of the order n, such that, for =8, this number was
1,004,144,995,344; but he seems to have recognized the falsity of his
rule. Bachet de Méziriac, in his Problémes plaisanis et délectables,
Lyon, 1612, gave a rule “des terrasses” for writing down magic
squares of odd order. Frenicle de Bessy gave a process for those of
even order. In the seventeenth century magic squares were studied !
by Antoine Arnauld, Jean Prestet, J. Ozanam; in the eighteenth cen-
tury by Poignard, De la Hire, J. Sauveur, L. L. Pajot, J. J. Rallier
des Ourmes, L. Euler and Benjamin Franklin. In a letter B. Franklin
said of his magic square of 16? cells, “I make no question, but you
will readily allow the square of 16 to be the most magically magical
of any magic square ever made by any magician.”

A correspondence between B. Pascal and P. Fermat relating to a
certain game of chance was the germ of the theory of probabilities,
of which some anticipations are found in Cardan, Tartaglia, J. Kepler
and Galileo. Chevalier de Méré proposed to B. Pascal the funda-
mental “Problem of Points,” 2 to determine the probability which
each player has, at any given stage of the game, of winning the game.
Pascal and Fermat supposed that the players have equal chances of
winning a single point.

The former communicated this problem to Fermat, who studied
it with lively interest and solved it by the theory of combinations, a
theory which was diligently studied both by him and Pascal. The
calculus of probabilities engaged the attention also of C. Huygens.
The most important theorem reached by him was that, if A has p
chances of winning a sum @, and ¢ chances of winning a sum b, then

! Encyclopédie des sciences math's, T. I, Vol. 3, 1906, p. 66.

2 Qcuvres compléles de Blaise Pascal, T. 1, Paris, 18606, pp. 220~237. See also 1.
Todhunter, History of the Mathematical Theory of Probability, Cambridge and
London, 1865, Chapter II.
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he may expec to win the sum gf%q‘ Huygens gave his results in

a treatise on probability (1657), which was the best account of the
subject until the appearance of Jakob Bernoulli's Ars conjectandi
which contained a reprint of Huygens’ treatise. An absurd abuse of
mathematics in connection with the probability of testimony was
made by Jokn Craig who in 1699 concluded that faith in the Gospel
so far as it depended on oral tradition expired about the year 8oo,
and so far as it depended on written tradition it would expire in the
year 3150.

Connected with the theory of probability were the investigations
on mortality and insurance. The use of tables of mortality does not
seem to have been altogether unknown to the ancients, but the first
name usually mentioned in this connection is Captain Jokn Graunt
who published at London in 1662 his Natural and Political Observa-
lions . . . made upon the bills of mortality, basing his deductions upon
records of deaths which began to be kept in London in 1592 and were
first intended to make known the progress of the plague. Graunt was
careful to publish the actual figures on which he based his conclusions,
comparing himself, when so doing, to a “silly schoolboy, coming to
say his lessons to the world (that peevish and tetchie master), who
brings a bundle of rods, wherewith to be whipped for every mistake
he has committed.” ! Nothing of marked importance was done after
Graunt until 1693 when Edmund Halley ! published in the Pkilo-
sophical Transactions (London) his celebrated memoir on the Degrees
of Mortality of Mankind . . . with an Atlempt to ascertain the Price of
Annuities upon Lives. To find the value of an annuity, multiply the
chance that the individual concerned will be alive after n years by
the present value of the annual payment due at the end of » years;
then sum the results thus obtained for all values of # from 1 to the
extreme possible age for the life of that individual. Halley considers
also annuities on joint lives.

Among the ancients, Archimedes was the only one who attained
clear and correct notions on theoretical statics. He had acquired
firm possession of the idea of pressure, which lies at the root of me-
chanical science. But his ideas slept nearly twenty centuries, until
the time of S. Stevin and Galileo Galilei (1564-1642). Stevin deter-
mined accurately the force necessary to sustain a body on a plane
inclined at any angle to the horizon. He was in possession of a com-
plete doctrine of equilibrium. While Stevin investigated statics,
Galileo pursued principally dynamics. Galileo was the first to abandon
the idea usually attributed to Aristotle that bodies descend more
quickly in proportion as they are heavier; he established the first law
of motion; determined the laws of falling bodies; and, having obtained

1 1. Todhunter, History of the Theory of Probability, pp. 38, 42.
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a clear notion of acceleration and of the independence of different
motions, was able to prove that projectiles move in parabolic curves.
Up to his time it was believed that a cannon-ball moved forward at
first in a straight line and then suddenly fell vertically to the ground.
Galileo had an understanding of centrifugal forces, and gave a correct
" definition of momentum. Though he formulated the fundamental
principle of statics, known as the parallelogram of forces, yet he did
not fully recognize its scope. The principle of virtual velocities was
partly conceived by Guido Ubaldo (died 1607), and afterwards more
fully by Galileo.

Galileo is the founder of the science of dynamics. Among his con-
temporaries it was chiefly the novelties he detected in the sky that
made him celebrated, but J. Lagrange claims that his astronomical
discoveries required only a telescope and perseverance, while it took
an extraordinary genius to discover laws from phenomena, which we
see constantly and of which the true explanation escaped all earlier
philosophers. Galileo’s dialogues on mechanics, the Discorsi e demos-
trazioni matematiche, 1638, touch also the subject of infinite aggregates.
The author displays a keenness of vision and an originality which
was not equalled before the time of Dedekind and Georg Cantor.
Salviati, who in general represents Galileo’s own ideas in these dia-
logues, says,! “infinity and indivisibility are in their very nature in-
comprehensible to us.” Simplicio, who is the spokesman of Aris-
totelian scholastic philosophy, remarks that ‘the infinity of points
in the long line is greater than the infinity of points in the short line.”
Then come the remarkable words of Salviati: “This is one of the
difficulties which arise when we attempt, with our finite minds, to
discuss the infinite, assigning to it those properties which we give to
the finite and unlimited; but this I think is wrong, for we cannot
speak of infinite quantities as being the one greater or less than or
equal to another. . .. We can only infer that the totality of all
numbers is infinite, and that the number of squares is infinite, and
that the number of the roots is infinite; neither is the number of squares
less than the totality of all numbers, nor the latter greater than the
former; and finally the attributes ‘equal,’ ‘greater,” and ‘less’ are
not applicable to infinite, but only to finite quantities. . . . One
line does not contain more or less or just as many points as another,
but . . . each line contains an infinite number.”” From the time of
Galileo and Descartes to Sir William Hamilton, there was held the
doctrine of the finitude of the human mind and its consequent in-
ability to conceive the infinite. A. De Morgan ridiculed this, saying,
the argument amounts to this, “who drives fat oxen should himse
be fat.”

Infinite series, which sprang into prominence at the time of the

1 See Galileo's Dialogues concerning two new Sciences, translated by Henry Crew
and Alfonso de Salvio, New York, 1914, ““First Day,” pp. 30-32.
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invention of the differential and integral calculus, were used by a few
writers before that time. Pietro Mengoli (1626-1686) of Bologna !
treats them in a book, Nove quadrature arithmelice, of 1650. He
proves the divergence of the harmonic series by dividing its terms
into an infinitc number of groups, such that the sum of the terms in
each group is greater than 1. The first proof of this was formerly
attributed to Jakob Bernoulli, 1689. Mengoli showed the conver-
gence of the reciprocals of the triangular numbers, a result formerly
supposed to have been first reached by C. Huygens, G. W. Leibniz,
or Jakob Bernoulli. Mengoli reached creditable results on the sum-
mation of infinite series.

Descartes to Newton

Among the earliest thinkers of the seventeenth and eighteenth
centuries, who employed their mental powers toward the destruction
of old ideas and the up-building of new ones, ranks René Descartes
(1596-1650). Though he professed orthodoxy in faith all his life,
yet in science he was a profound sceptic. He found that the world’s
brightest thinkers had been long exercised in metaphysics, yet they
had discovered nothing certain; nay, had even flatly contradicted each
other. This led him to the gigantic resolution of taking nothing
whatever on authority, but of subjecting everything to scrutinous
examination, according to new methods of inquiry. The certainty of
the conclusions in geometry and arithmetic brought out in his mind
the contrast between the true and false ways of seeking the truth.
He thereupon attempted to apply mathematical reasoning to all
sciences. “Comparing the mysteries of nature with the laws of
mathematics, he dared to hope that the secrets of both could be un-
locked with the same key.” Thus he built up a system of philosophy
called Cartesianism.

Great as was Descartes’ celebrity as a metaphysician, it may be
fairly questioned whether his claim to be remembered by posterity
as a mathematician is not greatcr. His philosophy has long since
been superseded by other systems, but the analytical geometry of
Descartes will remain a valuable possession forever. At the age of
twenty-one, Descartes enlisted in the army of Prince Maurice of
Orange. His years of soldiering were years of leisure, in which he had
time to pursue his studies. At that time mathematics was his favorite
science. But in 1625 he ceased to devote himself to pure mathe-
matics. Sir William Hamilton 2 is in error when he states that

1 See G. Enestrdm in Bibliotheca mathematica, 3. S., Vol. 12, 1911-12, pp. 135-148.
2Sir William Hamilton, the metaphysician, made a famous attack upon the
study of mathematics as a training of the mind, which appcared in the Edinburgh
Review of 1836. It was shown by A. T. Bledsoe in the Southern Review for July,
1877, that Hamilton misrepresented the sentiments held by Descartes and other
scientists. See also J. S. Mill's Examination of Sir William Hamillon’s Philosophy;
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Descartes considered mathematical studies absolutely pernicious as a
means of internal culture. In a letter to Mersenne, Descartes says:
“M. Desargues puts me under obligations on account of the pains
that it has pleased him to have in me, in that he shows that he is
sorry that I do not wish to study more in geometry, but I have re-
solved to quit only abstract geometry, that is to say, the consideration
of questions which serve only to exercise the mind, and this, in order to
study another kind of geometry, which has for its object the explana-
tion of the phenomena of nature. . . . You know that all my physics
is nothing else than geometry.” The years between 1629 and 1649
were passed by him in Holland in the study, principally, of physics
and metaphysics. His residence in Holland was during the most
brilliant days of the Dutch state. In 1637 he published his Discours
de la Méthode, containing among others an essay of 106 pages on
geometry. His Géomélrie is not easy reading. An edition appeared
subsequently with notes by his friend De Beaune, which were intended
to remove the difficulties. The Géométrie of Descartes is of epoch-
making importance; nevertheless we cannot accept Michel Chasles’
statement that this work is proles sine matre creata—a child brought
into being without a mother. In part, Descartes’ ideas are found in
Apollonius; the application of algebra to geometry is found in Vieta,
Ghetaldi, Oughtred, and even among the Arabs. Fermat, Descartes’
contemporary, advanced ideas on analytical geometry akin to his
own in a treatise entitled Ad locos planos et solidos isagoge, which,
however, was not published until 1679 in Fermat’s Varia opera. In
Descartes’ Géométrie there is no systematic development of the
method of analytics. The method must be constructed from isolated
statements occurring in different parts of the treatise. In the 32
geometric drawings illustrating the text the axes of codrdinates are
in no case explicitly set forth. The treatise consists of three “‘books.”
The first deals with “problems which can be constructed by the aid
of the circle and straight line only.”” The second book is “on the
nature of curved lines.” The third book treats of the “construction
of problems solid and more than solid.” In the first book it is made
clear, that if a problem has a finite number of solutions, the final
equation obtained will have only one unknown, tha.t if the final
equation has two or more unknowns, the problem “is not wholly
determined.” ! If the final equation has two unknowns “then since
there is always an infinity of different points which satisfy the de-
mand, it is therefore required to recognize and trace the line on which
all of them must be located” (p. g). To accomplish this Descartes

C. J. Keyser, Mathematics, 1907, pp. 20-44; F. Cajori in Popular Science Monthly,
1912, pp. 360-372.

! Descartes’ Géomélrie, ed. 1886, p. 4. We are here guided by G. EnestrSm in
Bibliotheca mathematica, 3.S., Vol. 11, pp. 240-243; Vol. 12, pp. 273, 274; Vol. 14,
p. 357, and by H. Wieleitner in Vol. 14, PP. 241-243, 329, 330.
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selects a straight line which he sometimes calls a “diameter” (p. 31)
and associates each of its points with a point sought in such a way that
the latter can be constructed when the former point is assumed as
known. Thus, on p. 18 he says, “Je choises une ligne droite comme
AB, pour rapporter 4 ses divers points tous ceux de cette ligne courbe
EC.” Here Descartes follows Apollonius who related the points of
a conic to the points of a diameter, by distances (ordinates) which
make a constant angle with the diameter and are determined in length
by the position of the point on the diameter. This constant angle is
with Descartes usually a right angle. The new feature introduced by
Descartes was the use of an equation with more than one unknown, so
that (in case of two unknowns) for any value of one unknown (ab-
scissa), the length of the other (ordinate) could be computed. He
uses the letters x and y for the abscissa and ordinate. He makes it
plain that the x and y may be represented by other distances than the
ones selected by him (p. 19), that, for instance, the angle formed by
x and y need not be a right angle. It is noteworthy that Descartes
and Fermat, and their successors down to the middle of the eighteenth
century, used oblique cobrdinates more frequently than did later
analysts. It is also noteworthy that Descartes does not formally
introduce a second axis, our y-axis. Such formal introduction is found
in G. Cramer’s Introduction d ’analyse des lignes courbes algébriques,
1750; earlier publications by de Gua, L. Euler, W. Murdoch and others
contain only occasional references to a y-axis. The words “abscissa,”
“ordinate” were not used by Descartes. In the strictly technical
sense of analytics as one of the cobrdinates of a point, the word
“ordinate” was used by Leibniz in 1694, but in a less restricted sense
such expressions as “ordinatim applicate” occur much earlier in
F. Commandinus and others. The technical use of “abscissa” is
observed in the eighteenth century by C. Wolf and others. In the
more general sense of a “distance” it was used carlier by B. Cavalieri
in his Indivisibles, by Stefano degli Angeli (1623-1697), a professor
of mathematics in Rome, and by others. Leibniz introduced the word
“codrdinate” in 1692. To guard against certain current historical
errors we quote the following from P. Tannery: “One frequently
attributes wrongly to Descartes the introduction of the convention
of reckoning coordinates positively and negatively, in the sense in
which we start them from the origin. The truth is that in this respect
the Géomélrie of 1637 contains only certain remarks touching the
mterpretatnon of real or false (positive or negative) roots of equations.

. If then we examine with care the rules given by Descartes in
his Geomctne, as well as his application of them, we notice that he
adopts as a principle that an equation of a geometric locus is not
valid except for the angle of the coérdinates (quadrant) in which it
was established, and all his contemporaries do likewise. The extension
of an equation to other angles (quadrants) was freely made in particu-

-*
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lar cases for the interpretation of the negative roots of equations;
but while it served particular conventions (for example for reckoning
distances as positive and negative), it was in reality quite long in
completely establishing itself, and one cannot attribute the honor for
it to any particular geometer.”

Descartes’ geometry was called “analytical geomectry,” partly
because, unlike the synthetic geometry of the ancients, it is actually
analytical, in the sense that the word is used in logic; and partly be-
cause the practice had then already arisen, of designating by the term
analysis the calculus with general quantities.

The first important example solved by Descartes in his geometry
is the “problem of Pappus”; viz. “Given several straight lines in a
plane, to find the locus of a point such that the perpendiculars, or more
generally, straight lines at given angles, drawn from the point to the
given lines, shall satisfy the condition that the product of certain of
them shall be in a given ratio to the product of the rest.” Of this
celebrated problem, the Greeks solved only the special case when the
number of given lines is four, in which case the locus of the point
turns out to be a conic section. By Descartes it was solved com-
pletely, and it afiorded an excellent example of the use which can be
made of his analytical method in the study of loci. Another solution
was given later by Newton in the Principia. Descartes illustrates
his analytical method also by the ovals, now named after him, ‘“cer-
taines ovales que vous verrez étre trés-utiles pour la théorie de la
catoptrique.” These curves were studied by Descartes, probably, as
early as 1629; they were intended by him to serve in the construction
. of converging lenses, but yielded no results of practical value. In
the nineteenth century they received much attention.!

The power of Descartes’ analytical method in geometry has been
vividly set forth recently by L. Boltzmann in the remark that the
formula appears at times cleverer than the man who invented it. Of
all the problems which he solved by his geometry, none gave him as
great pleasure as his mode of constructing tangents. It was published
earlier than the methods of Fermat and Roberval which were noticed
on a preceding page.

Descartes’ method consisted in first finding the normal. Through
a given point x, y of the curve he drew a circle which had its centre
at the intersection of the normal and the x-axis. Then he imposed
the condition that the circle cut the curve in two coincident points
%, . In 1638 Descartes indicated in a letter that, in place of the
circle, a straight line may be used. This idea is elaborated by Flors-
mond de Beaune in his notes to the 1649 edition of Descartes’ Géométrie.
In finding the point of intersection of the normal and x-axis, Descartes
used the method of I'ndeterminate Coefficients, of which he bears the
honor of invention. Indeterminate coefficients were employed by

1 See G. Loria Ebene Curven (F. Schiitte), I, 1910, p. 174.
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him also in solving biquadratic equations. Descartes’ method of
tangents is profound, but operose, and inferior to Fermat’s method.
In the third book of his Géométrie he points out that if a cubic equation
(with rational coefficients) has a rational root, then it can be factored
and the cubic can be solved geometrically by the use of ruler and
compasses only. He derives the cubic z3=3z—q as the equation upon
which the trisection of an angle depends. He effects a trisection by the
aid of a parabola and circle, but does not consider the reducibility of
the equation. Hence he left the question of the “insolvability” of
the problem untouched. Not till the nineteenth century were con-
clusive proofs advanced of the impossibility of trisecting any angle
and of duplicating a cube, culminating at last in the clear and simple
proofs given by F. Klein in 1895 in his Ausgewihite Fragen der Elemen-\,~
targeomelrie, translated into English in 1897 by W. W. Beman and
D. E. Smith. Descartes proved that every geometric problem giving
rise to a cubic equation can be reduced eithér to the duplication of a
cube or to the trisection of an angle. This fact had been previously
recognized by Vieta.

The essays of Descartes on dioptrics and geometry were sharply
criticised by Fermat, who wrote objections to the former, and sent
his own treatise on “maxima and minima” to show that there were
omissions in the geometry. Descartes thereupon made an attack on
Fermat’s method of tangents. Descartes was in the wrong in this
attack, yet he continued the controversy with obstinacy. In a letter
of 1638, addressed to Mersenne and to be transmitted to Fermat,
Descartes gives x*+y?=gaxy, now known as the “folium of Descartes,”
as representing a curve to which Fermat’s method of tangents would
not apply.! The curve is accompanied by a figure which shows that
Descartes did not then know the shape of the curve. At that time
the fundamental agreement about algebraic signs of codrdinates had
not yet been hit upon; only finite values of variables were used. Hence
the infinite branches of the curve remained unnoticed; some investi-
gators thought there were four leaves instead of only one. C. Huygens
in 1692 gave the correct shape and the asymptote of the curve.

Parabolas of higher order, y*=p*—!x, are mentioned by Descartes
in a letter of July 13, 1638, in which the centre of mass and the volume
obtained by revolution are considered. Cognate considerations are
due to G. P. Roberval, P. Fermat and B. Cavalieri. Apparently, the
shapes of these curves were not studied, and it remained for C. Mac-
laurin (1748) and G. F. A. I'Hospital (1770) to remark that they
have wholly different shapes, according to whether » is a positive or
a negative integer.

Descartes had a controversy with G. P. Roberval on the cycloid.
This curve has been called the “Helen of geometers,” on account

Y Ocuvres de Descartes (Tannery et Adam), 1897, I, 490; T, 316. See also G.
Loria, Ebene Curven (F. Schiitte), I, 1910, p. 54.
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of its beautiful properties and the controversies which their discovery
occasioned. Its quadrature by Roberval was generally considered a
brilliant achievement, but Descartes commented on it by saying that
any one moderately well versed in geometry might have done this.
He then sent a short demonstration of his own. On Roberval’s in-
timating that he had been assisted by a knowledge of the solution,
Descartes constructed the tangent to the curve, and challenged
Roberval and Fermat to do the same. Fermat accomplished it, but
Roberval never succeeded in solving this problem, which had cost
the genius of Descartes but a moderate degree of attention.

The application of algebra to the doctrine of curved lines reacted
favorably upon algebra. As an abstract science, Descartes improved
it by the introduction of the modern exponential notation. In his
Géomélrie, 1637, he writes “aa ou a? pour multiplier a par soiméme;
et g pour le multiplier encore une fois par a, et ainsi & I'infini.”
Thus, while F. Vieta represented 42 by “A cubus” and Stevin x*
by a figure 3 within a small circle, Descartes wrote a3. In his Géomélrie
he does not use negative and fractional exponents, nor literal ex-
ponents. His notation was the outgrowth and an improvement of
notations employed by writers before him. Nicolas Chuquet’s manu-
script work, Le Triparly en la science des nombres,* 1484, gives 1223
and 10x% and their product 120x%, by the symbols 123, 10% 120°%
respectively. Chuquet goes even further and writes 122° and 72!
thus 12°, 7!m; he represents the product of 8x% and 72! by 562 J.
Biirgi, Reymer and J. Kepler use Roman numerals for the exponen-

tial symbol. J. Biirgi writes 16x? thus g Thomas Harriot simply

repeats the letters; he writes in his Artis analytice praxis (1631),
a*—10240%+4 62544, thus: aaaa—1024aa+6254a.

Descartes’ exponential notation spread rapidly; about 1660 or
1670 the positive integral exponent had won an undisputed place in
algebraic notation. In 1656 J. Wallis speaks of negative and fractional
“indices,” in his Arithmetica infinitorum, but he does not actually

1
write a—! for 2 or a'/s for 4/a®. Tt wasI. Newton who, in his famous

letter to H. Oldenburg, dated June 13, 1676, and containing his an-
nouncement of the binomial theorem, first uses negative and fractional
exponents,

With Descartes a letter represented always only a positive number.
It was Johann Hudde who in 1659 first let a letter stand for negative
as well as positive values.

Descartes also established some theorems on the theory of equa-
tions. Celebrated is his “rule of signs” for determining the number

1 Chuquet’s “Le Triparty,” Bullettino Boncompagni, Vol. 13, 1880, p. 740.
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of positive and negative roots. He gives the rule after pointing out
the roots 2, 3, 4, —5 and the corresponding binomial factors of the
equation x‘—4r®—19x2+1062—120=0. His exact words are as
follows:

“On connoit aussi de ceci combien il peut y avoir de vraies racines
et combien de fausses en chaque équation: & savoir il y en peut avoir
autant de vraies que les signes + et — s’y trouvent de fois &tre
changés, et autant de fausses qu'il s’y trouve de fois deux signes +
ou deux signes — qui s’entre-suivent. Comme en la derniére, 4 cause
qu'aprés +x* il y a —4+3, qui est un changement du signe + en —,
et aprés —19x? il y a +1062, et aprés +106x il y a —120, qui sont
encore deux autres changements, ou connoit qu’il y a trois vraies
racines; et une fausse, 4 cause que les deux signes — de 423 et 19x?
s’entre-suivent.”

This statement lacks completeness. For this reason he has been
frequently criticized. J. Wallis claimed that Descartes failed to
notice that the rule breaks down in case of imaginary roots, but
Descartes does not say that the equation always kas, but that it may
have, so many roots. Did Descartes receive any suggestion of his
rule from earlier writers? He might have received a hint from H.
Cardan, whose remarks on this subject have been summarized by
G. Enestrom ! as follows: If in an equation of the second, third or
fourth degree, (1) the last term is negative, then one variation of sign
signifies one and only one positive root, (2) the last term is positive,
then two variations indicate either several positive roots or none.
Cardan does not consider equations having more than two variations.
G. W. Leibniz was the first to erroneously attribute the rule of signs
to T. Harriot. Descartes was charged by J. Wallis with availing
himself, without acknowledgment, of Harriot’s theory of equations,
particularly his mode of generating equations; but there seems to be
no good ground for the charge.

In mechanics, Descartes can hardly be said to have advanced be-
yond Galileo. The latter had overthrown the ideas of Aristotle on
this subject, and Descartes simply “threw himself upon the enemy”
that had already been “put to the rout.” His statement of the first
and second laws of motion was an improvement in form, but his third
law is false in substance. The motions of bodies in their direct impact
was imperfectly understood by Galileo, erroneously given by Descartes,
and first correctly stated by C. Wren, J. Wallis, and C. Huygens.

One of the most devoted pupils of Descartes was the learned
Princess Elizabeth, daughter of Frederick V. She applied the new
analytical geometry to the solution of the ‘“Apollonian problem.”
His second royal follower was Queen Christina, the daughter of Gus-
tavus Adolphus. She urged upon Descartes to come to the Swedish
court. After much hesitation he accepted the invitation in 1649.

1 Bibliotheca mathematica, 3rd S., Vol. 7, 1906-7, p. 293.
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He died at Stockholm one year later. His life had been one long war-
fare against the prejudices of men.

It is most remarkable that the mathematics and philosophy of
Descartes should at first have been appreciated less by his country-
men than by foreigners. The indiscreet temper of Descartes alienated
the great contemporary French mathematicians, Roberval, Fermat,
Pascal. They continued in investigations of their own, and on some
points strongly opposed Descartes. The universities of France were
under strict ecclesiastical control and did nothing to introduce his
mathematics and philosophy. It was in the youthful universities of
Holland that the effect of Cartesian teachings was most immediate
and strongest.

The only prominent Frenchman who immediately followed in the
footsteps of the great master was Florimond de Beaune (1601-1652).
He was one of the first to point out that the properties of a curve
can be deduced from the properties of its tangent. This mode of
inquiry has been called the ¢nverse method of tangents. He contributed
to the theory of equations by considering for the first time the upper
and lower limits of the roots of numerical equations.

In the Netherlands a large number of distinguished mathematicians
were at once struck with admiration for the Cartesian geometry.
Foremost among these are van Schooten, John de Witt, van Heuraet,
Sluze, and Hudde. Franciscus van Schooten (died 1660), professor
of mathematics at Leyden, brought out an edition of Descartes’
geometry, together with the notes thereon by De Beaune. His chief
work is his Exercitationes Mathematice, 1657, in which he applies the
analytical geometry to the solution of many interesting and difficult
problems. The noble-hearted Johann de Witt (1625-1672), grand-
pensioner of Holland, celebrated as a statesman and for his tragical
end, was an ardent geometrician. He conceived a new and ingenious
way of generating conics, which is essentially the same as that by
projective pencils of rays in modern synthetic geometry. He treated
the subject not synthetically, but with aid of the Cartesian analysis.
René Frangois de Sluse (1622-1685) and Johann Hudde (1633-
1704) made some improvements on Descartes’ and Fermat’s methods
of drawing tangents, and on the theory of maxima and minima. With
Hudde, we find the first use of three variables in analytical geometry.
He is the author of an ingenious rule for finding equal roots. We
illustrate it by the equation x*—x?—8x+12=0. Taking an arith-
metical progression 3, 2, 1, o, of which the highest term is equal to
the degree of the equation, and multiplying each term of the equation
res| tlvely by the corresponding term of the progression, we get

x°— 2x2—8x=0, or 3x2—2x—8=0. This last equation is by one
degree lower than the original one. Find the G.C.D. of the two
equations. This is x—2; hence 2 is one of the two equal roots. Had
there been no common divisor, then the original equation would not
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h:-).vel possessed equal roots. Hudde gave a demonstration for this
rule.

Heinrich van Heuraet must be mentioned as one of the earliest
geometers who occupied themselves with success in the rectification
of curves. He observed in a general way that the two problems of
quadrature and of rectification are really identical, and that the one
can be reduced to the other. Thus he carried the rectification of the
hyperbola back to the quadrature of the hyperbola. The curve which
John Wallis named the “semi-cubical parabola,” y3=ax?, was the
first curve to be rectified absolutely. This appears to have been
accomplished independently by P. Fermat in France, Van Heuraet
in Holland and by William Neil (1637-1670) in England. According
to J. Wallis the priority belongs to Neil. Soon after, the cycloid was
rectified by C. Wren and Fermat.

A mathematician of no mean ability was Gregory St. Vincent
(1584-1667), a Belgian, who studied under C. Clavius in Rome and
was two years professor at Prague, where, during war time, his manu-
script volume on geometry and statics was lost in a fire. Other-papers
of his were saved but carried about for ten years before they came
again into his possession, at his home in Ghent. They became the
groundwork of his great book, the Opus geometricum quadralure
circuli el sectionum coni, Antwerp, 1647. It consists of 1225 folio
pages, divided into ten books. St. Vincent proposes four methods for
squaring the circle, but does not actually carry them out. The work
was attacked by R. Descartes, M. Mersenne and G. P. Roberval,
and defended by the Jesuit Alfons Anton de Sarasa and others.
Though erroneous on the possibility of squaring the circle, the Opus
contains solid achievements, which were the more remarkable, because
at that time only four of the seven books of the conics of Apollonius
of Perga were known in the Occident. St. Vincent deals with conics,
surfaces and solids from a new point of view, employing infinitesimals
in a way perhaps less objectionable than in B. Cavalieri’s book. St.
Vincent was probably the first to use the word exhaurire in a geo-
metrical sense. From this word arose the name of “method of ex-
haustion,” as applied to the method of Euclid and Archimedes. St.
Vincent used a method of transformation of one conic into another,
called per subtendas (by chords), which contains germs of analytic
geometry. He created another special method which he called Ductus
plani in planum and used in the study of solids.? Unlike Archimedes
who kept on dividing distances, only until a certain degree of small-
ness was reached, St. Vincent permitted the subdivisions to continue

1 Heinrich Suter, Geschichte der Mathematischen Wissenschaften Ziirich, 2. Theil,

1875, p. 25.
2 See M. Marie, Histoire des sciences math., Vol. 3, 1884, pp. 186-193; Karl Bopp,
Kegelschnitte des Gregorius a St. Vincento in Abkandl. 5. Gesch. d. math. Wissensch.,

Heft, 1907, pp. 83-314.



182 A HISTORY OF MATHEMATICS

ad infinitum and obtained a geometric series that was infinite. How-
ever, infinite series had been obtained before him by Alvarus Thomas,
anative of Lisbon, in a work, Liber de triplici motu, 1509,! and possibly
by others. But St. Vincent was the first to apply geometric series to
the “Achilles” and to look upon the paradox as a question in the
summation of an infinite series. Moreover, St. Vincent was the first
to state the exact time and place of overtaking the tortoise. He
spoke of the limit as an obstacle against further advance, similar to
a rigid wall. Apparently he was not troubled by the fact that in his
theory, the variable does not reach its limit. His exposition of the
“Achilles” was favorably received by G. W. Leibniz and by writers
over a century afterward. The fullest account and discussion of
Zeno’s arguments on motion that was published before the nineteenth
century was given by the noted French skeptical philosopher, Pierre
Bayle, in an article “Zenon d’Elée” in his Dictionnaire historique et
crilique, 1696.2

The prince of philosophers in Holland, and one of the greatest
scientists of the seventeenth century, was Christian Huygens (1629~
1695), a native of The Hague. Eminent as a physicist and astronomer,
as well as mathematician, he was a worthy predecessor of Sir Isaac
Newton. He studied at Leyden under Frans Van Schooten. The
perusal of some of his earliest theorems led R. Descartes to predict
his future greatness. In 1651 Huygens wrote a treatise in which he
pointed out the fallacies of Gregory St. Vincent on the subject of
quadratures. He himself gave a remarkably close and convenient
approximation to the length of a circular arc. In 1660 and 1663 he
went to Paris and to London. In 1666 he was appointed by Louis
XIV member of the French Academy of Sciences. He was induced
to remain in Paris from that time until 1681, when he returned to his
native city, partly for consideration of his health and partly on ac-
count of the revocation of the Edict of Nantes.

The majority of his profound discoveries were made with aid of the
ancient geometry, though at times he used the geometry of R. Des-
cartes or of B. Cavalieri and P. Fermat. Thus, like his illustrious
friend, Sir Isaac Newton, he always showed partiality for the Greek
geometry. Newton and Huygens were kindred minds, and had the
greatest admiration for each other. Newton always speaks of him
as the “Summus Hugenius.”

To the two curves (cubical parabola and cycloid) previously recti-
fied he added a third,—the cissoid. A French physician, Claudius
Perrault, proposed the question, to determine the path in a fixed plane
of a heavy point attached to one end of a taut string whose other end
moves along a straight line in that plane. Huygens and G. W. Leibniz
studied this problem in 1693, generalized it, and thus worked out the

1 H. Wieleitner, in Bibliotheca mathematica, 3. F., Bd. 1914, 14, p. 152.
2 See F. Cajori in Am. Math. Monthly, Vol. 22, 1915, pp. 109-112.
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geometry of the “tractrix.” ! Huygens solved the problem of the
catenary, determined the surface of the parabolic and hyperbolic
conoid, and discovered the properties of the logarithmic curve and
the solids generated by it. Huygens’ De horologio oscillatorio (Paris,
1673) is a work that ranks second only to the Principia of Newton
and constitutes historically a necessary introduction to it. The book
opens with a description of pendulum clocks, of which Huygens is the
inventor. “Then follows a treatment of accelerated motion of bodies
falling free, or sliding on inclined planes, or on given curves,—cul-
minating in the brilliant discovery that the cycloid is the tautochronous
curve. To the theory of curves he added the important theory of
‘“evolutes.” After explaining that the tangent of the evolute is
normal to the involute, he applied the theory to the cycloid, and
showed by simple reasoning that the evolute of this curve is an equal
cycloid. Then comes the complete general discussion of the centre
of oscillation. This subject had been proposed for investigation by
M. Mersenne and discussed by R. Descartes and G. P. Roberval.
In Huygens’ assumption that the common centre of gravity of a
group of bodies, oscillating about a horizontal axis, rises to its original
height, but no higher, is expressed for the first time one of the most
beautiful principles of dynamics, afterwards called the principle of .
the conservation of vis viva. The thirteen theorems at the close of
the work relate to the theory of centrifugal force in circular motion.
This theory aided Newton in discovering the law of gravitation.?

Huygens wrote the first formal treatise on probability. He pro-
posed the wave-theory of light and with great skill applied geometry
to its development. This theory was long neglected, but was revived
and elaborated by Thomas Young and A. J. Fresnel a century later.
Huygens and his brother improved the telescope by devising a better
way of grinding and polishing lenses. With more efficient instru-
ments he determined the nature of Saturn’s-appendage and solved
other astronomical questions. Huygens’ Opuscula posthuma appeared
in 1703.

The theory of combinations, the primitive notions of which go
back to ancient Greece, received the attention of William Buckley
of King’s College, Cambridge (died 1550), and especially of Blaise
Pascal who treats of it in his Arithmetical Triangle. Before Pascal,
this Triangle had been constructed by N. Tartaglia and M. Stifel.
Fermat applied combinations to the study of probability. The earliest
mathematical work of Leibniz was his De arte combinatoria. The
subject was treated by John Wallis in his Algebra.

John Wallis (1616-1703) was one of the most original mathemati-
cians of hisday. He was educated for the Church at Cambridge and en-

1 G. Loria, Ebene Curven (F. Schiitte) II, 1911, p. 188.
*E. Dithring, Kritische Geschichle der Allgemeinen Principien der Mechanik.

Leipzig, 1887, p. 135.
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tered Holy Orders. But his genius was employed chiefly in the study of
mathematics. In 1649 he was appointed Savilian professor of geometry
at Oxford. He was one of the original members of the Royal Society,
which was founded in 1663. He ranks as one of the world’s greatest de-
cipherers of cryptic writing.! Wallis thoroughly grasped the mathemat-
ical methods both of B. Cavalieriand R. Descartes. His Conic Sections
is the earliest work in which these curves are no longer considered as
sections of a cone, but as curves of the second degree, and are treated
analytically by the Cartesian method of co-ordinates. In this work
Wallis speaks of Descartes in the highest terms, but in his Algebra
(1685, Latin edition 1693), he, without good reason, accuses Descartes
of plagiarizing from T. Harriot. It is interesting to observe that, in
his Algebra, Wallis discusses the possibility of a fourth dimension.
Whereas nature, says Wallis, “doth not admit of more than three
(local) dimensions . . . it may justly seem very improper to talk of
asolid . . . drawn into a fourth, fifth, sixth, or further dimension. . ..
Nor can our fansie imagine how there should be a fourth local dimen-
sion beyond these three.” 2 The first to busy himself with the number
of dimensions of space was Ptolemy. Wallis felt the need of a method
of representing imaginaries graphically, but he failed to discover a
general and consistent representation.! He published Nasir-Eddin's
proof of the parallel postulate and, abandoning the idea of equi-
distance that had been employed without success by F. Commandino,
C. S. Clavio, P. A. Cataldi and G. A. Borelli, gave a proof of his own
based on the axiom that, to every figure there exists a similar figure

of arbitrary magnitude.* The existence of similar triangles was as-.

sumed 1000 years before Wallis by Aganis, who was probably a
teacher of Simplicius. We have already mentioned elsewhere Wallis’s
solution of the prize questions on the cycloid, which were proposed by
Pascal.

The Arithmetica infinitorum, published in 1655, is his greatest work.
By the application of analysis to the Method of Indivisibles, he greatly
increased the power of this instrument for effecting quadratures. He
created the arithmetical conception of a limit by considering the
successive values of a fraction, formed in the study of certain ratios;
these fractional values steadily approach a limiting value, so that
the difference becomes less than any assignable one and vanishes
when the process is carried to infinity. He advanced beyond J. Kepler
by making more extended use of the “law of continuity” and placing

1D. E. Smith in Bull. Am. Math. Soc., Vol. 24, 1917, p. 82.

1 G. Enestrdm in Bibliotheca mathematica, 3. S., Vol. 12, 1911-12, p. 88.

3 See Wallis’ Algebra, 1685, pp. 264-273; see also Enestrdm in Bibliotheca mathe-
malica, 3. S., Vol. 7, pp. 263-269.

4R. Bonola, 0p. cit., pp. 12-17. See also F. Engel u. P, Stiickel, Theorie der
Parallellinien von Euclid bis auf Gauss, Leipzig, 1895, pp. 21-36. This treatise
gives translations into German of Saccheri, also the essays of Lambert and Taurinus,
and letters of Gauss.
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full reliance in it. By this law he was led to regard the denominators
of fractions as powers with negative exponents. Thus, the descendin; §
geometrical progression 23, 2, x*, 2%, if continued, gives x~!, x~%, 2~

etc.; which is the same thing as o %, 515. The exponents of this geo-

metric series are in continued arithmetical progression, 3, 2, 1, o,
—1, —2, —3. However, Wallis does not actually use here the no-
tation x2~!, 22, etc.; he merely speaks of negative exponents. He
also used fractional exponents which, like the negative, had been
invented long before, but had failed to 'be generally introduced. The
symbol oo for infinity i is due to him. Wallis introduces the name,
““hypergeometric series” for a series different from a, ab, ab?, . . . ;
h;: did not look upon this new series as a power-series nor as a funcnon
of x.

B. Cavalieri and the French geometers had ascertained the formula
for squaring the parabola of any degree, y=x™, m being a positive
integer. By the summation of the powers of the terms of infinite
arithmetical series, it was found that the curve y=a" is to the area
of the parallelogram having the same base and altitude as 1 is to
m+1. Aided by the law of continuity, Wallis arrived at the result
that this formula holds true not only when m is positive and integral,
but also when it is fractional or negative. Thus, in the parabola

y=+vpx, m=}%; hence the area of the parabolic segment is to that
of the circumscribed rectangle as 1: 1%, or as 2 :3. Again, suppose
that in y=2%, m=—}; then the curve is a kind of hyperbola referred
to its asymptotes, and the hyperbolic space between the curve and
its asymptotes is to the corresponding parallelogram as 1 : §. If m=
—1, as in the common equilateral hyperbola y=x—l or xy=1, then
this ratio is 1: —1+1, or 1:0, showing that its asymptotic space
is infinite. But in the case when m is greater than unity and negative,
Wallis was unable to interpret correctly his results. For example,
if m=—3, then the ratio becomes 1 : —2, or as unity to a negative
number. What is the meaning of this? Wallis reasoned thus: If the
denominator is only zero, then the area is already infinite; but if it is
less than zero, then the area must be more than infinite. It was
pointed out later by P. Varignon, that this space, supposed to exceed
infinity, is really finite, but taken negatively; that is, measured in a
contrary direction.? The method of Wallis was easily extended to

cases such as y=ax»+bx¢ by performing the quadrature for each term
separately, and then adding the results.

The manner in which Wallis studied the quadrature of the circle
and arrived at his expression for the value of 7 is extraordinary. He
found that the areas comprised between the axes, the ordinate cor-

1]J. F. Montucla, Histoire des mathématiques, Paris, Tome 2, An VII, p. 350,
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responding to x, and the curves represented by the equations v=
(1—22)0 y=(1—2?!, y=(1—22)3 y=(1—2x2)3 etc., are expressed in
functions of the circumscribed rectangles having # and y for their
sides, by the quantities forming the series
x,
x—§xd,
x—§x3+}x8,
x—§x3+§x°— o7, etc.
When x=1, these values become respectively 1, §, %, 14, etc. Now
since the ordinate of the circle is y=(1—x?)3, the exponent of which is
4 or the mean value between o and 1, the question of this quadrature
reduced itself to this: If o, 1, 2, 3, etc., operated upon by a certain law,
give 1, 4, 1%, 1%%, what will 4 give, when operated upon by the same
law? He attempted to solve this by interpolation, a method first
brought into prominence by him, and arrived by a highly complicated
and difficult analysis at the following very remarkable expression:
_1_r=2.2.4.4.6.6.8.8. ..
2 1.3.3.5.5.7-7-9...

He did not succeed in making the interpolation itself, because he
did not employ literal or general exponents, and could not conceive a
series with more than one term and less than two, which it seemed
to him the interpolated series must have. The consideration of this
difficulty led I. Newton to the discovery of the Binomial Theorem.
This is the best place to speak of that discovery. Newton virtually
assumed that the same conditions which underlie the general ex-
pressions for the areas given above must also hold for the expression
to be interpolated. In the first place, he observed that in each ex-
pression the first term is x, that x increases in odd powers, that the
signs alternate + and —, and that the second terms §23%, §x3, §23, §a?,
are in arithmetical progression. Hence the first two terms of the

i«?

interpolated series must be x——é—. He next considered that the de-

nominators 1, 3, s, 7, etc., are in arithmetical progression, and that
the coefficients in the numerators in each expression are the digits
of some power of the number 11; namely, for the first expression, r1°
or 1; for the second, 11! or 1, 1; for the third, 112 or 1, 2, 1; for the
fourth, r1® or 1, 3, 3, 1; etc. He then discovered that, having given
the second digit (call it m), the remaining digits can be found by con-

m—o m—i m-—2
*T2 . 3

m—2 .
gives 4;

tinual multiplication of the terms of the series

—3

.etc. Thus, if m=4, then 4.m_2—_1 gives 6; 6.
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4. ? gives 1. Applying this rule to the required series, since the

3

second term is T’ we have m=}, and then get for the succeeding
coefficients in the numerators respectively —3}, —&%, —1§y, etc;
hence the required area for the circular segment is x — 5 s g

etc. Thus he found the interpolated expression to be an infinite series,
instead of one having more than one term and less than two, as Wallis
believed it must be. This interpolation suggested to Newton a mode
of expanding (1—x?)}, or, more generally, (1 —x2™, into a series. He
observed that he had only to omit from the expression just found the
denominators 1, 3, 5, 7, etc., and to lower each power of x by unity,
and he had the desired expression. In a letter to H. Oldenburg
(June 13, 1676), Newton states the theorem as follows: The extraction
of roots is much shortened by the theorem

m—2an
pr CQ+etc.,

”
where 4 means the first term, Ps, B the second term, C the third
term, etc. He verified it by actual multiplication, but gave no regular
proof of it. He gave it for any exponent whatever, but made no dis-
tinction between the case when the exponent is positive and integral,
and the others.

It should here be mentioned that very rude beginnings of the bi-
nomial theorem are found very early. The Hindus and Arabs used
the expansions of (a+b5)2 and (a-+b)? for extracting roots; Vieta knew
the expansion of (a+b)*; but these were the results of simple multi-
plication without the discovery of any law. The binomial coefficients
for positive whole exponents were known to some Arabic and Euro-
pean mathematicians. B. Pascal derived the coefficients from the
method of what is called the ‘“arithmetical triangle.” Lucas de
Burgo, M. Stifel, S. Stevinus, H. Briggs, and others, all possessed
something from which one would think the binomial theorem could
have been gotten with a little attention, “if we did not know that
such simple relations were difficult to discover.”

Though Wallis had obtained an entirely new expression for 7, he
was not satisfied with it; for instead of a finite number of terms yield-
ing an absolute value, it contained an infinite number, approaching
nearer and nearer to that value. He therefore induced his friend, Lord
Brouncker, the first president of the Royal Society, to investigate
this subject. Of course Lord Brouncker did not find what they were
after, but he obtained the following beautiful equality:—

m m gy m—n
(P+PQ)» =P-+;A o+ TBQ"'
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T= 4 1
I+ o
2+
2+—25—45
2+2+ etc.

Continued fractions, both ascending and descending, appear to have
been known already to the Greeks and Hindus, though not in our
present notation. Brouncker’s expression gave birth to the theory of
continued fractions.

Wallis’ method of quadratures was diligently studied by his dis-
ciples. Lord Brouncker obtained the first infinite series for the area
of the equilateral hyperbola xy=1 between one of its asymptotes and

the ordinates for x=1 and x=2; viz. the area L+L-4-L-l- «.. The
1.2 3.4 5.6
Logarithmotechnia (London, 1668) of Nicolaus Mercalor is often said

3
to contain the series log (x+a)=a-—%+23—-— ... In reality it con-

tains the numerical values of the first few terms of that series, tak-
ing @=.1, also @¢=.21. He adhered to the mode of exposition which
favored the concrete special case to the general formula. Wallis was
the first to state Mercator’s logarithmic series in general symbols.
Mercator deduced his results from the grand property of the hyper-
bola deduced by Gregory St. Vincent in Book VII of his Opus geo-
melricum, Antwerp, 1647: If parallels to one asymptote are drawn
between the hyperbola and the other asymptote, so that the successive
areas of the mixtilinear quadrilaterals thus formed are equal, then
the lengths of the parallels form a geometric progression. Apparently
the first writer to state this theorem in the language of logarithms
was the Belgian Jesuit Alfons Anton de Sarasa, who defended Gregory
St. Vincent against attacks made by Mersenne. Mercator showed
how the construction of logarithmic tables could be reduced to the
quadrature of hyperbolic spaces. Following up some suggestions of
Wallis, William Neil succeeded in rectifying the cubical parabola, and
C. Wren in rectifying any cycloidal arc. Gregory St. Vincent, in
Part X of his Opus describes the construction of certain quartic curves,
often called virtual parabolas of St. Vincent, one of which has a shape
much like a lemniscate and in Cartesian co-ordinates is d?(y?—x2%) =y*.
Curves of this type are mentioned in the correspondence of C. Huy-
gens with R. de Sluse, and with G. W. Leibniz.

A prominent English mathematician and contemporary of Wallis
was Isaac Barrow (1630-1677). He was professor of mathematics
in London, and then in Cambridge, but in 1669 he resigned his chait
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to his illustrious pupil, Isaac Newton, and renounced the study of
mathematics for that of divinity. As a mathematician, he is most
celebrated for his method of tangents. He simplified the method of
P. Fermat by introducing two infinitesimals instead of one, and ap-
proximated to the course of reasoning afterwards followed by Newton
in his doctrine on Ultimate Ratios. The following books are Barrow’s:
Lectiones geometrice (1670), Lectiones mathematice (1683-1685).

He considered the infinitesimal right triangle ABB’ having for its
sides the difference between two successive ordinates, the distance
between them, and the portion of the curve intercepted by them.
This triangle is similar to BPT, formed by the ordinate, the tangent
and the sub-tangent Hence, if we

know the ratio of B’A to BA, then B!
we know the ratio of the ordinate B
and the sub-tangent, and the tangent 4

can be constructed at once. For any

curve, say y*=px, the ratio of B'A to

BA is determined from its equation

as follows: If x receives an infinitesi- 7 P P/

mal increment PP’ =¢, then y receives

an increment B'A =gq, and the equatlon for the ordinate B’P’ becomes
y*+2ay+a®=px+pe. Since y*=px, we get 2ay+a’=pe; neglecting

hxgher powers of the infinitesimals, we have 2ay=pe, which gives

ace=p:2y=p:2V px.
But a: e=the ordinate: the sub-tangent; hence

P2V px= V/px: sub-tangent,
giving 2x for the value of the sub-tangent. This method differs from
that of the differential calculus chiefly in notation. In fact, a recent
investigator asserts, “Isaac Barrow was the first inventor of the in-
finitesimal calculus.” !

Of the integrations that were performed before the Integral Calculus
was invented, one of the most difficult grew out of a practical problem
of navigation in connection with Gerardus Mercator’s map. In 1599
Edward Wright published a table of latitudes giving numbers express-
ing the length of an arc of the nautical meridian. The table  was com-
puted by the continued addition of the secants of 1", 2", 3, etc. In

9
modern symbols this amounts to r j sec 0 d 0=rlog tan (90°— 8)/s.

It was Henry Bond who noticed by inspection about 1645 that
Wright’s table was a table of logarithmic tangents. Actual demon-
strations of this, thereby really establishing the above definite integral,
were given by James Gregory in 1668, Isaac Barrow in 1670, John

1J. M. Child, The Geomelrical Lectures of Isaac Barrow, Chicago and London,
1916, preface.
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Wallis in 1685, and Edmund Halley in 1698.! James Gregory and
0

Barrow gave also the integralfotan 0 d 6=log sec 0; B. Cavalieri in

1647 established the integral of f :x" dz. Similar results were obtained

by E. Torricelli, Gregory St. Vincent, P. Fermat, G. P. Roberval and
B. Pascal.?

Newton to Euler

It has been seen that in France prodigious scientific progress was
made during the beginning and middle of the seventeenth century.
The toleration which marked the reign of Henry IV and Louis XIII
was accompanied by intense intellectual activity. Extraordinary con-
fidence came to be placed in the power of the human mind. The bold
intellectual conquests of R. Descartes, P. Fermat, and B. Pascal en-
riched mathematics with imperishable treasures. During the early
part of the reign of Louis XIV we behold the sunset splendor of this
glorious period. Then followed a night of mental effeminacy. This
lack of great scientific thinkers during the reign of Louis XIV may be
due to the simple fact that no great minds were born; but, according
to Buckle, it was due to the paternalism, to the spirit of dependence
and subordination, and to the lack of toleration, which marked the
policy of Louis XIV.

In the absence of great French thinkers, Louis XIV surrounded
himself by eminent foreigners. Q. Romer from Denmark, C. Huygens
from Holland, Dominic Cassini from Italy, were the mathematicians
and astronomers adorning his court. They were in possession of a
brilliant reputation before going to Paris. Simply because they per-
formed scientific work in Paris, that work belongs no more to France
than the discoveries of R. Descartes belong to Holland, or those of
J. Lagrange to Germany, or those of L. Euler and J. V. Poncelet to
Russia. We must look to other countries than France for the great
scientific men of the latter part of the seventeenth century.

About the time when Louis XIV assumed the direction of the
French government Charles II became king of England. At this
time England was extending her commerce and navigation, and ad-
vancing considerably in material prosperity. A strong intellectual
movement took place, which was unwittingly supported by the king.
The age of poetry was soon followed by an age of science and philos-
ophy. In two successive centuries England produced Shakespeare
and I. Newton!

1See F. Cajori in Bibliotheca mathematica, 3. S., Vol. 14, 1915, pp. 312-319.
tH. (;:I Zeuthen, Geschichie der Math. (deutsch v. R. Meyer), Leipzig, 1903,
PP. 256 ff.
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Germany still continued in a state of national degradation. The
Thirty Years’ War had dismembered the empire and brutalized the
people. Yet this darkest period of Germany’s history produced G. W.
Leibniz, one of the greatest geniuses of modern times.

There are certain focal points in history toward which the lines of
past progress converge, and from which radiate the advances of the
future. Such was the age of Newton and Leibniz in the history of
mathematics. During fifty years preceding this era several of the
brightest and acutest mathematicians bent the force of their genius
in a direction which finally led to the discovery of the infinitesimal
calculus by Newton and Leibniz. B. Cavalieri, G. P. Roberval, P.
Fermat, R. Descartes, J. Wallis, and others had each contributed to
the new geometry. So great was the advance made, and so near was
their approach toward the invention of the infinitesimal analysis, that
both J. Lagrange and P. S. Laplace pronounced their countryman,
P. Fermat, to be the first inventor of it. The differential calculus,
therefore, was not so much an individual discovery as the grand result
of a succession of discoveries by different minds. Indeed, no great
discovery ever flashed upon the mind at once, and though those of
Newton will influence mankind to the end of the world, yet it must be
admitted that Pope’s lines are only a “poetic fancy”:—

“Nature and Nature’s laws lay hid in night;
God said, ‘Let Newton be,” and all was light.”

Isaac Newton (1642-1727) was born at Woolsthorpe, in Lincoln-
shire, the same year in which Galileo died. At his birth he was so
small and weak that his life was despaired of. His mother sent him
at an early age to a village school, and in his twelfth year to the public
school at Grantham. At first he seems to have been very inattentive
to his studies and very low in the school; but when, one day, the little
Isaac received a severe kick upon his stomach from a boy who was
above him, he labored hard till he ranked higher in school than his
antagonist. From that time he continued to rise until he was the
head boy.! At Grantham, Isaac showed a decided taste for mechan-
ical inventions. He constructed a water-clock, a wind-mill, a carriage
moved by the person who sat in it, and other toys. When he had at-
tained his fifteenth year his mother took him home to assist her in
the management of the farm, but his great dislike for farmwork and
his irresistible passion for study, induced her to send him back to
Grantham, where he remained till his eighteenth year, when he en-
tered Trinity College, Cambridge (1660). Cambridge was the real
birthplace of Newton’s genius. Some idea of his strong intuitive
powers may be drawn from the fact that he regarded the theorems of
ancient geometry as self-evident truths, and that, without any pre-
liminary study, he made himself master of Descartes’ Geometry. He

1D, Brewster, The Memoirs of Newton, Edinburgh, Vol. I, 1855, p. 8.
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afterwards regarded this neglect of elementary geometry a mistake
in his mathematical studies, and he expressed to Dr. H. Pemberton
his regret that “he had applied himself to the works of Descartes and
other algebraic writers before he had considered the Elements of Euclid
with that attention which so excellent a writer deserves.” Besides R.
Descartes’ Geometry, he studied W. Oughtred’s Clavis, J. Kepler’s
Optics, the works of F. Vieta, van Schooten’s Miscellanies, 1. Barrow’s
Lectures, and the works of J. Wallis. He was particularly delighted
with Wallis’ Arithmetic of Infinites, a treatise fraught with rich and
varied suggestions. Newton had the good fortune of having for a
teacher and fast friend the celebrated Dr. Barrow, who had been
elected professor of Greek in 1660, and was made Lucasian professor
of mathematics in 1663. The mathematics of Barrow and of Wallis
were the starting-points from which Newton, with a higher power
than his masters’, moved onward into wider fields. Wallis had ef-
fected the quadrature of curves whose ordinates are expressed by any
integral and positive power of (1—x2). We have seen how Wallis
attempted but failed to interpolate between the areas thus calculated,
the areas of other curves, such as that of the circle; how Newton at-
tacked the problem, effected the interpolation, and discovered the
Binomial Theorem, which afforded a much easier and direct access to
the quadrature of curves than did the method of interpolation; for
even though the binomial expression for the ordinate be raised to a
fractional or negative power, the binomial could at once be expanded
into a series, and the quadrature of each separate term of that series
could be effected by the method of Wallis. Newton introduced the
system of literal indices.

Newton’s study of quadratures soon led him to another and most
profound invention. He himself says that in 1665 and 1666 he con-
ceived the method of fluxions and applied them to the quadrature of
curves. Newton did not communicate the invention to any of his
friends till 1669, when he placed in the hands of Barrow a tract, en-
titled De Analyst per Equationes Numero Terminorum Infinitas, which
was sent by Barrow to John Collins,” who greatly admired it. In
this treatise the principle of fluxions, though distinctly pointed out,
is only partially developed and explained. Supposing the abscissa to
increase uniformly in proportion to the time, he looked upon the area
of a curve as a nascent quantity increasing by continued fluxion in
the proportion of the length of the ordinate. The expression which
was obtained for the fluxion he expanded into a finite or infinite series
of monomial terms, to which Wallis’ rule was applicable. Barrow
urged Newton to publish this treatise; “ but the modesty of the author,
of which the excess, if not culpable, was certainly in the present in-
stance very unfortunate, prevented his compliance.” ! Had this tract

t John Playfair, “ Progress of the Mathematical and Physical Sciences” in En-
cyclopedia Britannica, 7th Edition.
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been published then, instead of forty-two years later, there probably
would have been no occasion for that long and deplorable controversy
between Newton and Leibniz.

For a long time Newton’s method remained unknown, except to his
friends and their correspondents. In a letter to Collins, dated De-
cember roth, 1672, Newton states the fact of his invention with one
example, and then says: “This is one particular, or rather corollary,
of a general method, which extends itself, without any troublesome
calculation, not only to the drawing of tangents to any curve lines,
whether geometrical or mechanical, or anyhow respecting right lines
or other curves, but also to the resolving other abstruser kinds of
problems about the crookedness, areas, lengths, centres of gravity of
curves, etc.; nor is it (as Hudde’s method of Maximis and Minimis)
limited to equations which are free from surd quantities. This method
T have interwoven with that other of working in equations, by reducing
them to infinite series.”

These last words relate to a treatise he composed in the year 1671,
entitled Method of Fluxions, in which he aimed to represent his method
as an independent calculus and as a complete system. This tract was
intended as an introduction to an edition of Kinckhuysen’s Algebra,
which he had undertaken to publish. ‘“But the fear of being involved
in disputes about this new discovery, or perhaps the wish to render
it more complete, or to have the sole advantage of employi?g it in his
physical researches, induced him to abandon this design.”

Excepting two papers on optics, all of his works appear to have

" been published only after the most pressing solicitations of his friends
and against his own wishes. His researches on light were severely
criticised, and he wrote in 1675: “I was so persecuted with discussions
arising out of my theory of light that I blamed my own imprudence
for parting with so substantial a blessing as my quiet to run after a
shadow.”

The Method of Fluxions, translated by J. Colson from Newton’s
Latin, was first published in 1736, or sixty-five years after it was
written. In it he explains first the expansion into series of fractional
and irrational quantities,—a subject which, in his first years of study,
received the most careful attention. He then proceeds to the solution
of the two following mechanical problems, which constitute the pillars,
so to speak, of the abstract calculus:— .

“I. The length of the space described being continually (i. e. at
all times) given; to find the velocity of the motion at any time pro-
posed.

“II. The velocity of the motion being continually given; to find

the length of the space described at any time proposed.”
Preparatory to the solution, Newton says: “Thus, in the equation
y=x2 if y represents the length of the space at any time described,
1 D. Brewster, op. cit., Vol. 2, 1855, p. 15. )
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which (time) another space x, by increasing with an uniform celerity
x, measures and exhibits as described: then 2xx will represent the
celerity by which the space y, at the same moment of time, proceeds
to be described; and contrarywise.”

“But whereas we need not consider the time here, any farther than
it is expounded and measured by an equable local motion; and be-
sides, whereas only quantities of the same kind can be compared to-
.gether, and also their velocities of increase and decrease; therefore, in
what follows I shall have no regard to time formally considered, but
I shall suppose some one of the quantities proposed, being of the same
kind, to be increased by an equable fluxion, to which the rest may be
referred, as it were to time; and, therefore, by way of analogy, it
may- not improperly receive the name of time.” In this statement of
Newton there is contained his answer to the objection which has been
raised against his method, that it introduces into analysis the foreign
idea of motion. A quantity thus increasing by uniform fluxion, is
what we now call an independent variable.

Newton continues: ‘“Now those quantities which I consider as
gradually and indefinitely increasing, I shall hereafter call fuents, or
Jlowing quantities, and shall represent them by the final letters of the
alphabet, v, x, y,and 2; . . . and the velocities by which every fluent
is increased by its generating motion (which I may call fuxions, or
simply velocities, or celerities), I shall represent by the same letters
pointed, thus, 9, %, y, 2. That is, for the celerity of the quantity o
I shall put 9, and so for the celerities of the other quantities «x, y, and
g, I shall put z, y, and 2, respectively.” It must here be observed that
Newton does not take the fluxions themselves infinitely small. The
“moments of fluxions,” a term introduced further on, are infinitely
small quantities. © These “moments,” as defined and used in the
Method of Fluxions, are substantially the differentials of Leibniz. De
Morgan points out that no small amount of confusion has arisen from
the use of the word fluxion and the notation x by all the English writers
previous to 1704, excepting Newton and George Cheyne, in the sense
of an infinitely small increment.! Strange to say, even in the Com-
mercium epistolicum the words moment and fluxion appear to be used
as synonymous.

After showing by examples how to solve the first problem, Newton
proceeds to the demonstration of his solution:—

“The moments of flowing quantities (that is, their indefinitely
small parts, by the accession of which, in infinitely small portions of
time, they are continually increased) are as the velocities of their
flowing or increasing.

“Wherefore, if the moment of any one (as x) be represented by the
product of its celerity % into an infinitely small quantity o (. e. by

tA. De Morgan, “On the Early History of Infinitesimals,” in Philosopkical
Magasine, November, 1852.
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%0), the moments of the others, v, y, z, will be represented by %o, yo,
20; because vo, x0, yo, and zo are to each other as 9, %, ¥, and z.

“Now since the moments, as %o and yo, are the indefinitely little
accessions of the flowing quantities x and y, by which those quantities
are increased through the several indefinitely little intervals of time,
it follows that those quantities,  and y, after any indefinitely small
interval of time, become x+-x0 and y+yo, and therefore the equation,
which at all times indifferently expresses the relation of the flowing
quantities, will as well express the relation between x+xo and y+jo,
as between x and y; so that x+xo and y+yo may be substituted in
the same equation for those quantities, instead of x and y. Thus let
any equation 2®—ax®4-axy—y*=0 be given, and substitute x+zo for
x, and y+yo for y, and there will arise

2%+ 31280 +3xx0%0+%%0?
—ax?— 20xx0— axoxo
+axy+ayxo +axoyo =0.
+axyo L
—y* —3y%y0 —3yyoyo—y’o?

“Now, by supposition, x* - ax?+axy—y3=o0, which therefore, being
expunged and the remaining terms being divided by o, there will
remain

3%% — 2ax2+-ayi+axy— 3y’j'+§x5c:'co —axxo+axyo — 3yyyo
+x%0 — y%00=0.
But whereas zero is supposed to be infinitely little, that it may repre-
sent the moments of quantities, the terms that are multiplied by it
will be nothing in respect of the rest (termini in eam ducts pro nihilo
possunt haberi cum aliis collati); therefore I reject them, and there
remains :
3x°%—20x%+ayx+axy—3y*y=o,

as above in Example I.” Newton here uses infinitesimals.

Much greater than in the first problem were the difficulties en-
countered in the solution of the second problem, involving, as it does,
inverse operations which have been taxing the skill of the best ana-
lysts since his time. Newton gives first a special solution to the second
problem in which he resorts to a rule for which he has given no proof.

In the general solution of his second problem, Newton assumed
homogeneity with respect to the fluxions and then considered three
cases: (1) when the equation contains two fluxions of quantities and
but one of the fluents; (2) when the equation involves both the fluents
as well as both the fluxions; (3) when the equation contains the flu-
ents and the fluxions of three or more quantities. The first case is the

easiest since it requires simply the integration of Z—i=f (%), to which
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his “special solution” is applicable. The second case demanded
nothing less than the general solution of a differential equation of the
first order. Those who know what efforts were afterwards needed
for the complete exploration of this field in analysis, will not depre-
ciate Newton’s work even though he resorted to solutions in form of
infinite series. Newton’s third case comes now under the solution of
partial differential equations. He took the equation 2x—s+xy=o0
and succeeded in finding a particular integral of it. .

The rest of the treatise is devoted to the determination of maxima
and minima, the radius of curvature of curves, and other geomeu:lml
applications of his fluxionary calculus. All this was done previous
to the year 1672. .

It must be observed that in the Method of Fluxions (as well as in
his De Analysi and all earlier papers) the method employed by New-
ton is strictly infinitesimal, and in substance like that of Leibniz.
Thus, the original conception of the calculus in England, as well as
on the Continent, was baséd on infinitesimals. The fundament_a.l
principles of the fluxionary calculus were first given to the world in
~ the Principia; but its peculiar notation did not appear until published
in the second volume of Wallis’ Algebra in 1693. The exposition
given in the Algebra was a contribution of Newton; it rests on in--
finitesimals. In the first edition of the Principia (1687) the descrip-
tion of fluxions is likewise founded on infinitesimals, but in the second
(1713) the foundation is somewhat altered. In Book II, Lemma II,
of the first edition we read: “Cave tamen intellexeris particulas
finitas. Momenta quam primum finite sunt magnitudinis, desinunt
esse momenta. Finiri enim repugnat aliqualenus perpetuo eorum
incremento vel decremento. Intelligenda sunt principia jamjam nas-
centia finitarum magnitudinum.” In the second edition the two
sentences which we print in italics are replaced by the following:
“Particule finite non sunt momenta sed quantitates ips® ex mo-
mentis genitz.” Through the difficulty of the phrases in both ex-
tracts, this much distinctly appears, that in the first, moments are
infinitely small quantities. What else they are in the second is not
clear.! " In the Quadrature of Curves of 1704, the infinitely small
- quantity is completely abandoned. It has been shown that in the
Method of Fluxions Newton rejected terms involving the quantity o,
because they are infinitely small compared with other terms. This
reasoning is unsatisfactory; for as long as o is a quantity, though
ever so small, this rejection cannot be made without affecting the
result. Newton seems to have felt this, for in the Quadrature of Curves
he remarked that “in mathematics the minutest errors are not to be
neglected” (errores quam minimi in rebus mathematicis non sunt
contemnendi).

The early distinction between the system of Newton and Leibniz

1A. De Morgan, loc. cil., 1852.
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lies in this, that Newton, holding to the conception of velocity or
fluxion, used the infinitely small increment as a means of determining .
it, while with Leibniz the relation of the infinitely small increments
is itself the object of determination. The difference between the two
rests mainly upon a difference in the mode of generating quantities.

We give Newton’s statement of the method of fluxions or rates, as
given in the introduction to his Quadrature of Curves. “I consider
mathematical quantities in this place not as consisting of very small
parts, but as described by a continued motion. Lines are described,
and thereby generated, not by the apposition of parts, but by the
continued motion of points; superficies by the motion of lines; solids
by the motion of superficies; angles by the rotation of the sides;
portions of time by continual flux: and so on in other quantities.
These geneses really take place in the nature of things, and are daily
seen in the motion of bodies. . .

“Fluxions are, as near as we please (qguam proxime), as the incre-
ments of fluents generated in times, equal and as small as possible,
and to speak accurately, they are in the prime ratio of nascent in-
crements; yet they can be expressed by any lines whatever, which are
proportional to them.”

Newton exemplifies this last assertion by the problem of tangency:
Let AB be the abscissa, BC the ordinate, VCH the tangent, Ec the
increment of the ordinate, which produced meets VH at T, and C¢
the increment of the curve. The right line Cc being produced to X,
there are formed three small triangles, the rectilinear CEc, the mix-
tilinear CEc, and the rectilinear CET. Of these, the first is evidently
the smallest, and the last the greatest. Now suppose the ordinate b¢
to move into the place BC, so that the point ¢ exactly coincides with
the point C; CK, and

therefore the curve Cc, /H
is coincident with the tan- T X
gent CH, Ec is absolutely e

equal to ET, and the e
mixtilinear evanescent tri- C E

angle CEc is, in the last
form, similar to the tri-
angle CET; and its eva-
nescent sides CE, Ec, Cc,
will be proportional to
CE, ET, and CT, the Vv 4 B b

sides of the triangle CET.

Hence it follows that the fluxions of the lines AB, BC, AC, being in
the last ratio of their evanescent increments, are proportional to the
sides of the triangle CET, or, which is all one, of the triangle VBC
similar thereunto. As long as the points C and ¢ are distant from
each other by an interval, however small, the line CK will stand
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apart by a small angle from the tangent CH. But when CK co-
incides with CH, and the lines CE, Ec, ¢C reach their ultimate
ratios, then the points C and ¢ accurately coincide and are one
and the same. Newton then adds that “in mathematics the
minutest errors are not to be neglected.” This is plainly a re-
jection of the postulates of Leibniz. The doctrine of infinitely
small quantities is here renounced in a manner which would lead
one to suppose that Newton had never held it himself. Thus it
appears that Newton’s doctrine was different in different periods.
Though, in the above reasoning, the Charybdis of infinitesimals is
safely avoided, the dangers of a Scylla stare us in the face. We are
required to believe that a point may be considered a triangle, or that
a triangle can be inscribed in a point; nay, that three dissimilar tri-
angles become similar and equal when they have reached their ulti-
mate form in one and the same point.

In the introduction to the Quadrature of Curves the fluxion of a*
is determined as follows:—

“In the same time that x, by flowing, becomes x+o, the power
x* becomes (x+0)*, i. e. by the method of infinite series

R e T
x*+nox™ '+Tox" 2+-etc.,
and the increments
n2

—"o’x""+etc.,

o and nox*~+ 2

are to one another as

2_
1to mc""‘+" 2 "ox""+etc.

“Let now the increments vanish, and their last proportion will be
1 to #nx*~*: hence the fluxion of the quantity x is to the fluxion of the
quantity x* as 1: na*~ 1,

“The fluxion of lines, straight or curved, in all cases whatever, as
also the fluxions of superficies, angles, and other quantities, can be
obtained in the same manner by the method of prime and ultimate
ratios. But to establish in this way the analysis of infinite quantities,
and to investigate prime and ultimate ratios of finite quantities, nas-
cent or evanescent, is in harmony with the geometry of the ancients;
and I have endeavored to show that, in the method of fluxions, it is
not necessary to introduce into geometry infinitely small quantities.”
This mode of differentiating does not remove all the difficulties con-
nected with the subject. When o becomes nothing, then we get the

ratio g=nx"", which needs further elucidation. Indeed, the method
of Newton, as delivered by himself, is encumbered with difficulties
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and objections. Later we shall state Bishop Berkeley’s objection to
this reasoning. Even among the ablest admirers of Newton, there
have been obstinate disputes respecting his explanation of his method
of “prime and ultimate ratios.”

The so-called “method of limits” is frequently attributed to New-
ton, but the pure method of limits was never adopted by him as his
method of constructing the calculus. All he did was to establish in
his Principia certain principles which are applicable to that method,
but which he used for a different purpose. The first lemma of the
first book has been made the foundation of the method of limits:—

‘““Quantities and the ratios of quantities, which in any finite time
converge continually to equality, and before the end of that time ap-
proach nearer the one to the other than by any given difference, be-
come ultimately equal.”

In this, as well as in the lemmas following this, there are obscurities
and difficulties. Newton appears to teach that a variable quantity
and its limit will ultimately coincide and be equal.

The full title of Newton’s Principia is Philosophie Naturalis Prin-
cipia Mathematica. It was printed in 1687 under the direction, and
-at the expense, of Edmund Halley. A second edition was brought
.out in 1713 with many alterations and improvements, and accom-
panied by a preface from Roger Cotes. It was sold out in a few
months, but a pirated edition published in Amsterdam supplied the
demand. The third and last edition which appeared in England during
Newton’s lifetime was published in 1726 by Henry Pemberton. The
Principia consists of three books, of which the first two, constituting
the great bulk of the work, treat of the mathematical principles of
natural philosophy, namely, the laws and conditions of motions and
forces. In the third book is drawn up the constitution of the universe
as deduced from the foregoing principles. The great principle under-
lying this memorable work is that of universal gravitation. The first
book was completed on April 28, 1686. After the remarkably short
period of three months, the second book was finished. The third book
is the result of the next nine or ten months’ labors. It is only a sketch
of a much more extended elaboration of the subject which he had
planned, but which was never brought to completion.

The law of gravitation is enunciated in the first book. Its discovery
envelops the name of Newton in a halo of perpetual glory. The cur-
rent version of the discovery is as follows: it was conjectured by
Robert Hooke (1635-1703), C. Huygens, E. Halley, C. Wren, 1. New-
ton, and others, that, if J. Kepler’s third law was true (its absolute
accuracy was doubted at that time), then the attraction between the
earth and other members of the solar system varied inversely as the
square of the distance. But the proof of the truth or falsity of the
guess was wanting. In 1666 Newton reasoned, in substance, that if
g represent the acceleration of gravity on the surface of the earth, r
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be the earth’s radius, R the distance of the moon from the earth, T
the time of lunar revolution, and @ a degree at the equator, then, if
the law is true,

r? R 7 (R\?
gF-ur"’T,, or g=472(—k;;) . 180a.

The data at Newton’s command gave R=60.4r, T = 2,360,628 seconds,
but ¢ only 6o instead of 69} English miles. This wrong value of a
rendered the calculated value of g smaller than its true value, as
known from actual measurement. It looked as though the law of
inverse squares were not the true law, and Newton laid the calculation
aside. In 1684 he casually ascertained at a meeting of the Royal
Society that Jean Picard had measured an arc of the meridian, and
obtained a more accurate value for the earth’s radius. Taking the
corrected value for a, he found a figure for g which corresponded to
the known value. Thus the law of inverse squares was verified. Ina
scholium in the Principia, Newton acknowledged his indebtedness to
Huygens for the laws on centrifugal force employed in his calculation.

The perusal by the astronomer Adams of a great mass of unpub-
lished letters and manuscripts of Newton forming the Portsmouth
collection (which remained private property until 1872, when its
owner placed it in the hands of the University of Cambridge) seems to
indicate that the difficulties’ encountered by Newton in the above
calculation were of a different nature. According to Adams, Newton'’s
numerical verification was fairly complete in 1666, but Newton had
not been able to determine what the attraction of a spherical shell
upon an external point would be. His letters to E. Halley  show
that he did not suppose the earth to attract as though all its mass
were concentrated into a point at the centre. He could not have
asserted, therefore, that the assumed law of gravity was verified by
the figures, though for long distances he might have claimed that it
yielded close approximations. When Halley visited Newton in 1684,
he requested Newton to determine what the orbit of a planet would
be if the law of attraction were that of inverse squares. Newton had
solved a similar problem for R. Hooke in 1679, and replied at once
that it was an ellipse. After Halley’s visit, Newton, with Picard’s
new value for the earth’s radius, reviewed his early calculation, and
was able to show that if the distances between the bodies in the solar
system were so great that the bodies might be considered as points,
then their motions were in accordance with the assumed law of gravi-
tation. In 1685 he completed his discovery by showing that a sphere
whose density at any point depends only on the distance from the
centre attracts an external point as though its whole mass were con-
centrated at the centre.

Newton’s unpublished manuscripts in the Portsmouth collection
show that he had worked out, by means of fluxions and fluents, his
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lunar calculations to a higher degree of approximation than that given
in the Principia, but that he was unable to interpret his results geo-
metrically. The papers in that collection throw light upon the mode
by which Newton arrived at some of the results in the Principia, as,
for instance, the famous solution in Book II, Prop. 35, Scholium, of
the problem of the solid of revolution which moves through a resisting
medium with the least resistance. The solution is unproved in the
Principia, but is demonstrated by Newton in the draft of a letter to
David Gregory of Oxford, found in the Portsmouth collection.!

It is chiefly upon the Principia that the fame of Newton rests.
David Brewster calls it “the brightest page in the records of human
reason.” Let us listen, for a moment, to the comments of P. S. La-
place, the foremost among those followers of Newton who grappled
with the subtle problems of the motions of planets under the influence
of gravitation: “Newton has well established the existence of the
principle which he had the merit of discovering, but the development
of its consequences and advantages has been the work of the successors
of this great mathematician. The imperfection of the infinitesimal
calculus, when first discovered, did not allow him completely to re-
solve the difficult probleras which the theory of the universe offers;
and he was oftentimes forced to give mere hints, which were always
uncertain till confirmed by rigorous analysis. Notwithstanding these
unavoidable defects, the importance and the generality of his dis-
coveries respecting the system of the universe, and the most interesting
points of natural philosophy, the great number of profound and orig-
inal views, which have been the origin of the most brilliant discoveries
of the mathematicians of the last century, which were all presented
with much elegance, will insure to the Principia a lasting pre-eminence
over all other productions of the human mind.”

Newton’s Arithmetica universalis, consisting of algebraical lectures
delivered by him during the first nine years he was professor at Cam-
bridge, were published in 1707, or more than thirty years after they
were written. This work was published by William Whiston (1667-
1752). We are not accurately informed how Whiston came in pos-
session of it, but according to some authorities its publication was a
breach of confidence on his part. He succeeded Newton in the
Lucasian professorship at Cambridge.

The Arsthmetica universalis contains new and important results on
the theory of equations. Newton states Descartes’ rule of signs in
accurate form and gives formule expressing the sum of the powers
of the roots up to the sixth power and by an “and so on” makes it
evident that they can be extended to any higher power. Newton's
formule take the implicit form, while similar formulz given earlier

10. Bolza, in Bibliotheca mathematica, 3. S., Vol. 13, 1913, pp. 146-149. For
a bibliography of this “problem of Newton” on the surface of least resistance, see
L'Intcrméldiaire des mathématiciens, Vol. 23, 1916, pp. 81-84.
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by Albert Girard take the explicit form, as do also the general formule
derived later by E. Waring. Newton uses his formul for fixing an
upper limit of real roots; the sum of any even power of all the roots
must exceed the same even power of any one of the roots. He estab-
lished also another limit: A number is an upper limit, if, when sub-
stituted for x, it gives to f(x) and to all its derivatives the same sign.
In 1748 Colin Maclaurin proved that an upper limit is obtained by
adding unity to the absolute value of the largest negative coefficient
of the equation. Newton showed that in equations with real co-
efficients, imaginary roots always occur in pairs. His inventive genius
is grandly displayed in his rule for determining the inferior limit of the
number of imaginary roots, and the superior limits for the number
of positive and negative roots. Though less expeditious than Des-
cartes’, Newton’s rule always gives as close, and generally closer,
limits to the number of positive and negative roots. Newton did
not prove his rule.

Some light was thrown upon it by George Campbell and Colin
Maclaurin, in the Philosophical Transactions, of the years 1728 and
1729. But no complete demonstration was found for a century and a
half, until, at last, Sylvester established a remarkable general theorem
which includes Newton’s rule as a special case. Not without interest
is Newton’s suggestion that the conchoid be admitted as a curve to
be used in geometric constructions, along with the straight line and
circle, since the conchoid can be used for the duplication of a cube and
trisection of an angle—to one or the other of which every problem
involving curves of the third or fourth degree can be reduced.

The treatise on Method of Fluxions contains Newton’s method of
approximating to the roots of numerical equations. Substantially
the same explanation is given in his De analysi per equationes numero
terminorum infinitas. He explains it by working one example, namely
the now famous cubic ! y3—2y—g5=0. The earliest printed account
appeared in Wallis’ Algebra, 1685, chapter g4. Newton assumes that
an approximate value is already known, which differs from the true
value by less than one-tenth of that value. He takes y=2 and sub-
stitutes y=2+p in the equation, which becomes p3+6p%+10p—1=0.
Neglecting the higher powers of p, he gets 10p—1=0. Taking
p=.1+q, he gets ¢°+6.3¢°+11.23¢+.061=0. From 1r1.23¢+.061=0
he gets ¢g=—.0c054+7, and by the same process, r=—.00004853.
Finally y=2+.1-.0054 —.00004853=2.09455147. Newton arranges
his work in a paradigm. He seems quite aware that his method may
fail. If there is doubt, he says, whether p=.1 is sufficiently close to
the truth, find p from 6p%+10p—1=0. He does not show that even
this latter method will always answer. By the same mode of pro-

! For quotations from Newton, see F. Cajori, “Historical Note on the Newton-
Raphson Method of Approximation,” Amer. Math. Monihly, Vol. 18, 1911, pPp. 29~
33-
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cedure, Newton finds, by a rapidly converging series, the value of y
in terms of ¢ and «, in the equation y3+axy+aay —x®—2a%=o0.

In 1690, Joseph Raphsone?x648—171 5), a fellow of the Royal Society
of London, published a tract, Analysis @gquationum universalis. His
method closely resembles that of Newton. The only difference is
this, that Newton derives each successive step, p, ¢, 7, of approach to
the root, from a new equation, while Raphson finds it each time by
substitution in the original equation. In Newton’s cubic, Raphson
would not find the second correction by the use of x3+6x2+10x — 1=0,
but would substitute 2.1+¢ in the original equation, finding ¢=
—.0054. He would then substitute 2.0946+r in the original equation,
finding 7=—.00004853, and so on. Raphson does not mention
Newton; he evidently considered the difference sufficient for his
method to be classed independently. To be emphasized is the fact
that the process which in modern texts goes by the name of “New-
ton’s method of approximation,” is really not Newton’s method, but

Raphson’s modification of it. The form now so familiar, a — jfT((z—)) was
not used by Newton, but was used by Raphson. To be sure, Raphson
does not use this notation; he writes f(a) and f’(a) out in full as poly-
nomials. It is doubtful, whether this method should be named after
Newton alone. Though not identical with Vieta’s process, it re-
sembles Vieta's. The chief difference lies in the divisor used. The
divisor f’(a) is much simpler, and easier to compute than Vieta’s
divisor. Raphson’s version of the process represents what J. Lagrange
recognized as an advance on the scheme of Newton. The method is
“plus simple que celle de Newton.”” ! Perhaps the name “Newton-
Raphson method” would be a designation more nearly representing
the facts of history. We may add that the solution of numerical
equations was considered geometrically by Thomas Baker:in 1684
and Edmund Halley in 1687, but in 1694 Halley “had a very great
desire of doing the same in numbers.” The only difference between
Halley’s and Newton’s own method is that Halley solves a quadratic
equation at each step, Newton a linear equation. Halley modified
also certain algebraic expressions yielding approximate cube and
fifth roots, given in 1692 by the Frenchman, Thomas Fantet de Lagny
(1660-1734). In 1705 and 1706 Lagny outlines a method of differences;
such a method, less systematically developed, had been previously
explained in England by John Collins. By this method, if g, b, ¢, . . .
are in arithmetical progression, then a root may be found approxi-
mately from the first, second, and higher differences of f(ag, f(®),
©, ...
4 Newton’s Method of Fluxions contains also “Newton’s parallelo-
gram,” which enabled him, in an equation, f(x, y)=o, to find a series

1 Lagrange, Résolution des equat. num., 1798, Note V, p. 138.
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in powers of x equal to the variable y. The great utility of this rule
lay in its determining the form of the series; for, as soon as the law was
known by which the exponents in the series vary, then the expansion
could be effected by the method of indeterminate coefficients. The
rule is still used in determining the infinite branches to curves, or their
figure at multiple points. Newton gave no proof for it, nor any clue
as to how he discovered it. The proof was supplied half a century
later, by A. G, Kiistner and G. Cramer, independently.!

In 1704 was published, as an appendix to the Opticks, the Enu-
meratio linearum lertii ordinis, which contains theorems on the theory
of curves. Newton divides cubics into seventy-two species, arranged
in larger groups, for which his commentators have supplied the names
“genera” and “classes,” recognizing fourteen of the former and seven
(or four) of the latter. He overlooked six species demanded by his
principles of classification, and afterwards added by J. Stirling, Wil-
liam Murdoch (1754-1839), and G. Cramer. He enunciates the re-
markable theorem that the five species which he names “divergent
parabolas” give by their projection every cubic curve whatever. As
a rule, the tract contains no proofs. It has been the subject of frequent
conjecture how Newton deduced his results. Recently we have gotten
at the facts, since much of the analysis used by Newton and a few
additional theorems have been discovered among the Portsmouth
papers. An account of the four holograph manuscripts on this sub-

ject has been published by W. W. Rouse Ball, in the Transactions of

the London M athematical Society (vol. xx, pp. 104-143). It is inter-
esting to observe how Newton begins his research on the classification
of cubic curves by the algebraic method, but, finding it laborious,
attacks the problem geometrically, and afterwards returns again to
analysis.

Space does not permit us to do more than merely mention Newton’s
prolonged researches in other departments of science. He conducted
a long series of experiments in optics and is the author of the corpus-
cular theory of light. The last of a number of papers on optics,
which he contributed to the Royal Society, 1687, elaborates the theory
of “fits.” He explained the decomposition of light and the theory
of the rainbow. By him were invented the reflecting telescope and
the sextant (afterwards re-invented by Thomas Godfrey of Phila-
delphia ? and by John Hadley). He deduced a theoretical expression
for the velocity of sound in air, engaged in experiments on chemistry,
elasticity, magnetism, and the law of cooling, and entered upon geo-
logical speculations.

During the two years following the close of 1692, Newton suffered

1S, Gilnther, Vermischte Unlcrsuchungen zur Geschichte d. math. Wiss., Leipzig®
1876, pp. 136-187.

2, Cajori, Teaching and History of Mathemalics in the U. S., Washington, 1890,
P 42.
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from insomnia and nervous irritability. Some thought that he la-
bored under temporary mental aberration. Though he recovered his
tranquillity and strength of mind, the time of great discoveries was
over; he would study out questions propounded to him, but no longer
did he by his own accord enter upon new fields of research. The
most noted investigation after his sickness was the testing of his lunar
theory by the observations of Flamsteed, the astronomer royal. In
1695 he was appointed warden, and in 1699 master of the mint, which
office he held until his death. His body was interred in Westminster
Abbey, where in 1731 a magnificent monument was erected, bearing
an inscription ending with, “Sibi gratulentur mortales tale tantumque
exstitisse humani generis decus.” It is not true that the Binomial
Theorem is also engraved on it.

We pass to Leibniz, the second and independent inventor of the
calculus. Gottfried Wilhelm Leibniz (1646-1716) was born in Leip-
zig. No period in the history of any civilized nation could have been
less favorable for literary and scientific pursuits than the middle of
the seventeenth century in Germany. Yet circumstances seem to
have happily combined to bestow on the youthful genius an education
hardly otherwise obtainable during this darkest period of German
history. He was brought early in contact with the best of the culture
then existing. In his fifteenth year he entered the University of
Leipzig. Though law was his principal study, he applied himself
with great diligence to every branch of knowledge. Instruction in
German universities was then -very low. The higher mathematics
was not taught at all. We are told that a certain John Kuhn lectured
on Euclid’s Elements, but that his lectures were so obscure that none
except Leibniz could understand them. Later on, Leibniz attended,
for a half-year, at Jena, the lectures of Erhard Weigel, a philosopher
and mathematician of local reputation. In 1666 Leibniz published
a treatise, De Arte Combinaloria, in which he does not pass beyond
the rudiments of mathematics, but which contains remarkable plans
for a theory of mathematical logic, a symbolic method with formal
rules obviating the necessity of thinking. Vaguely such plans had
been previously suggested by R. Descartes and Pierre Hérigone. In
manuscripts which Leibniz left unpublished he enunciated the princi-
pal properties of what is now called logical multiplication, addition,
negation, identity, class-induction and the null-class.! Other theses
written by him at this time were metaphysical and juristical in char-
acter. A fortunate circumstance led Leibniz abroad. In 1672 he was
sent by Baron Boineburg on a political mission to Paris. He there
formed the acquaintance of the most distinguished men of the age.
Among these was C. Huygens, who presented a copy of his work on
the oscillation of the pendulum to Leibniz, and first led the gifted
young German to the study of higher mathematics. In 1673 Leibniz

1 See Philip E. B. Jourdain in Quarterly Jour. of Math., Vol. 41, 1910, p. 329.
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went to London, and remained there from January till March. He
there became incidentally acquainted with the mathematician John
Pell, to whom he explained a method he had found on the summation
of series of numbers by their differences. Pell told him that a similar
formula had been published by Gabriel Mouton (1618-1694) as
early as 1670, and then called his attention to N. Mercator’s work
on the rectification of the parabola. While in London, Leibniz ex-
hibited to the Royal Society his arithmetical machine, which was
similar to B. Pascal’s, but more efficient and perfect. After his re-
turn to Paris, he had the leisure to study mathematics more system-
atically. With indomitable energy he set about removing his igno-
rance of higher mathematics. C. Huygens was his principal master.
He studied the geometric works of R. Descartes, Honorarius Fabri,
Gregory St. Vincent, and B. Pascal. A careful study of infinite
series led him to the discovery of the following expression for the
ratio of the circumference to the diameter of the circle, previously
discovered by James Gregory:—

™
:=1 - 3+i—F+3—etc.

This elegant series was found in the same way as N. Mercator’s on
the hyperbola. C. Huygens was highly pleased with it and urged
him on to new investigations. In 1673 Leibniz derived the series

‘ 5
arc tan x=x—3x%4+3x°— . . .,

from which most of the practical methods of computing ™ have been
obtained. This series had been previously discovered by James
Gregory, and was used by Abrakam Sharp (1651-1742) under in-
structions from E. Halley for calculating ™ to 72 places. In 1706
John Mackin (1680-1751), professor of astronomy at Gresham Col-
lege in London, obtained 100 places by using an expression that is
obtained from the relation

T 1 1
-1=4 arc tan 5 —arc tan 33y,

by substituting Gregory’s infinite series for
arc tan 3 and arc tan 5 15.

Machin’s formula was used in 1874 by William Shanks (1812-1882)
for computing T to 707 places.

Leibniz entered into a detailed study of the quadrature of curves
and thereby became intimately acquainted with the higher math-
ematics. Among the papers of Leibniz is still found a manuscript
on quadratures, written before he left Paris in 1676, but which was
never printed by him. The more important parts of it were embodied
in articles published later in the Acta cruditorum.

In the study of Cartesian geometry the attention of Leibniz was
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drawn early to the direct and inverse problems of tangents. The
direct problem had been solved by Descartes for the simplest curves
only; while the inverse had completely transcended the power of his
analysis. Leibniz investigated both problems for any curve; he
constructed what he called the friangulum characteristicum—an
infinitely small triangle between the infinitely small part of the curve
coinciding with the tangent, and the differences of the ordinates and
abscissas. A curve is here considered to be a polygon. The triangulum
characleristicum is similar to the triangle formed by the tangent, the
ordinate of the point of contact, and the sub-tangent, as well as to
that between the ordinate, normal, and sub-normal. It was employed
by I. Barrow in England, but Leibniz states that he obtained it from
Pascal. From it Leibniz observed the connection existing between the
direct and inverse problems of tangents. He saw also that the latter
could be carried back to the quadrature of curves. All these results
are contained in a manuscript of Leibniz, written in 1673. One mode
used by him in effecting quadratures was as follows: The rectangle
formed by a sub-normal p and an element a (i. e. infinitely small part
of the abscissa) is equal to the rectangle formed by the ordinate y
and the element ! of that ordinate; or in symbols, pa=y/. But the
summation of these rectangles from zero on gives a right triangle
equal to half the square of the ordinate. Thus, using Cavalieri’s no-
tation, he gets .

omn. pa=omn. y =—§- (omn. meaning omnia, all).

But y=omn. }; hence

—-—1 omn. {2
omn. omn. [-= .
a 2a

This equation is especially interesting, since it is here that Leibniz
first introduces a new notation. He says: “It will be useful to write

f for omn., as f I for omn. 1, that is, the sum of the /’s”; he then

writes the equation thus:—

12
260 e
From this he deduced the simplest integrals, such as

Jorz fewn-fe

Since the symbol of summation f raises the dimensions, he con-

cluded that the opposite calculus, or that of differences d, would
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lower them. Thus, if f l=ya, then l=%q. The symbol d was at

first placed by Leibniz in the denominator, because the lowering of
the power of a term was brought about in ordinary calculation by
division. The manuscript giving the above is dated October 29th,
1675.1 This, then, was the memorable day on which the notation
of the new calculus came to be,—a notation which contributed enor-
mously to the rapid growth and perfect development of the calculus.

Leibniz proceeded to apply his new calculus to the solution of
certain problems then grouped together under the name of the In-
verse Problems of Tangents. He found the cubical parabola to be
the solution to the following: To find the curve in which the sub-
normal is reciprocally proportional to the ordinate. The correctness
of his solution was tested by him by applying to the result the method
of tangents of Baron René Francois de Sluse (1622-1685) and reason-
ing backwards to the original supposition. In the solution of the

third problem he changes his notation from g to the now usual nota-

tion dx. It is worthy of remark that in these investigations, Leibniz
nowhere explains the significance of dx and dy, except at one place

in a marginal note: “Idem est dx et 3, id est, differentia inter duas

x proximas.” Nor does he use the term differential, but always differ-
ence. Not till ten years later, in the Acta eruditorum, did he give
further explanations of these symbols. What he aimed at principally
was to determine the change an expression undergoes when the sym-

bol f or d is placed before it. It may be a consolation to students

wrestling with the elements of the differential calculus to know that
it required Leibniz considerable thought and attention 2 to determine

whether dx dy is the same as d(xy), and gi; the same as d; After

considering these questions at the close of one of his manuscripts, he
concluded that the expressions were not the same, though he could
not give the true value for each. Ten days later, in a manuscript

dated November 21, 1675, he found the equation ydx =dxy—xdy,
giving an expression for d(xy), which he observed to be true for all
curves. He succeeded also in eliminating dx from a differential
equation, so that it contained only dy, and thereby led to the solution
of the problem under consideration. *Behold, a most elegant way

1C. J. Gerhardt, Entdeckung der hheren Analysis. Halle, 1855, p. 125.
2 C. J. Gerhardt, Entdcckung der Differenzialrechnung durch Leibniz, Halle, 1848,
Pp- 25, 41.
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by which the problems of the inverse method of tangents are solved,
or at least are reduced to quadratures!” Thus he saw clearly that
the inverse problems of tangents could be solved by quadratures, or,
in other words, by the integral calculus. In course océ a half-year he
discovered that the direct problem of tangents, too, yielded to the
power of his new calculus, and that thereby a more general solution
than that of R. Descartes could be obtained. He succeeded in solving
all the special problems of this kind, which had been left unsolved
by Descartes. Of these we mention only the celebrated problem
proposed to Descartes by F. de Beaune, viz. to find the curve whose
ordinate is to its sub-tangent as a given line is to that part of the
ordinate which lies between the curve and a line drawn from the
vertex of the curve at a given inclination to the axis.

Such was, in brief, the progress in the evolution of the new calculus
made by Leibniz during his stay in Paris. Before his departure, in
October, 1676, he found himself in possession of the most elementary
rules and formula of the infinitesimal calculus.

From Paris, Leibniz returned to Hanover by way of London and
Amsterdam. In London he met John Collins, who showed him a
part of his scientific correspondence. Of this we shall speak later.
In Amsterdam he discussed mathematics with R. F. de Sluse, and
became satisfied that his own method of constructing tangents not
only accomplished all that Sluse’s did, but even more, since it could
be extended to three variables, by which tangent planes to surfaces
could be found; and especially, since neither irrationals nor fractions
prevented the immediate application of his method.

In a paper of July 11, 1677, Leibniz gave correct rules for the dif-
ferentiation of sums, products, quotients, powers, and roots. He had
given the differentials of a few negative and fractional powers, as

early as November, 1676, but had made some mistakes. For dV'z

. 1 .
he had given the erroneous value —=, and in another place the value
x

—3x1; for d;li occurs in one place the wrong value, — f” while a few

. Lo 2 .
lines lower is given — v its correct value.

In 1682 was founded in Berlin the Acta eruditorum, a journal
sometimes known by the name of Leipzig Acts. It was a partial imi-
tation of the French Journal des Savans (founded in 1665), and the
literary and scientific review published in Germany. Leibniz was a
frequent contributor. E. W. Tschirnhausen, who had studied mathe-
matics in Paris with Leibniz, and who was familiar with the new
analysis of Leibniz, published in the Acta eruditorum a paper on quad-
ratures, which consists principally of subject-matter communicated
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by Leibniz to Tschirnhausen during a controversy which they had
had on this subject. Fearing that Tschirnhausen might claim as his
own and publish the notation and rules of the differential calculus,
Leibniz decided, at last, to make public the fruits of his inventions.
In 1684, or nine years after the new calculus first dawned upon the
mind of Leibniz, and nineteen years after Newton first worked at
fluxions, and three years before the publication of Newton’s Principia,
Leibniz published, in the Acta eruditorum, his first paper on the differ-
ential calculus. He was unwilling to give to the world all his treasures,
but chose those parts of his work which were most abstruse and least
perspicuous. This epoch-making paper of only six pages bears the
title: “Nova methodus pro maximis et minimis, itemque tangentibus,
quz nec fractas nec irrationales quantitates moratur, et singulare
pro illis calculi genus.” The rules of calculation are briefly stated
without proof, and the meaninz of dx and dy is not made clear.
Printer’s errors increased the dificulty of comprehending the subject.
It has been inferred from this that Leibniz himself had no definite
and settled ideas on this subject. Are dy and dx finite or infinitesimal
quantities? At first they appear, indeed, to have been taken as finite,
when he says: “We now call any line selected at random dx, then
we designate the line which is to dx as y is to the sub-tangent, by dy,
which is the difference of y.”” Leibniz then ascertains, by his calculus,
in what way a ray of light passing through two differently refracting
media, can travel easiest from one point to another; and then closes
his article by giving his solution, in a few words, of F. de Beaune’s
problem. Two years later (1686) Leibniz published in the Acta
eruditorum a paper containing the rudiments of the integral calculus.
The quantities dx and dy are there treated as infinitely small. He
showed that by the use of his notation, the properties of curves could
be fully expressed by equations. Thus the equation

- dx
y=\/2x x2+f\/2x—-x’
characterizes the cycloid.!

The great invention of Leibniz, now made public by his articles in
the Acta eruditorum, made little impression upon the mass of mathe-
maticians. In Germany no one comprehended the new calculus
except Tschirnhausen, who remained indifferent to it. The author’s
statements were too short and succinct to make the calculus generally
understood. The first to take up the study of it were two foreigners,—
the Scotchman Jokn Craig, and the Swiss Jakob (James) Bernoulli.
The latter wrote Leibniz a letter in 1687, wishing to be initiated into
the mysteries of the new analysis. Leibniz was then travelling abroad,
so that this letter remained unanswered till 16go. James Bernoulli

' C. J. Gerhardt, Geschichte der Mathematik in Deutschland, Miinchen, 1877,
p. 159.
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succeeded, meanwhile, by close application, in uncovering the secrets
of the differential calculus without assistance. He and his brother
John proved to be mathematicians of exceptional power. They applied
themselves to the new science with a success and to an extent which
made Leibniz declare that it was as much theirs as his. Leibniz
carried on an extensive correspondence with them, as well as with other
mathematicians. In a letter to John Bernoulli he suggests, among
other things, that the integral calculus be improved by reducing in-
tegrals back to certain fundamental irreducible forms. The integra-
tion of logarithmic expressions was then studied. The writings of
Leibniz contain many innovations, and anticipations of since prom-
nent methods. Thus he made use of variable parameters, laid the
foundation of analysis in situ, introduced in a manuscript of 1678 the
notion of determinants (previously used by the Japanese), in his
effort to simplify the expression arising in the elimination of the un-
known quantities from a set of linear equations. He resorted to the
device of breaking up certain fractions into the sum of other fractions
for the purpose of easier integration; he explicitly assumed the prin-
ciple of continuity; he gave the first instance of a “singular solution,”
and laid the foundation to the theory of envelopes in two papers, one
of which contains for the first time the terms co-ordinate and axes of
co-ordinates. He wrote on osculating curves, but his paper contained
the error (pointed out by John Bernoulli, but not admitted by Leibniz)
that an osculating circle will necessarily cut a curve in four consecutive
points. Well known is his theorem on the nth differential coefficient
of the product of two functions of a variable. Of his many papers on
mechanics, some are valuable, while others contain grave errors.
Leibniz introduced in 1694 the use of the word function, but not in
the modern sense. Later in that year Jakob Bernoulli used the word
in the Leibnizian sense. In the appendix to a letter to Leibniz, dated
July s, 1698, John Bernoulli uses the word in a more nearly modern
sense: ‘“‘earum [applicatarum] quacunque functiones per alias appli-
catas PZ expressz.” In 1718 John Bernoulli arrives at the definition
of function as a “quantity composed in any manner of a variable and
any constants.” (On appelle ici fonction d’une grandeur variable,
une quantité composée.de quelque maniére que ce soit de cette gran-
deur variable et de constantes.) *

Leibniz made important contributions to the notation of mathe-
matics. Not only is our notation of the differential and integral
calculus due to him, but he used the sign of equality in writing pro-
portions, thus a:b=c:d. In Leibnizian manuscripts occurs ~ for
“similar” and ~ for “equal and similar” or “congruent.” * Says

1See M. Cantor, 0p. cit., Vol. III, 2 Ed., 1901, pp. 215, 216, 456, 457; Encyclo-
pedie des sciences mathématiques, Tome II, Vol. I, pp. 3~s.

* Leibniz, Werke Ed. Gerhardt, 3. Folge, Bd. V, p. 153. See also J. Tropfke,
o0p. cit., Vol. IT, 1903, p. 12.
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P. E. B. Jourdain,! “Leibniz himself attributed all of his mathe-
matical discoveries to his improvements in notation.”

Before tracing the further development of the calculus we shall
sketch the history of that long and bitter controversy between English
and Continental mathematicians on the invention of the calculus.
The question was, did Leibniz invent it independently of Newton, or
was he a plagiarist?

We must begin with the early correspondence between the parties
appearing in this dispute. Newton had begun using his notation of
fluxions in 1665.2 In 1669 I. Barrow sent John Collins Newton's
tract, De Analysi per equationes, etc.

The first visit of Leibniz to London extended from the 1:1th of Jan-
uary until March, 1673. He was in the habit of committing to writing
important scientific communications received from others. In 18go
C. J. Gerhardt discovered in the royal library at Hanover a sheet of
manuscript with notes taken by Leibniz during this journey.® They
are headed ‘““Observata Philosophica in itinere Anglicano sub initium
anni 1673.” The sheet is divided by horizontal lines into sections.
The sections given to Chymica, Mechanica, Magnetica, Botanica,
Anatomica, Medica, Miscellanea, contain extensive memoranda, while
those devoted to mathematics have very few notes. Under Geo-
metrica he says only this: “ Tangentes omnium figurarum. Figurarum
geometricarum explicatio per motum puncti in moto lati.” We sus-
pect from this that Leibniz had read Isaac Barrow’s lectures. Newton
is referred to only under Optica. Evidently Leibniz did not obtain a
knowledge of fluxions during this visit to London, nor is it claimed
that he did by his opponents.

Various letters of I. Newton, J. Collins, and others, up to the be-
ginning of 1676, state that Newton invented a method by which tan-
gents could be drawn without the necessity of freeing their equations
from irrational terms. Leibniz announced in 1674 to H. Oldenburg,
then secretary of the Royal Society, that he possessed very general
analytical methods, by which he had found theorems of great im-
portance on the quadrature of the circle by means of series. Inanswer,
Oldenburg stated Newton and James Gregory had also discovered
methods of quadratures, which extended to the circle. Leibniz de-
sired to have these methods communicated to him; and Newton, at
the request of Oldenburg and Collins, wrote to the former the cele-
brated letters of June 13 and October 24, 1676. The first contained
the Binomial Theorem and a variety of other matters relating to
infinite series and quadratures; but nothing directly on the method of

! P. E. B. Jourdain, The Nature of Mathemalics, London, p. 71.

1 J. Edleston, Correspondence of Sir Isaac Newlon and Professor Cotes, London,
1850, p. xxi; A. De Morgan, “Fluxions” and “Commercium Epistolicum” in
the Penny Cyclopedia.

3C. J. Gerhardt, “Leibniz in London” in Sitzungsberichte der K. Preussischen
Academie d. Wissensch, su Berlin, Feb., 1891.
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fluxions. Leibniz in reply speaks in the highest terms of what Newton
had done, and requests further explanation. Newton in his second
letter just mentioned explains the way in which he found the Binomial
Theorem, and also communicates his method of fluxions and fluents
in form of an anagram in which all the letters in the sentence com-
municated were placed in alphabetical order. Thus Newton says
that his method of drawing tangents was

6accd e 13e f 71 30 gn 40 4977 45 9t 120x.

The sentence was, “Data @quatione quotcunque fluentes quantitates
involvente fluxiones invenire, et vice versa.” (“Having any given
equation involving never so many flowing quantities, to find the
fluxions, and vice versa.”) Surely this anagram afforded no hint.
Leibniz wrote a reply to John Collins, in which, without any desire
of concealment, he explained the principle, notation, and the use of
the differential calculus.

The death of Oldenburg brought this correspondence to a close.
Nothing material happened till 1684, when Leibniz published his
first paper on the differential calculus in the Acta eruditorum, so that
while Newton’s claim to the priority of invention must be admitted
by all, it must also be granted that Leibniz was the first to give the
full benefit of the calculus to the world. Thus, while Newton’s in-
vention remained a secret, communicated only to a few friends, the
calculus of Leibniz was spreading over the Continent. No rivalry or
hostility existed, as yet, between the illustrious scientists. Newton
expressed a very favorable opinion of Leibniz’s inventions, known to
him through the above correspondence with Oldenburg, in the follow-
ing celebrated scholium (Principia, first edition, 1687, Book II,
Prop. 7, scholium):—

‘“‘In letters which went between me and that most excellent geom-
eter, G. G. Leibniz, ten years ago, when I signified that I was in the
knowledge of a method of determining maxima and minima, of draw-
ing tangents, and the like, and when I concealed it in transposed letters
involving this sentence (Data ®quatione, etc., above cited), that most
distinguished man wrote back that he had also fallen upon a method
of the same kind, and communicated his method, which hardly dif-
fered from mine, except in his forms of words and symbols.”

As regards this passage, we shall see that Newton was afterwards
weak enough, as De Morgan says: “First, to deny the plain and ob-
vious meaning, and secondly, to omit it entirely from the third edition
of tHe Principia.”” On the Continent, great progress was made in
the calculus by Leibniz and his coadjutors, the brothers James and
John Bernoulli, and Marquis de I'Hospital. In 1695 John Wallis in-
formed Newton by letter that “he had heard that his notions of
fluxions passed in Holland with great applause by the name of ‘Leib-
niz's Calculus Differentialis.”” Accordingly Wallis stated in the pref-
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ace to a volume of his works that the calculus differentialis was New-
ton’s method of fluxions which had been communicated to Leibniz
in the Oldenburg letters. A review of Wallis’ works, in the Acis
eruditorum for 1696, reminded the reader of Newton’s own admission
in the scholium above cited.

For fifteen years Leibniz had enjoyed unchallenged the honor of
being the inventor of his calculus. But in 1699 Fatio de Duillier
(1664-1753), a Swiss, who had settled in England, stated in a mathe-
matical paper, presented to the Royal Society, his conviction that
I. Newton was the first inventor; adding that, whether Leibniz, the
second inventor, had borrowed anything from the other, he would
leave to the judgment of those who had seen the letters and manu-
scripts of Newton. This was the first distinct insinuation of plagiar-
ism. It would seem that the English mathematicians had for some
time been cherishing suspicions unfavorable to Leibniz. A feeling
had doubtless long prevailed that Leibniz, during his second visit to
London in 1676, had or might have seen among the papers of John
Collins, Newton’s Analysis per equationes, etc., which contained ap-
plications of the fluxionary method, but no systematic development
or explanation of it. Leibniz certainly did see at least part of this
tract. During the week spent in London, he took note of whatever
interested him among the letters and papers of Collins. His memo-
randa discovered by C. J. Gerhardt in 1849 in the Hanover library
fill two sheets.! The one bearing on our question is headed “ Excerpta
ex tractatu Newtoni Msc. de Analysi per @quationes numero ter-
minorum infinitas.” The notes are very brief, excepting those De
resolutione equalionum affectarum, of which there is an almost com-
plete copy. This part was evidently new to him. If he examined
Newton’s entire tract, the other parts did not particularly impress
him. From it he seems to have gained nothing pertaining to the in-
finitesimal calculus. By the previous introduction of his own al-
gorithm he had made greater progress than by what came to his
knowledge in London. Nothing mathematical that he had received
engaged his thoughts in the immediate future, for on his way back
to Holland he composed a lengthy dialogue on mechanical subjects.

Fatio de Duillier’s insinuations lighted up a flame of discord which
a whole century was hardly sufficient to extinguish. Leibniz, who
had never contested the priority of Newton’s discovery, and who
appeared to be quite satisfied with Newton’s admission in his scholium,
now appears for the first time in the controversy. He made an ani-
mated reply in the Acta eruditorum and complained to the Royal
Society of the injustice done him.

Here the affair rested for some time. In the Quadrature of Curves,
published 1704, for the first time, a formal exposition of the method
and notation of fluxions was made public. In 1705 appeared an un-

1C. J. Gerhardt, “Leibniz in London,” loc. cil.
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favorable review of this in the Acta eruditorum, stating that Newton
uses and always has used fluxions for the differences of Leibniz. This
was considered by Newton's friends an imputation of plagiarism on
the part of their chief, but this interpretation was always strenuously
resisted by Leibniz. Jokn Keill (1671-1721), professor of astronomy
at Oxford, undertook with more zeal than judgment the defence of
Newton. In a paper inserted in the Philosophical Transactions of
1708, he claimed that Newton was the first inventor of fluxions and
“that the same calculus was afterward published by Leibniz, the
name and the mode of notation being changed.” Leibniz complained
to the secretary of the Royal Society of bad treatment and requested
the interference of that body to induce Keill to disavow the intention
of imputing fraud. John Keill was not made to retract his accusation;
on the contrary, was authorized by Newton and the Royal Society
to explain and defend his statement. This he did in a long letter.
Leibniz thereupon complained that the charge was now more open
than before, and appealed for justice to the Royal Society and to
Newton himself. The Royal Society, thus appealed to as a judge,
appointed a committee which collected and reported upon a large
mass of documents—mostly letters from and to Newton, Leibniz,
Wallis, Collins, etc. This report, called the Commercium epistolicum,
appeared in the year 1712 and again in 1722 and 1725, with a Recensio
prefixed, and additional notes by Keill. The final conclusion in the
Commercium cpistolicum was that Newton was “the first inventor.”
But this was not to the point. The question was not whether Newton
was the first inventor, but whether Leibniz had stolen the method.
The committee had not formally ventured to assert their belief that
Leibniz was a plagiarist. In the following sentence they insinuated
that Leibniz did take or might have taken, his method from that of
Newton: “And we find no mention of his (Leibniz's) having any other
Differential Method than Mouton’s before his Letter of 21st of June,
1677, which was a year after a Copy of Mr. Newlon’s Letter, of the
10th of December, 1672, had been sent to Paris to be communicated
to him; and about four years after Mr. Collins began to communicate
that Letter to his Correspondents; in which Letter the Method of
Fluxions was sufficiently describ’d to any intelligent Person.”

About 1850 it was shown that what H. Oldenburg sent to Leibniz
was not Newton’s letter of Dec. 10, 1672, but only excerpts from it
which omitted Newton’s method of drawing tangents and could not
possibly convey an idea of fluxions. Oldenburg’s letter was found
among the Leibniz manuscripts in the Royal Library at Hanover, and
was published by C. J. Gerhardt in 1846, 1848, 1849 and 1855,! and
again later.

1 See Essays on the Li{e and Work of Newton by Augustus De Morgan, edited, with

notes and appendices, by Philip E. B. Jourdain, Chicago and London, 1914. Jour-
dain gives on p. 102 the bibliography of the publications of Newton and Leibniz.
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Moreover, when J. Edleston in 1850 published the Correspondence
of Sir Isaac Newton and Professor Cotes, it became known that the
Royal Society in 1712 had not one, but two, parcels of Collins. One
parcel contained letters of James Gregory, and Isaac Newton’s letter
of Dec. 10, 1672, in full; the other parcel, which was marked “To
Leibnitz, the 14th of June, 1676 About Mr. Gregories remains,”
contained an abridgment of a part of the contents of the first parcel,
with nothing but an allusion to Newton’s method described in his
letter of Dec. 10, 1672. In the Commercium epistolicum Newton’s
letter was printed in full and no mention was made of the existencs
of the second parcel that was marked “To Leibnitz. . . .” Thus the
Commercium epistolicum conveyed the impression that Newton's un-
curtailed letter of Dec. 10, 1672, had reached Leibniz in which fluxions
“was sufficiently described to any intelligent person,” while as a
matter of fact the method is not described at all in the letter which
Leibniz received.

Leibniz protested only in private letters against the proceeding of
the Royal Society, declaring that he would not answer an argument
so weak. John Bernoulli, in a letter to Leibniz, which was published
later in an anonymous tract, is as decidedly unfair towards Newton
as the friends of the latter had been towards Leibniz. John Keill
replied, and then Newton and Leibniz appear as mutual accusers in
several letters addressed to third parties. In a letter dated April 9,
1716, and sent to Antonio Schinella Conti (1677-1749), an Italian
priest then residing in London, Leibniz again reminded Newton of
the admission he had made in the scholium, which he was now desirous
of disavowing; Leibniz also states that he always believed Newton,
but that, seeing him connive at accusations which he must have
known to be false, it was natural that he (Leibniz) should begin to
doubt. Newton did not reply to this letter, but circulated some re-
marks among his friends which he published immediately after hearing
of the death of Leibniz, November 14, 1716. This paper of Newton
gives the following explanation pertaining to the scholium in question:
‘“He [Leibniz] pretends that in my book of principles I allowed him
the invention of the calculus differentialis, independently of my own;
and that to attribute this invention to myself is contrary to my
knowledge there avowed. But in the paragraph there referred unto
I do not find one word to this purpose.” In the third edition of the
Principia, 1726, Newton omitted the scholium and substituted in its
place another, in which the name of Leibniz does not appear.

National pride and party feeling long prevented the adoption of
impartial opinions in England, but now it is generally admitted by

We recommend J. B. Biot and F. Lefort’s edition of the Commercium epistolicum,
Paris, 1856, which exhibits all the alterations made in the different reprints of this
publication and reproduces also H. Oldenburg’s letter to Leibniz of July 26, 1676,
and other important documents bearing on the controversy.
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nearly all familiar with the matter, that Leibniz really was an inde-
pendent inventor. Perhaps the most telling evidence to show that
Leibniz was an independent inventor is found in the study of his
mathematical papers (collected and edited by C. J. Gerhardt, in seven
volumes, Berlin, 1849-1863), which point out a gradual and natural
evolution of the rules of the calculus in his own mind. “There was
throughout the whole dispute,” says De Morgan, “a confusion be-
tween the knowledge of fluxions or differentials and that of a calcudus
of]ﬂu)fions or differentials; that is, a digested method with general
rules.’

This controversy is to be regretted on account of the long and bitter
alienation which it produced between English and Continental
mathematicians. It stopped almost completely all interchange of
ideas on scientific subjects. The English adhered closely to Newton’s
methods and, until about 1820, remained, in most cases, ignorant of
the brilliant mathematical discoveries that were being made on the
Continent. The loss in point of scientific advantage was almost
entirely on the side of Britain. The only way in which this dispute
may be said, in a small measure, to have furthered the progress of
mathematics, is through the challenge problems by which each side
attempted to annoy its adversaries.

The recurring practice of issuing challenge problems was inaugurated
at this time by Leibniz. They were, at first, not intended as defiances,
but merely as exercises in the new calculus. Such was the problem
of the isochronous curve (to find the curve along which a body falls
with uniform velocity), proposed by him to the Cartesians in 1687, and
solved by Jakob Bernoulli, himself, and Johann Bernoulli. Jakob Ber-
noulli proposed in the Acta eruditorum of 16go the question to find the
curve (the catenary) formed by a chain of uniform weight suspended
freely from its ends. It was resolved by C. Huygens, G. W. Leibniz,
Johann Bernoulli, and Jakob Bernoulli himself; the properties of the
catenary were worked out methodically by David Gregory ! of Oxford
and himself. In 1696 Johann Bernoulli challenged the best mathemati-
cians in Europe to solve the difficult problem, to find the curve (the
. cycloid) along which a body falls from one point to another in the
shortest possible time. Leibniz solved it the day he received it.
Newton, de I'Hospital, and the two Bernoullis gave solutions. New-
ton’s appeared anonymously in the Philosophical Transactions, but
Johann Bernoulli recognized in it his powerful mind, “tanquam,” he
says, “ex ungue leonem.” The problem of orthogonal trajectories (a
system of curves described by a known law being given, to describe
a curve which shall cut them all at right angles) was proposed by
Johann Bernoulli in a letter to G. W. Leibniz in 1694. Later it was
long printed in the Acta eruditorum, but failed at first to receive much

2 Phil. Trans., London, 1697.
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attention. It was again proposed in 1716 by Leibniz, to feel the pulse
of the English mathematicians.

This may be considered as the first defiance problem professedly
aimed at the English. Newton solved it the same evening on which
it was delivered to him, although he was much fatigued by the day’s
work at the mint. His solution, as published, was a general plan of
an investigation rather than an actual solution, and was, on that
account, criticised by Johann Bernoulli as being of no value. Brook
Taylor undertook the defence of it, but ended by using very repre-
hensible language. Johann Bernoulli was not to be outdone in in-
civility, and made a bitter reply. Not long afterwards Taylor sent
an open defiance to Continental mathematicians of a problem on the
integration of a fluxion of complicated form which was known to
very few geometers in England and supposed to be beyond the power
of their adversaries. The selection was injudicious, for Johann
Bernoulli had long before explained the method of this and similar
integrations. It served only to display the skill and augment the
triumph of the followers of Leibniz. The last and most unskilful
challenge was by John Keill, The problem was to find the path of a
projectile in a medium which resists proportionally to the square of
the velocity. Without first making sure that he himself could solve
it, Keill boldly challenged Johann Bernoulli to produce a solution.
The latter resolved the question in very short time, not only for a
resistance proportional to the square, but to any power of the velocity.
Suspecting the weakness of the adversary, he repeatedly offered to
send his solution to a confidential person in London, provided Keill
would do the same. Keill never made a reply, and Johann Bernoulli
abused him and cruelly exulted over him.!

The explanations of the fundamental principles of the calculus, as
given by Newton and Leibniz, lacked clearness and rigor. For that
reason it met with opposition from several quarters. In 1694 Bernhard
Nieuwentijt (1654-1718) of Holland denied the existence of differentials
of higher orders and objected to the practice of neglecting infinitely
small quantities. These objections Leibniz was not able to meet

satisfactorily. In his reply he said the value of % in geometry could

be expressed as the ratio of finite quantities. In the interpretation
of dx and dy Leibniz vacillated.? At one time they appear in his
writings as finite lines; then they are called infinitely small quantities,
and again, quantitates inassignabiles, which spring from quantitates
assignabiles by the law of continuity. In this last presentation Leibniz
approached nearest to Newton.
1 John Playfair, “Progress of the Mathematical and Physical Sciences” in
Encyclopedia Britannica, 7th Ed., continued in the 8th Ed. by Sir John Leslie.
N 2 Cf_nsult G. Vivanti, Il concetto d’'Infinitesimo. Saggio storico. Nuova edizione.
apoll, 1901.
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in England the principles of fluxions were boldly attacked by
Bishop George Berkeley (1685-1753), the eminent metaphysician, in
a publication called the Analyst (1734). He argued with great acute-
ness, contending, among other things, that the fundamental idea of
supposing a finite ratio to exist between terms absolutely evanescent—
“the ghosts of departed quantities,” as he called them—was absurd
and unintelligible. Berkeley claimed that the second and third
fluxions were even more mysterious than the first fluxion. His con-
tention that no geometrical quantity can be exhausted by division is
in consonance with the claim made by Zeno in his “dichotomy,”
and the claim that the actual infinite cannot be realized. Most modern
readers recognize these contentions as untenable. Berkeley declared
as axiomatic a lemma involving the shifting of the hypothesis: If x
receives an increment i, where 7 is expressly supposed to be some
quantity, then the increment of x#, divided by , is found to be nx*~*+

n(n—r1)/2 2"~ %+ . . . If now you take i=o, the hypothesis is shifted
and there is a manifest sophism in retaining any result that was ob-
tained on the supposition that 7 is not zero. Berkeley’s lemma found
no favor among English mathematicians until 1803 when Robert
Woodhouse openly accepted it. The fact that correct results are
obtained in the differential calculus by incorrect reasoning is explained
by Berkeley on the theory of “a compensation of errors.” This theory
was later advanced also by Lagrange and L. N. M. Carnot. The
publication of Berkeley's Analyst was the most spectacular mathe-
matical event of the eighteenth century in England. Practically all
British discussions of fluxional concepts of that time involve issues
raised by Berkeley. Berkeley’s object in writing the Analyst was to
show that the principles of fluxions are no clearer than those of Chris-
tianity. Hereferred to an “infidel mathematician” (Edmund Halley),
of whom the story is told ! that, when he jested concerning theological
questions, he was repulsed by Newton with the remark, “I have
studied these things; you have not.” A friend of Berkeley, when on a
bed of sickness, refused spiritual consolation, because the great
mathematician Halley had convinczd him of the inconceivability of
the doctrines of Christianity. This induced Berkeley to write the
Analyst.

Replies to the Analyst were published by James Jurin (1684-1750)
of Trinity College, Cambridge under the pseudonym of “Philalethes
Cantabrigiensis” and by Jokn Waltori of Dublin. There followed
several rejoinders. Jurin’s defence of Newton's fluxions did not meet
the approval of the mathematician, Benjamin Robins (1707-1751).
In a Journal, called the Republick of Letters (London) and later in
the Works of the Learned, a long and acrimonious controversy was
carried on between (Iurin and Robins, and later between Jurin and
Henry Pemberton (1694-1771), the editor of the third edition of

1 Mach Mechanics, 1907, pp. 448-449.
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Newton’s Principia. The question at issue was the precise meaning
of certain passages in the writings of Newton: Did Newton hold that
there are variables which reach their limits? Jurin answered “Yes”;
Robins and Pemberton answered “No.” The debate between Jurin
and Robins is important in the history of the theory of limits. Though
holding a narrow view of the concept of a limit Robins deserves credit
for rejecting all infinitely small quantities and giving a logically quite
coherent presentation of fluxions in a pamphlet, called A Discourse
concerning the Nature and Certainty of Sir Isaac Newton’s Methods of
Fluxions, 1735. This and Maclaurin’s Fluxions, 1742, mark the top-
notch of mathematical rigor, reached during the eighteenth century
in the exposition of the calculus. Both before and after the period
of eight years, 1834-1842, there existed during the eighteenth century
in Great Britain a mixture of Continental and British conceptions of
the new calculus, a superposition of British symbols and phraseology
upon the older Continental concepts. Newton’s notation was poor and
Leibniz’s philosophy of the calculus was poor. The mixture repre-
sented the temporary survival of the least fit of both systems. The
subsequent course of events was a superposition of the Leibnizian
notation and phraseology upon the limit-concept as developed by
Newton, Jurin, Robins, Maclaurin, D’Alembert and later writers.

In France Michel Rolle for a time rejected the differential calculus
and had a controversy with P. Varignon on the subject. Perhaps the
most powerful argument in favor of the new calculus was the con-
sistency of the results to which it led. Famous is D’Alemhert’s advice
to young students: “Allez en avant, et la foi vous viendra.”

Among the most vigorous promoters of the calculus on the Conti-
nent were the Bernoullis. They and Euler made Basel in Switzerland
famous as the cradle of great mathematicians. The family of Ber-
noullis furnished in course of a century eight members who distin-
guished themselves in mathematics. We subjoin the following genea-
logical table:—

Nicolaus Bernoulli, the Father

Jakob, 1654-1705 Nicolaus Johann, 1667-1748

Nicolaus, 1687-1759 Nicolaus, 1695-1726
Daniel, 1700-1782
Johann, 1710-1790

Daniel Johann, 1744-1807 Jakob, 17591789

Most celebrated were the two brothers Jakob (James) and Johann
(John), and Daniel, the son of John. Jakob and Johann were staunch
friends of G. W. Leibniz and worked hand in hand with him. Jakob
(James) Bernoulli (1654-1705) was born in Basel. Becoming inter-
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ested in the calculus, he mastered it without aid from a teacher.
From 1687 until his death he occupied the mathematical chair at the
University of Basel. He was the first to give a solution to Leibniz’s
problem of the isochronous curve. In his solution, published in the
Acta eruditorum, 1690, we meet for the first time with the word
integral. Leibniz had called the integral calculus calculus summatorius,
but in 1696 the term calculus integralis was agreed upon between
Leibniz and Johann Bernoulli. Jakob Bernoulli gave in 1694 in the
Acta eruditorum the formula for the radius of curvature in rectangular
co-ordinates. At the same time he gave the formula also in polar co-
ordinates. He was one of the first to use polar co-ordinates in a gen-
eral manner and not simply for spiral shaped curves.! Jakob proposed
the problem of the catenary, then proved the correctness of Leibniz’s
construction of this curve, and solved the more complicated problems,
supposing the string to be (1) of variably density, (2) extensible,
(3§)acted upon at each point by a force directed to a fixed centre. Of
these problems he published answers without explanations, while his
brother Johann gave in addition their theory. He determined the
shape of the “elastic curve” formed by an elastic plate or rod fixed
at one end and-bent by a weight applied to the other end; of the
“lintearia,” a flexible rectangular plate with two sides fixed hori-
zontally at the same height, filled with a liquid; of the “velaria,” a
rectangular sail filled with wind. In the Acta eruditorum of 1694 he
makes reference to the lemniscate, a curve which “formam refert
jacentis notz octonarii o, seu complicitz in nodum fascie, sive
lemnisci.” That this curve is a special case of Cassini’s oval remained
long unnoticed and was first pointed out by Pietro Ferroni in 1782
and G. Saladini in 1806. Jakob Bernoulli studied the loxodromic and
logarithmic spirals, in the last of which he took particular delight
from its remarkable property of reproducing itself under a variety of
conditions. Following the example of Archimedes, he willed that the
curve be engraved upon his tombstone with the inscription “eadem
mutata resurgo.” In 1696 he proposed the famous problem of isoper-
imetrical figures, and in 1701 published his own solution. He wrote
a work on Ars Conjectandi, published in 1713, eight years after his
death. It consists of four parts. The first contains Huygens’ treatise
on probability, with a valuable commentary. The second part is on
permutations and combinations, which he uses in a proof of the bi-
nomial theorem for the case of positive integral exponents; it contains
a formula for the sum of the r® powers of the first n integers, which in-
volves the so-called “numbers of Bernoulli.”” He could boast that
by means of it he calculated intra semi-quadrantem horae the sum of

the 1oth powers of the first thousand integers. The third part con-

tains solutions of problems on probability. The fourth part is the
most important, even though left incomplete. It contains *“Ber-
1 G. Enestrom in Bibliotheca mathematica, 3. S., Vol. 13, 1912, p. 76.
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noull’s theorem”: If (r4s)»!, where the letters are integers and
{=r+s, is expanded by the binomial theorem, then by taking n large
enough the ratio of # (denoting the sum of the greatest term and the
n preceding terms and the # following terms) to the sum of the re-
maining terms may be made as great as we please. Letting r and s
be proportional to the probability of the happening and failing of an
event in a single trial, then # corresponds to the probability that in nt
trials the number of times the event happens will lie between n(r —1)
and #n(r+1), both inclusive. Bernoulli’s theorem “will ensure him a
permanent place in the history of the theory of probability.” ! Prom-
inent contemporary workers on probability were Montmort in France
and De Moivre in England. In December, 1913, the Academy of
Sciences of Petrograd celebrated the bicentenary of the “law of large
numbers,” Jakob Bernoulli’s Ars conjectandi having been published
at Basel in 1713. Of his collected works, in three volumes, one was
printed in 1713, the other two in 1744. *

Johann (John) Bernoulli (1667-1748) was initiated into mathe-
matics by his brother. He afterwards visited France, where he met
Nicolas Malebranche, Giovanni Domenico Cassini, P. de Lahire, P.
Varignon, and G. F. de 'Hospital. For ten years he occupied the
mathematical chair at Groningen and then succeeded his brother at
Basel. He was one of the most enthusiastic teachers and most suc-
cessful original investigators of his time. He was a member of almost
every learned socicty in Europe. His controversies were almost as
numerous as his discoveries. He was ardent in his friendships, but
unfair, mean, and violent toward all who incurred his dislike—even
his own brother and son. He had a bitter dispute with Jakob on the
isoperimetrical problem. Jakob convicted him of several paralogisms.
After his brother’s death he attempted to substitute a disguised solu-
tion of the former for an incorrect one of his own. Johann admired
the merits of G. W. Leibniz and L. Euler, but was blind to those of
I. Newton. He immensely enriched the integral calculus by his labors.
Among his discoveries are the exponential calculus, the line of swiftest
descent, and its beautiful relation to the path described by a ray
passing through strata of variable density. In 1694 he explained in
a letter to I'Hospital the method of evaluating the indeterminate

form g. He treated trigonometry by the analytical method, studied

caustic curves and trajectories. Several times he was given prizes
by the Academy of Science in Paris. -

Of his sons, Nicolaus and Daniel were appointed professors of
mathematics at the same time in the Academy of St. Petersburg. The
former soon died in the prime of life; the latter returned to Basel in
1733, where he assumed the chair of experimental philosophy. His

t1. Todhunter, History of Theor. of Prob., p. 77.
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first mathematical publication was the solution of a differential equa-
tion proposed by J. F. Riccati. He wrote a work on hydrodynamics.
He was the first to use a suitable notation for inverse trigonometric
functions; in 1729 he used AS. to represent arcsine; L. Euler in 1736
used At for arctangent.! Daniel Bernoulli’s investigations on prob-
ability are remarkable for their boldness and originality. He pro-
posed the theory of moral expectation, which he thought would give
results more in accordance with our ordinary notions than the theory
of mathematical probability. He applies his moral expectation to the
so-called “Petersburg problem”: A throws a coin in the air; if head
appears at the first throw he is to receive a shilling from B, if head
does not appear until the second throw he is to receive 2 shillings, if
head does not appear until the third throw he is to receive 4 shillings,
and so on: required the expectation of A. By the mathematical
theory, A’s expectation is infinite, a paradoxical result. A given sum
of money not being of equal importance to every man, account should
be taken of relative values. Suppose A starts with a sum «, then the
moral expectation in the Petersburg problem is finite, according to
Daniel Bernoulli, when g is finite; it is 2 when @=o0, about 3 when
a=10, about 6 when a=1000.2 The Petersburg problem was discussed
by P. S. Laplace, S. D. Poisson and G. Cramer. Daniel Bernoulli’s
““moral expectation’ has become classic, but no one ever makes use
of it. He applies the theory of probability to insurance; to determine
the mortality caused by small-pox at various stages of life; to deter-
mine the number of survivors at a given age from a given number of
births; to determine how much inoculation lengthens the average
duration of life. He showed how the differential calculus could be
used in the theory of probability. He and L. Euler enjoyed the honor
of having gained or shared no less than ten prizes from the Academy
of Sciences in Paris. Once, while travelling with a learned stranger
who asked his name, he said, “I am Daniel Bernoulli.” The stranger
could not believe that his companion actually was that great celebrity,
and replied “I am Isaac Newton.”

Johann Bernoulli (born 1710) succeeded his father in the professor-
ship of mathematics at Basel. He captured three prizes (on the cap-
stan, the propagation of light, and the magnet) from the Academy of
Sciences at Paris. Nicolaus Bernoulli (born 1687) held for a time the
mathematical chair at Padua which Galileo had once filled. He proved
. 3’A A
in 1742 that oo’ Johann Bernoulli (born 1744) at the age

of nineteen was appointed astronomer royal at Berlin, and after-
wards director of the mathematical department of the Academy. His
brother Jakob took upon himself the duties of the chair of experi-

1G. Enestrdm in Bibliothcca mathemalica, Vol. 6, pp. 319-321; Vol. 14, p. 78.
t I. Todhunter, Hist. of the Theor. of Prob., p. 220.



224 " A HISTORY OF MATHEMATICS

mental physics at Basel, previously performed by his uncle Jakob,
and later was appomtcd mathematical professor in the Academy at
St. Petersburg.

Brief mention will now be made of some other mathematicians
belonging to the period of Newton, Leibniz, and the elder Bernoullis.

Guillaume Francois Antoine I’Hospital (1661-1704), a pupil of
Johann Bernoulli, has already been mentioned as taking part in the
challenges issued by Leibniz and the Bernoullis. He helped power-
fully in making the calculus of Leibniz better known to the mass of
mathematicians by the publication of a treatise thereon, the Analyse
des infiniment pelits, Paris, 1696. This contains the method of finding
the limiting value of a fraction whose two terms tend toward zero
at the same time, due to Johann Bernoulli.

Another zealous French advocate of the calculus was Pierre Varig-
non (1654-1722). In Mém. de Paris, Année MDCCIYV, Paris, 1722, he
follows Ja. Bernoulli in the use of polar co-ordinates, pand w. Letting

p and y=lw, the equations thus changed represent wholly different
curves. For instance, the parabolas x®=a™~'y become Fermatian
spirals. Joseph Saurin (1659-1737) solved the delicate problem of
how to determine the tangents at the multiple points of algebraic
curves. Francois Nicole 51683—1758) in 1717 issued an elementary
treatise on finite differences, in which he finds the sums of a consider-
able number of interesting series. He wrote also on roulettes, particu-
larly spherical epicycloids, and their rectification. Also interested in
finite differences was Pierre Raymond de Montmort (1678-1719).
His chief writings, on the theory of probability, served to stimulate
his more distinguished successor, De Moivre. Montmort gave the
first general solution of the Problem of Points. Jean Paul de Gua
(1713-1785) gave the demonstration of Descartes’ rule of signs, now
given in books. This skilful geometer wrote in 1740 a work on analyt-
ical geometry, the object of which was to show that most investiga-
tions on curves could be carried on with the analysis of Descartes quite
as easily as with the calculus. He shows how to find the tangents,
asymptotes, and various singular points of curves of all degrees, and

roves by perspective that several of these points can be at infinity.
1chel Rolle 8) 652-1719) is the author of a theorem named after him.
That theorem is not found in his Traité¢ d’algébre of 16go, but occurs
in his Methode pour résoudre les egalitez, Paris, 1691.! The name
“Rolle’s theorem” was first used by M. W. Drobisch (1802-1896) of
Leipzig in 1834 and by Giusto Bellavitis in 1846. His Algébre contains
his “method of cascades.” In an equation in v which he has trans-
formed so that its signs become alternately plus and minus, he puts
v=x+2z and arranges the result according to the descending powers
of x. The coefficients of x*, x*~1, . . ., when equated to Zero, are

1See F. Cajori on the history of Rolle s Theorem in Bibliotheca mathemalica,
3rd S., Vol. I, 1911, pp. 300-313.
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called “cascades.” They are the successive derivatives of the original
equation in v, each put equal to zero. Now comes a theorem which
in modern version is: Between two successive real roots of f’(v)=o0
there cannot be more than one real root of f(v)=0. To ascertain the
root-limits of a given equation, Rolle begins with the cascade of lowest
degree and ascends, solving each as he proceeds. This process is very
laborious. '

Of Italian mathematicians, Riccati and Fagnano must not remain
unmentioned. Jacopo Francesco, Count Riccati (1676-1754) is best
known in connection with his problem, called Riccati’s equation,
published in the Acta eruditorum in 1724. He succeeded in integrating
this differential equation for some special cases. Long before this
Jakob Bernoulli had made attempts to solve this equation, but with-
out success. A geometrician of remarkable power was Giulio Carlo,
Count de Fagnano (1682-1766). He discovered the following for-

mula, 7=2¢ log -i—ﬁ, in which he anticipated L. Euler in the use of

imaginary exponents and logarithms. His studies on the rectification
of the ellipse and hyperbola are the starting-points of the theory of
elliptic functions. He showed, for instance, that two arcs of an ellipse
can be found in an indefinite number of ways, whose difference is
expressible by a right line. In the rectification of the lemniscate he
reached results which connect with elliptic functions; he showed that
its arc can be divided geometrically in # equal parts, if # is 2 * 2m,
3 2™, 0r 5 ' 2® He gave expert advice to Pope Benedict XIV re-
garding the safety of the cupola of St. Peter’s at Rome. In return
the Pope promised to publish his mathematical productions. For
some reason the promise was not fulfilled and they were not published
until 1750. Fagnano’s mathematical works were re-published in 1911
and 1912 by the Italian Society for the Advancement of Science.

In Germany the only noted contemporary of Leibniz is Ehrenfried
Walter Tschirnhausen (1651-1708), who discovered the caustic of
reflection, experimented on metallic reflectors and large burning-
glasses, and gave a method of transforming equations named after
him. He endeavored to solve equations of any degree by removing
all the terms except the first and last. This procedure had been tried
before him by the Frenchman Fran¢ois Dulaurens and by the Scotch-
man James Gregory.! Gregory’s Vera circuli et hyperbole quadratura
(Patavii, 1667) is noteworthy as containing a novel attempt, namely,
to prove that the quadrature of the circle cannot be effected by the
aid of algebra. His ideas were not understood in his day, not even by
C. Huygens with whom he had a controversy on this subject. James
Gregory’s proof could not now be considered binding. Believing that
the most simple methods (like those of the ancients) are the most

1 G. Enestrdm in Bibliolhcca mathematica, 3. S., Vol. 9, 1908—9, pp. 258, 259.
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correct, Tschirnhausen concluded that in the researches relating to
the properties of curves the calculus might as well be dispensed with.

After the death of Leibniz there was in Germany not a single mathe-
matician of note. Christian Wolf (1679-1754), professor at Halle,
was ambitious to figure as successor of Leibniz, but he “forced the
ingenious ideas of Leibniz into a pedantic scholasticism, and had the
unenviable reputation of having presented the elements of the arith-
metic, algebra, and analysis developed since the time of the Renais-
sance in the form of Euclid,—of course only in outward form, for into
the spirit of them he was quite unable to penetrate” (H. Hankel).

The contemporaries and immediate successors of Newton in Great
Britain were men of no mean merit. We have reference to R. Cotes,
B. Taylor, L. Maclaurin, and A. de Moivre. We are told that at the
death of Roger Cotes (1682-1716), Newton exclaimed, “If Cotes had
lived, we might have known something.” It was at the request of
Dr. Bentley that R. Cotes undertook the publication of the second
edition of Newton’s Principia. His mathematical papers were pub-
lished after his death by Robert Smith, his successor in the Plumbian
professorship at Trinity College. The title of the work, Harmonia
Mensurarum, was suggested by the following theorem contained in it:
If on each radius vector, through a fixed point O, there be taken a
point R, such that the reciprocal of OR be the arithmetic mean of the
reciprocals of OR1,OR., . . . OR,, then the locus of R will be a straight
line. In this work progress was made in the application of logarithms
and the properties of the circle to the calculus of fluents. To Cotes
we owe a theorem in trigonometry which depends on the forming of
factors of x"—1. In the Philosophical Transactions of London, pub-
lished 1714, he develops an important formula, reprinted in his Har-
monia Mensurarum, which in modern notation is ¢ ¢=log (cos¢p+i.
sing.) Usually this formula is attributed to L. Euler. Cotes studied
the curve p?0=a? to which he gave the name “lituus.” Chief among
the admirers of Newton were B. Taylor and C. Maclaurin. The quar-
rel between English and Continental mathematicians caused them to
work quite independently of their great contemporaries across the
Channel.

Brook Taylor (1685-1731) was interested in many branches of
learning, and in the latter part of his life engaged mainly in religious
and philosophic speculations. His principal work, Methodus incre-
mentorum directa et inversa, London, 1715-1717, added a new branch
to mathematics, now called “finite differences,” of which he was the
inventor. He made many important applications of it, particularly
to the study of the form of movement of vibrating strings, the reduc-
tion of which to mechanical principles was first attempted by him.
This work contains also “Taylor’s theorem,” and, as a special case
of it, what is now called “Maclaurin’s Theorem.” Taylor discovered
his theorem at least three years before its appearance in print. He
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gave it in a letter to John Machin, dated July 26, 1712. Itsimportance
was not recognized by analysts for over fifty years, until J. Lagrange
pointed out its power. His proof of it does not consider the question
of convergency, and is quite worthless. The first more rigorous proof
was given a century later by A. L. Cauchy. Taylor gave a singular
solution of a differential equation and the method of finding that
solution by differentiation of the differential equation. Taylor’s
work contains the first correct explanation of astronomical refraction.
He wrote also a work on linear perspective, a treatise which, like his
other writings, suffers for want of fulness and clearness of expression.
At the age of twenty-three he gave a remarkable solution of the prob-
lem of the centre of oscillation, published in 1714. His claim to
priority was unjustly disputed by Johann Bernoulli. In the Philo-
sophical Transactions, Vol. 30, 1717, Taylor applies ““Taylor’s series”
to the solution of numerical equations. He assumes that a rough
approximation, a, to a root of f(x)=o0 has been found. Let f(a)=%,
f £)=k', f"(a)=F', and x=a+s. He expands o=f(a+s) by his
theorem, discards all powers of s above the second, substitutes the
values of k, %', k", and then solves for s. By a repetition of this
process, close approximations are secured. He makes the important
observation that his method solves also equations involving radicals
and transcendental functions. The first application of the Newton-
Raphson process to the solution of transcendental equations was
made by Thomas Simpson in his Essays . . . om Mathematicks,
London, 1740.

The earliest to suggest the method of recurring series for finding
roots was Daniel Bernowlli (1700-1782) who in 1728 brought the
quartic to the form r=ax+bx’+cx*+ex!, then selected arbitrarily
four numbers A4, B, C, D, and a fifth, E, thus, E=aD+bC+cB+eA,
also a sixth by the same recursion formula F=a¢E+bD+cC+eB,
and so on. If the last two numbers thus found are M and N, then
x=M -+ N is an approximate root. Daniel Bernoulli gives no proof,
but is aware that there is not always convergence to the root. This
method was perfected by Leonhard Euler in his Introductio in analysin
infinilorum, 1748, Vol. I, Chap. 17, and by Joseph Lagrange in Note
VI of his Résolution des équations numériques.

Brook Taylor in 1717 expressed a root of a quadratic equation in
the form of an infinite series; for the cubic Fran¢ois Nicole did simi-
larly in 1738 and Clairaut in 1746. A. C. Clairaut inserted the process
in his Elements d’algébre. Thomas Simpson determined roots by re-
version of series in 1743 and by infinite series in 1745. Marquis de
Courtivron (1715-1785) also expressed the roots in the form of in-
finite series, while L. Euler devoted several articles to this topic.

At this time the matter of convergence of the series did not receive

1 For references see F. Cajori, in Colorado College Publication, General Series s1,
Pp. 212.
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proper attention, except in some rare instances. James Gregory of
Edinburgh, in his Vera circuli et hyperbole quadratura (1667), first
used the terms “convergent” and ‘““divergent” series, while William
Brouncker gave an argument which amounted to a proof of the con-
vergence of his series, noted above.

Colin Maclaurin (1698-1746) was elected professor of mathematics
at Aberdeen at the age of nineteen by competitive examination, and
in 1725 succeeded James Gregory at the University of Edinburgh.
He enjoyed the friendship of Newton, and, inspired by Newton’s
discoveries, he published in 1719 his Geometria Organica, containing
a new and remarkable mode of generating conics, known by his name,
and referring to the fact which became known later as “Cramer’s

radox,” that a curve of the nt» order is not always determined by
i:(n+3) points, that the number may be less. A second tract, De
Linearum geometricarum proprietatibus, 1720, is remarkable for the
elegance of its demonstrations. It is based upon two theorems: the
first is the theorem of Cotes; the second is Maclaurin’s: If through
any point O a line be drawn meeting the curve in n points, and at
these points tangents be drawn, and if any other line through O cut
the curve in R, R,, etc., and the system of n tangents in ry, 3, etc.,

then Eal;-f- 2. This and Cotes’ theorem are generalizations of
theorems of Newton. Maclaurin uses these in his treatment of curves
of the second and third degree, culminating in the remarkable theorem
that if a quadrangle has its vertices and the two points of intersection
of its opposite sides upon a curve of the third degree, then the tangents
drawn at two opposite vertices cut each other on the curve. He de-
duced independently B. Pascal’s theorem on the hexagram. Some
of his geometrical results were reached independently by William
Brastkenridge (about 1700—after 1759), a clergyman in Edinburgh.
The following is known as the “Braikenridge-Maclaurin theorem”:
If the sides of a polygon are restricted to pass through fixed points
while all the vertices but one lie on fixed straight lines, the free vertex
describes a conic section or a straight line. Maclaurin’s more general
statement (Phil. Trans., 1735) is thus: If a polygon move so that each
of its sides passes through a fixed point, and if all its summits except
one describe curves of the degrees m, n, p, etc., respectively, then the
free summit moves on a curve of the degree 2 mnp . . ., which reduces
to mnp . . . when the fixed points all lie on a straight line. Mac-
laurin was the first to write on “pedal curves,” a name due to Olry
Terquem (1782-1862). Maclaurin is the author of an Algebra. The
object of his treatise on Fluxions was to found the doctrine of fluxions
on geometric demonstrations after the manner of the ancients, and
thus, by rigorous exposition, answer such attacks as Berkeley’s that
the doctrine rested on false reasoning. The Fluxions contained for
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the first time the correct way of distinguishing between maxima and
minima, and explained their use in the theory of multiple points.
“Maclaurin’s theorem” was previously given by B. Taylor and James
Stirling, and is but a particular case of “ Taylor’s theorem.” Maclaurin
invented the trisectrix, x(x2+y?)=a(y*— 3%?), which is akin to the
Folium of Descartes. Appended to the treatise on Fluxions is the
solution of a number of beautiful geometric, mechanical, and as-
tronomical problems, in which -he employs ancient methods with
such consummate skill as to induce A. C. Clairaut to abandon analytic
methods and to attack the problem of the figure of the earth by pure
geometry. His solutions commanded the liveliest admiration of J.
Lagrange. Maclaurin investigated the attraction of the ellipsoid of
revolution, and showed that a homogeneous liquid mass revolving
uniformly around an axis under the action of gravity must assume
the form of an ellipsoid of revolution. Newton had given this theorem
without proof. Notwithstanding the genius of Maclaurin, his in-
fluence on the progress of mathematics in Great Britain was unfortu-
nate; for, by his example, he induced his countrymen to neglect
analysis and to be indifferent to the wonderful progress in the higher
analysis made on the Continent.

James Stirling (1692-1770), whom we have mentioned in connec-
tion with C. Maclaurin’s theorem and Newton’s enumeration of 72
forms of cubic curves (to which Stirling added 4 forms), was educated at
Glasgow and Oxford. He was expelled from Oxford for corresponding
with Jacobites. For ten years he studied in Venice. He enjoyed the
friendship of Newton. His Methodus differentialis appeared in 1730.

It remains for us to speak of Abraham de Moivre (1667-1754),
who was of French descent, but was compelled to leave France at
the age of eighteen, on the Revocation of the Edict of Nantes. He
settled in London, where he gave lessons in mathematics. He ranked
high as a mathematician. Newton himself, in the later years of his
life, used to reply to inquirers respecting mathematics, even respecting
his Principia: “Go to Mr. De Moivre; he knows these things better
than I do.” He lived to the advanced age of eighty-seven and sank
into a state of almost total lethargy. His subsistence was latterly
dependent on the solution of questions on games of chance and
problems on probabilities, which he was in the habit of giving at a
tavern in St. Martin’s Lane. Shortly before his death he declared
that it was necessary for him to sleep ten or twenty minutes longer
every day. The day after he had reached the total of over twenty-
three hours, he slept exactly twenty-four hours and then passed away
in his sleep. De Moivre enjoyed the friendship of Newton and Halley.
His power as a mathematician lay in analytic rather than geometric
investigation. He revolutionized higher trigonometry by the dis-
covery of the theorem known by his name and by extending the
theorems on the multiplication and division of sectors from the circle
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to the hyperbola. His work on the theory of probability surpasses
anything done by any other mathematician except P. S. Laplace.
His principal contributions are his investigations respecting the
Duration of Play, his Theory of Recurring Series, and his extension
of the value of Daniel Bernoulli’s theorem by the aid of Stirling’s
theorem.! His chief works are the Doctrine of Chances, 1716, the
Miscellanea Analytica, 1730, and his papers in the Philosophical
Transactions. Unfortunately he did not publish the proofs of his
results in the doctrine of chances, and J. Lagrange more than fifty
years later found a good exercise for his skill in supplying the proofs.
A generalization of a problem first stated by C. Huygens has re-
ceived the name of “De Moivre’s Problem:” Given n dice, each
having f faces, determine the chances of throwing any given number
of points. It was solved by A. de Moivre, P. R. de Montmort, P. S.
Laplace and others. De Moivre also generalized the Problem on the
Duration of Play, so that it reads as follows: Suppose A has m counters,
and B has n counters; let their chances of winning in a single game be
as a to b; the loser in each game is to give a counter to his adversary:
required the probability that when or before a certain number of games
has been played, one of the players will have won all the counters of
his adversary. De Moivre’s solution of this problem constitutes his
most substantial achievement in the theory of chances. He employed
in his researches the method of ordinary finite differences, or as he
called it, the method of recurrent series.

A famous theory involving the notion of inverse probability was
advanced by Thomas Bayes. It was published in the London Philo-
sophical Transactions, Vols. 53 and 54 for the years 1763 and 1764,
after the death of Bayes, which occurred in 1761. These researches
originated the discussion of the probabilities of causes as inferred
from observed effects, a subject developed more fully by P. S. Laplace.
Using modern symbols, Bayes’ fundamental theorem may be stated
thus: 2 If an event has happened p times and failed ¢ times, the
probability that its chance at a single trial lies between & and b is

‘/.:xﬂ (1-2x)¢ dx+f:x1' (r1—x)9 dx.

A memoir of John Michell “On the probable Parallax, and Magni-
tude of the fixed Stars” in the London Philosophical Transaclions,
Vol. 57 I, for the year 1767, contains the famous argument for the
existence of design drawn from the fact of the closeness of certain
stars, like the Pleiades. ‘“We may take the six brightest of the
Pleiades, and, supposing the whole number of those stars, which are
equal in splendor to the faintest of these, to be about 1500, we shall

' 1. Todhunter, A Hislory of the Mathematical Theory of Probability, Cambridge
wnd London, 1865, pp. 135-193.
t I. Todhunter, 0p. cit., p. 295.
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find the odds to be near 500,000 to 1, that no six stars, out of that
number, scattered at random, in the whole heavens, would be within
so small a distance from each other, as the Pleiades are.”

Euler, Lagrange, and Laplace

In the rapid development of mathematics during the eighteenth
century the leading part was taken, not by the universities, but by
the academies. Particularly prominent were the academies at Berlin
and Petrograd. This fact is the more singular, because at that time
Germany and Russia did not produce great mathematicians. The
academies received their adornment mainly from the Swiss and
French. It was after the French Revolution that schools gained their
ascendancy over academies.

During the period from 1730 to 1820 Switzerland had her L. Euler;
France, her J. Lagrange, P. S. Laplace, A. M. Legendre, and G. Monge.
The mediocrity of French mathematics which marked the time of
Louis XIV was now followed by one of the very brightest periods of
all history. England, on the other hand, which during the unpro-
ductive period in France had her Newton, could now boast of no great
mathematician. Except young Gauss, Germany had no great name.’
France now waved the mathematical sceptre. Mathematical studies
among the English and German people had sunk to the lowest ebb.
Among them the direction of original research was ill chosen. The
former adhered with excessive partiality to ancient geometrical
methods; the latter produced the combinatorial school, which brought
forth nothing of great value.

The labors of L. Euler, J. Lagrange, and P. S. Laplace lay in higher
analysis, and this they developed to a wonderful degree. By them
analysis came to be completely severed from geometry. During the
preceding period the effort of mathematicians not only in England,
but, to some extent, even on the continent, had been directed toward
the solution of problems clothed in geometric garb, and the results of
calculation were usually reduced to geometric form. A change now
took place. Euler brought about an emancipation of the analytical
calculus from geometry and established it as an independent science.
Lagrange and Laplace scrupulously adhered to this separation.
Building on the broad foundation laid for higher analysis and me-
chanics by Newton and Leibniz, Euler, with matchless fertility of
mind, erected an elaborate structure. There are few great ideas pur-
sued by succeeding analysts which were not suggested by L. Euler,
or of which he did not share the honor of invention. With, perhaps,
less exuberance of invention, but with more comprehensive genius and
profounder reasoning, J. Lagrange developed the infinitesimal calculus
and put analytical mechanics into the form in which we now know it.
P. S. Laplace applied the calculus and mechanics to the elaboration
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of the theory of universal gravitation, and thus, largely extending and
supplementing the labors of Newton, gave a full analytical discussion
of the solar system. He also wrote an epoch-marking work on Prob-
ability. Among the analytical branches created during this period
are the calculus of Variations by Euler and Lagrange, Spherical Har-
monics by Legendre and Laplace, and Elliptic Integrals by Legendre.

Comparing the growth of analysis at this time with the growth
during the time of K. F. Gauss, A. L. Cauchy, and recent mathe-
maticians, we observe an important difference. During the former
period we witness mainly a development with reference to form. Plac-
ing almost implicit confidence in results of calculation, mathemati-
cians did not always pause to discover rigorous proofs, and were thus
led to general propositions, some of which have since been found to
be true in only special cases. The Combinatorial School in Germany
carried this tendency to the greatest extreme; they worshipped
formalism and paid no attention to the actual contents of formule.
But in recent times there has been added to the dexterity in the formal
treatment of problems, a much-needed rigor of demonstration. A
good example of this increased rigor is seen in the present use of in-
ﬁnitlc{: series as compared to that of Euler, and of Lagrange in his earlier
works.

The ostracism of geometry, brought about by the master-minds of
this period, could not last permanently. Indeed, a new geometric
school sprang into existence in France before the close of this period.
J. Lagrange would not permit a single diagram to appear in his
Mécanigue analytique, but thirteen years before his death, G. Monge
published his epoch-making Géométrie descriptive.

Leonhard Euler (1707-1783) was born in Basel. His father, a
minister, gave him his first instruction in mathematics and then sent
him to the University of Basel, where he became a favorite pupil of
Johann Bernoulli. In his nineteenth year he composed a dissertation
on the masting of ships, which received the second prize from the
French Academy of Sciences. When Johann Bernoulli’s two sons,
Daniel and Nicolaus, went to Russia, they induced Catharine I, in
1727, to invite their friend L. Euler to St. Petersburg, where Daniel,
in 1733, was assigned to the chair of mathematics. In 1735 the solving
of an astronomical problem, proposed by the Academy, for which
several eminent mathematicians had demanded some months’ time,
was achieved in three days by Euler with aid of improved methods of
his own. But the effort threw him into a fever and deprived him of
the use of his right eye. With still superior methods this same problem
was solved later by K. F. Gauss in one hour!! The despotism of
Anne I caused the gentle Euler to shrink from public affairs and to
devote all his time to science. After his call to Berlin by Frederick the

! W. Sartorius Waltershausen, Gauss, sum Gedichiniss, Leipzig, 1856.
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Great in 1741, the queen of Prussia, who received him kindly, won-
dered how so distinguished a scholar should be so timid and reticent.
Euler naively replied, ‘“ Madam, it is because I come from a country
where, when one speaks, one is hanged.” It was on the recommenda-
tion of D’Alembert that Frederick the Great had invited Euler to
Berlin. Frederick was no admirer of mathematicians and, in a letter
to Voltaire, spoke of Euler derisively as “ un gros cyclope de géométre.”
In 1766 Euler with difficulty obtained permission to depart from Berlin
to accept a call by Catharine II to St. Petersburg. Soon after his
return to Russia he became blind, but this did not stop his wonderful
literary productiveness, which continued for seventeen years, until
the day of his death. He dictated to his servant his Anleitung zur
Algebra, 1770, Which, though purely elementary, is meritorious as
one of the earliest attempts to put the fundamental processes on a
sound basis.

The story goes that when the French philosopher Denis Diderot
paid a visit to the Russian Court, he conversed very freely and gave
the younger members of the Court circle a good deal of lively atheism.
Thereupon Diderot was informed that a learned mathematician was
in possession of an algebraical demonstration of the existence of God,
and would give it to him before all the Court, if he desired to hear it.
Diderot consented: Then Euler advanced toward Diderot, and said
gravely, and in a tone of perfect conviction: Monsieur, (6+5b*)/p=x,
donc Dieu existe; répondez! Diderot, to whom algebra was Hebrew,
was embarrassed and disconcerted, while peals of laughter rose on all
sides. He asked permission to return to France at once, which was
granted.!

Euler was such a prolific writer that only in the present century
have plans been brought to maturity for a complete edition of his
works. In 19og the Swiss Natural Science Association voted to publish
Euler’s works in their original language. The task is being carried on
with the financial assistance of German, French, American and other
mathematical organizations and of many individual donors. The
expense of publication will greatly exceed the original estimate of
400,000 francs, owing to a mass of new manuscripts recently found in
Petrograd. -

The following are his chief works:? Imiroductio in analysin in-
finitorum, 1748, a work that caused a revolution in analytical mathe-
matics, a subject which had hitherto never been presented in so general
and systematic manner; I'nstitutiones calculi differentialis, 1755, and
Institubiones calculi integralis, 1768-1770, which were the most com-
plete and accurate works on the calculus of that time, and contained
not only a full summary of everything then known on this subject,

1 From De Morgan’s Budget of Paradoxes, 2. Fd., Chicago, xg91s, Vol. II, p. 4.
2 See G. Enestrém, Verseichniss der Schriften Leonhard Eulers, 1. Lieferung, 1910,
2. Lieferung, 1913, Leipzig.
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but also the Beta and Gamma Functions and other original investi
gations; Methodus inveniends lineas curvas maximi minimive proprietate
gaudenles, 1744, which, displaying an amount of mathematical genius
seldom rivalled, contained his researches on the calculus of variations
to the invention of which Euler was led by the study of the researches
of Johann and Jakob Bernoulli. One of the earliest problems bearing
on this subject was Newton’s solid of revolution, of least resistance,
reduced by him in 1686 to a differential equation. (Principia, Bk. II,
Sec. VII, Prop. XXXIV, Scholium.) Johann Bernoulli’s problem of
the brachistochrone, solved by him in 1697, and by his brother Jakob
in the same year, stimulated Euler. The study of isoperimetrical
curves, the brachistochrone in a resisting medium and the theory of
geodesics, previously treated by the elder Bernoullis and others, led
to the creation of this new branch of mathematics, the Calculus of
Variations. His method was essentially geometrical, which makes
the solution of the simpler problems very clear. Euler’s Theoria
motuum planetarum et cometarum, 1744, Theoria motus lune, 1753,
Theoria motuum lune, 1772, are his chief works on astronomy; Ses
letires & une princesse d’ Allemagne sur quelques sujets de Physique et de
Philosophie, 1770, was a work which enjoyed great popularity.

We proceed to mention the principal innovations and inventions
of Euler. In his Introductio (1748) every “analytical expression” in
x, . €. every expression made up of powers, logarithms, trigonometric
functions, etc., is called a “function” of x. Sometimes Euler used
another definition of “function,” namely, the relation between y
and x expressed in the x-y plane by any curve drawn freehand, ““libero
manus ductu.” ! In modified form, these two rival definitions are
traceable in all later history. Thus Lagrange proceeded on the idea
involved in the first definition, Fourier on the idea involved in the
second.

Euler treated trigonometry as a branch of analysis and consistently
treated trigonometric values as ratios. The term *trigonometric
function” was introduced in 1770 by Georg Simon Kligel (1739-1812)
of Halle, the author of a mathematical dictionary.? Euler developed
and systematized the mode of writing trigonometric formulas, taking,
for instance, the sinus totus equal to 1. He simplified formulas by
the simple expedient of designating the angles of a triangle by A, B, C,
and the opposite sides by a, b, c, respectively. Only once before have
we encountered this simple device. It was used in a pamphlet pre-
pared by Ri. Rawlinson at Oxford sometime between 1655 and 1668.2
This notation was re-introduced simultaneously with Euler by Thomas
Simpson in England. We may add here that in 1734 Euler used the
notation f(x) to indicate “function of x,” that the use of ¢ as the

1 F. Klein, Elementarmathematik v. hih. Standpunkte aus., 1, Leipzig, 1908, p. 438.
2 M. Cantor, op. cit., Vol. 1V, 1908, p. 413.
3 See F. Cajori in Nature, Vol. 94, 1915, p. 642.
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symbol for the natural base of logarithms was introduced by him in
1728, that in 1750 he used S to denote the half-sum of the sides of a
triangle, that in 1755 he introduced Z to signify “summation,” that
in 1777 he used ¢ for v/ T, a notation used later by K. F. Gauss.

We pause to remark that in Euler’s time Thomas Simpson (1710-
1761), an able and self-taught English mathematician, for many years
professor at the Royal Military Academy at Woolwich, and author of
several text-books, was active in perfecting trigonometry as a science.
His Trigonomelry, London, 1748, contains elegant proofs of two
formulas for plane triangles, (a+5): c=cos (4 — B): sin3C and (a-b):
c=sin 3(A—B): cos}C, which have been ascribed to the German as-
tronomer Karl Brandan Mollweide (1774-1825), who developed them
much later. The first formula was given in different notation by I.
Newton in his Universal Arithmetiqgue; both formulas are given by
Friedrich Wilhelm Oppel in 1746.2

Euler laid down the rules for the transformation of co-ordinates in
space, gave a methodic analytic treatment of plane curves and of
surfaces of the second order. He was the first to discuss the equation
of the second degree in three variables, and to classify the surfaces
represented by it. By criteria analogous to those used in the classi-
fication of conics he obtained five species. He devised a method of
solving biquadratic equations by assuming x=+/%+/¢+/7, with
the hope that it would lead him to a general solution of algebraic
equations. The method of elimination by solving a series of linear
equations (invented independently by E. Bézout) and the method of
elimination by symmetric functions, are due to him. Far reaching
are Euler’s researches on logarithms. Euler defined logarithms as
exponents,? thus abandoning the old view of logarithms as terms of
an arithmetic series in one-to-one correspondence with terms of a
geometric series. This union between the exponential and logarithmic
concepts had taken place somewhat earlier. The possibility of de-
fining logarithms_as exponents had been recognized by John Wallis
in 1685, by Johann Bernoulli in 1694, but not till 1742 do we find a
systematic exposition of logarithms, based on this idea. It is given
in the introduction to Gardiner’s Tables of Logarithms, London, 1742.
This introduction is “collected wholly from the papers” of William
Jones. Euler’s influence caused the ready adoption of the new defini-
tion. That this view of logarithms was in every way a step in advance
has been doubted by some writers. Certain it is that it involves in-
ternal difficulties of a serious nature. Euler threw a stream of light
upon the subtle subject of the logarithms of negative and imaginary
numbers. In 1712 and 1713 this subject had been discussed in a

! G. Enestrdm, Bibliotheca mathematica, Vol. 14, 1913-1914, p. 81.

2 A. v. Braunmiihl, op. cit., 2. Teil, 1903, p. 93; H. Wieleitner in Bibliotheca
mathemalica, 3. S., Vol. 14, pp. 348, 349.

8 See. L. Euler, Introductio, 1748, Chap. VI, § 102.
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correspondence between G. W. Leibniz and Johann Bernoulli.! Leib-
niz maintained that since a positive logarithm corresponds to a number
larger than unity, and a negative logarithm to a positive number less
than unity, the logarithm of — 1 was not really true, but imaginary;
hence the ratio —1--1, having no logarithm, is itself imaginary.
Moreover, if there really existed a logarithm of -1, then half of it
would be the logarithm of 4/ =1, a conclusion which he considered
absurd. The statements of Leibniz involve a double use of the term
imaginary: (1) in the sense of non-existent, (2) in the sense of a number
of the type v/ —1. Johann Bernoulli maintained that —1 has a
logarithm. Since dx:x=—dx: —x, there results by integration
log (x)=log (—x); the logarithmic curve y=log x has therefore two
branches, symmetrical to the y=axis, as has the hyperbola. The corre-
spondence between Leibniz and Johann Bernoulli was first published
in 1745. In 1714 Roger Cotes developed in the Philosophical Trans-
actions an important theorem which was republished in his Harmonia
mensurarum (1722). In modern notation it is i¢p=log (cos P+1 sin ¢).
In the exponential form it was discovered again by Euler in 1748.
Cotes was aware of the periodicity of the trigonometric functions.
Had he applied this idea to his formula, he might have anticipated
Euler by many years in showing that the logarithm of a number has
an infinite number of different values. A second discussion of the
logarithms of negative numbers took place in a correspondence be-
tween young Euler and his revered teacher, Johann Bernoulli, in the
years 1727-1731.2 Bernoulli argued, as before, that log x=log (—x).
Euler uncovered the difficulties and inconsistencies of his own and
Bernoulli’s views, without, at that time, being able to advance a
satisfactory theory. He showed that Johann Bernoulli’s expression

2 -
for the area of a circular sector becomes for a quadrant 2—:3%/-(_—:2,

which is incompatible with Bernoulli’s claim that log (—1)=o0. Be-
tween 1731 and 1747 Euler made steady progress in the mastery of
relations involving imaginaries. In a letter of Oct. 18, 1740, to

Johann Bernoulli, he stated that y=2 cos x and y=e#V ~i4e—3V -1,
dy
dx?
equal to each other. Euler knew the corresponding expression for
sin x. Both expressions are given by him in the Miscellanea Berolinen-
sta, 1743, and again in his I'ntroductio, 1748, Vol. I, 104. He gave the
value v/ —TV ~1=0,2078795763 as early as 1746, in a letter to Chris-
tian Goldbach (169o-1764), but makes no reference here to the in-

were both integrals of the differential equation —5+y=0 and were

1See F. Cajori, “History of the Exponential and Logarithmic Concepts,” Amer-
tcan Math. Monthly, Vol. 20, 1913, pp. 39-42.
1 See F. Cajori in Am. Math. Monthly, Vol. 20, 1913, pp. 44-46.
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finitely many values of this imaginary expression.! The creative work
on this topic appears to have been done in 1747. During that year
and the year following Euler debated this subject with D’Alembert
in a correspondence of which only a few letters of Euler are extant.?
In a letter of April 15, 1747, Euler disproves the conclusion upheld by
D’Alembert, that log (—1)=o0, and states his own results indicating
that now he had penetrated the subject; log » has an infinite number
of values which are all imaginary, except when # is a positive number,
in which case one logarithm out of this infinite number is real. On
Aug. 19, 1747, he said that he had sent an article to the Berlin Acad-
emys; this is no doubt the article published in 1862 under the title, Sur
les logarithmes des nombres négalifs et imaginaires. The reason why
Euler did not publish it at the time when it was written can only be
conjectured. Our guess is that Euler became dissatisfied with the
article. At any rate, he wrote a new one in 1749, De la controverse
entre Mrs. Leibnitz et Bernoulli sur les lorarithmes negatifs et imaginaires.
In 1747 he based the proof that a number has an infinity of logarithms
on the relation ip=log(cosp+i sinp); in 1749 on the assumption
log(1+ w)=w, w being infinitely small. He developed the theory of
logarithms of complex numbers a third time in a paper of 1749 on
Recherches sur les racines imaginaires des équations. The two papers
of 1749 were published in 1751 in the Berlin Memoirs. The latter
primarily aims to prove that every equation has a root; it was dis-
cussed in 1799 by K. F. Gauss in his inaugural dissertation.

Euler’s papers were not fully understood and did not carry convic-
tion. D’Alembert still felt that the question was not settled, and ad-
vanced arguments of metaphysical, analytical and geometrical nature
which shrouded the subject into denser haze and helped to prolong
the controversy to the end of the century. In 1759 Daviet de Foncenex
(1734-1799), & young friend of J. Lagrange, wrote on this subject.
In 1768 W. J. G. Karsten (1732-1787), professor at Biitzow, later at
Halle, wrote a long treatise which contains an interesting graphic
representation of imaginary logarithms® The debate on Euler’s
results was carried on with much warmth by the Italian mathemati-
cians.

The subject of infinite series received new life from him. To his
researches on series we owe the creation of the theory of definite in-
tegrals by the development of the so-called Ewlerian integrals. He
warns his readers occasionally against the use of divergent series, but
is nevertheless very careless himself. The rigid treatment to which
infinite series are subjected now was then undreamed of. No clear
notions existed as to what constitutes a convergent series. Neither

1P, H. Fuss, Corresp. math. el phys. de quelques célcbres géomélres du xviiid™
stécle, I, 1843, p. 383.

2 See F. Cajori, Am. Math. Monthly, Vol. 20, 1913, pp. 76-79.

3 Am. Math. Monthly, Vol. 20, 1913, p. 111.
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G. W. Leibniz nor Jakob and Johann Bernoulli had entertained any
serious doubt of the correctness of the expression 4=1—1+1—1+...
Guido Grandi (1671-1742) of Pisa went so far as to conclude from
this that $=o0+o+0+ ... In the treatment of series Leibniz ad-
vanced a metaphysical method of proof which held sway over the
minds of the elder Bernoullis, and even of Euler.! The tendency of
that reasoning was to justify results which seem highly absurd to
followers of Abel and Cauchy. The looseness of treatment can
best be seen from examples. The very paper in which Euler cautions
against divergent series contains the proof that

.. .nl,+i+1+n+n’+. . .=0 as follows:

ntntt. . =—, I+£+'12+. .

-0’ non n—1
these added give zero. Euler has no hesitation to write 1 —3+5—7
+...=0, and no one objected to such results excepting Nicolaus
Bernoulli, the nephew of Johann and Jakob. Strange to say, Euler
finally succeeded in converting Nicolaus Bernoulli to his own erroneous
views. At the present time it is difficult to believe that Euler should
have confidently written sin ¢ —2 sin 2¢p+3 sin 3¢p—4 sin 4¢+. ..
=0, but such examples afford striking illustrations of the want of
scientific basis of certain parts of analysis at that time. Euler’s proof
of the binomial formula for negative and fractional exponents, which
was widely reproduced in elementary text-books of the nineteenth
century, is faulty. A remarkable development, due to Euler, is what
he named the hypergeometric series, the summation of which he
observed to be dependent upon the integration of a linear differential
equation of the second order, but it remained for K. F. Gauss to point
out that for special values of its letters, this series represented nearly
all functions then known.

Euler gave in 1779 a series for arc tan x, different from the series of
James Gregory, which he applied to the formula =20 arc tan }+
8 arc tan +* used for computing 7. The series was published in 1798.
Euler reached remarkable results on the summation of the reciprocal
powers of the natural numbers. In 1736 he had found the sum of the
reciprocal squares to be 7%/6, and of the reciprocal fourth powers to
be m*/go. In an article of 1743 which until recently has been gen-
erally overlooked,? Euler finds the sums of the reciprocal even powers
of the natural numbers up to and including the 26th power. Later
he showed the connection of coefficients occurring in these sums with
the “Bernoullian numbers” due to Jakob Bernoulli.

Euler developed the calculus of finite differences in the first chapters

! R. Reiff, Geschichie der Uncendlichen Reihen, Tiibingen, 1889, p. 68.
3 P, Stiickel in Bibliotheca mathematica, 3. S., Vol. 8, 1907-8, pp. 37-60.
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of his I'nstituliones calculi differentialis, and then deduced the differen-
tial calculus from it. He established a theorem on homogeneous func-
tions, known by his name, and contributed largely to the theory of
differential equations, a subject which had received the attention of
I. Newton, G. W. Leibniz, and the Bernoullis, but was still unde-
veloped. A. C. Clairaut, Alexis Fontaine des Bertins (1705-1771),
and L. Euler about the same time observed criteria of integrability,
but Euler in addition showed how to employ them to determine in-
tegrating factors. The principles on which the criteria rested involved
some degree of obscurity. Euler was the first to make a systematic
study of singular solutions of differential equations of the first order.
In 1736, 1756 and 1768 he considered the two paradoxes which had
puzzled A. C. Clairaut: The first, that a solution may be reached by
differentiation instead of integration; the second, that a singular
solution is not contained in the general solution. Euler tried to es-
tablish an a priori rule for determining whether a solution is contained
in the general solution or not. Stimulated by researches of Count
de Fagnano on elliptic integrals, Euler established the celebrated
addition-theorem for these integrals. He invented a new algorithm
for continued fractions, which he employed in the solution of the
indeterminate equation ax+by=c. We now know that substantially
the same solution of this equation was given 1000 years earlier, by
the Hindus. Euler gave 62 pairs of amicable numbers, of which 3
pairs were previously known: one pair had been discovered by the
Pythagoreans, another by Fermat and a third by Descartes.! By
giving the factors of the number 2?"+1 when n=35, he pointed out
that this expression did not dlways represent primes, as was supposed
by P. Fermat. He first supplied the proof to “Fermat’s theorem,”
and to a second theorem of Fermat, which states that every prime
of the form 4n+1 is expressible as the sum of two squares in one and
only one way. A third theorem, “Fermat’s last theorem,” that
a"+y*=2z", has no integral solution for values of # greater than 2,
was proved by Euler to be correct when n=4 and n=3. Euler dis-
covered four theorems which taken together make out the great law
of quadratic reciprocity, a law independently discovered by A. M.
Legendre.?

In 1737 Euler showed that the sum of the reciprocals of all prime
numbers is log. (log. ), thereby initiating a line of research on the
distribution of primes which is usually not carried back further than
to A. M. Legendre.?

In 1741 he wrote on partitions of numbers (* partitio numerorum ).
In 1782 he published a discussion of the problem of 36 officers of six
different grades and from six different regiments, who are to be placed

1 See Bibliotheca mathematica, 3. S., Vol. 9, p. 263; Vol. 14, pp. 351-354.
3 Oswald Baumgart, Ucber das Quadralische Reciprocilitsgesclz. Leipzig, 1885.
3 G. Enestrom in Bibliotheca mathematica, 3. S., Vol. 13, 1912, p. 81.
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in a square in such a way that in each row and column there are six
officers, all of different grades as well as of different regiments. Euler
thinks that no solution is obtainable when the order of the square is
of the form 2 mod. 4. Arthur Cayley in 1890 reviewed what had been
written; P. A. MacMahon solved it in 1915. It is called the problem
of the “Latin squares,” because Euler, in his notation, used “n lettres
latines.” Euler enunciated and proved a well-known theorem, giving
the relation between the number of vertices, faces, and edges of cer-
tain polyhedra, which, however, was known to R. Descartes. The
powers of Euler were directed also towards the fascinating subject
of the theory of probability, in which he solved some difficult
problems.

Of no little importance are Euler’s labors in analytical mechanics.
Says Whewell: “The person who did most to give to analysis the
generality and symmetry which are now its pride, was also the person
who made mechanics analytical; I mean Euler.”! He worked out
the theory of the rotation of a body around a fixed point, established
the general equations of motion of a free body, and the general equation
of hydrodynamics. He solved an immense number and variety of
mechanical problems, which arose in his mind on all occasions. Thus,
on reading Virgil’s lines, ““ The anchor drops, the rushing keel is staid,”
he could not help inquiring what would be the ship’s motion in such
a case. About the same time as Daniel Bernoulli he published the
Principle of the Conservation of Areas and defended the principle of
“least action,” advanced by P. Maupertius. He wrote also on tides
and on sound.

Astronomy owes to Euler the method of the variation of arbitrary
constants. By it he attacked the problem of perturbations, explain-
ing, in case of two planets, the secular variations of eccentricities,
nodes, etc. He was one of the first to take up with success the theory
of the moon’s motion by giving approximate solutions to the “problem
of three bodies.” He laid a sound basis for the calculation of tables
of the moon. These researches on the moon’s motion, which captured
two prizes, were carried on while he was blind, with the assistance of
his sons and two of his pupils. His Mechanica sive molus scientia
analytice exposita, Vol. I, 1736, Vol. 11, 1742, is, in the language of
Lagrange, “the first great work in which analysis is applied to the
science of movement.”

Prophetic was his study of the movements of the earth’s pole. He
showed that if the axis around which the earth rotates is not coincident
with the axis of figure, the axis of rotation will revolve about the axis
of figure in a predictable period. On the assumption that the earth
is perfectly rigid he showed that the period is 305 days. The earth
is now known to be elastic. From observations taken in 1884-s,

'W. Whewell, History of the Inductive Sciences, 3rd Ed., Vol. 1, New York,
1858, p. 363.
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S. C. Chandler of Harvard found the period to be 428 days.! For
an earth of steel the time has been computed to be 441 days.

Euler in his Iniroductio in analysin (1748) had undertaken a classi-
fication of quartic curves, as had also a mathematician of Geneva,
Gabriel Cramer (1704-1752), in his Introduction d ’analyse des lignes
courbes algebraiques, Geneva, 1750. Both based their classifications
on the behavior of the curves at infinity, obtaining thereby eight
classes which were divided into a considerable number of species.
Another classification was made by E. Waring, in his Miscellanea
analytica, 1792, which yielded 12 main divisions and 84551 species.
These classifications rest upon ideas hardly in harmony with the
more recent projective methods, and have been abandoned. Cramer
studied the quartic y*— x*+ay’+bx?=0 which later received the at-
tention of F. Moigno (1840), Charles Briot and Jean Claude Bouquet,
and B. A. Nievenglowski (1895), and because of its peculiar form was
called by the French “courbe du diable.” Cramer gave also a classi-
fication of quintic curves.

Most of Euler’s memoirs are contained in the transactions of the
Academy of Sciences at St. Petersburg, and in those of the Academy
at Berlin. From 1728 to 1783 a large portion of the Petropolitan
transactions were filled by his writings. He had engaged to furnish
the Petersburg Academy with memoirs in sufficient number to enrich
its acts for twenty years—a promise more than fulfilled, for down to
1818 thé volumes usually contained one or more papers of his;, and
numerous papers are still unpublished. His mode of working was,
first to concentrate his powers upon a special problem, then to solve
separately all problems growing out of the first. No one excelled
him in dexterity of accommodating methods to special problems. It
is easy to see that mathematicians could not long continue in Euler’s
habit of writing and publishing. The material would soon grow to
such enormous proportions as to be unmanageable. We are not sur-
prised to see almost the opposite in J. Lagrange, his great successor.
The great Frenchman delighted in the general and abstract, rather
than, like Euler, in the special and concrete. His writings are con-
densed and give in a nutshell what Euler narrates at great length.

Jean-le-Rond D’Alembert (1717-1783) was exposed, when an in-
fant, by his mother in a market by the church of St. Jean-le-Rond,
near the Nétre-Dame in Paris, from which he derived his Christian
name. He was brought up by the wife of a poor glazier. It is said
that when he began to show signs of great talent, his mother sent for
him, but received the reply, “You are only my step-mother; the
glazier’s wife is my mother.” His father provided him with a yearly
income. D’Alembert entered upon the study of law, but such was his
love for mathematics, that law was soon abandoned. At the age of
twenty-four his reputation as a mathematician secured for him ad-

1 For details see Nature, Vol. 97, 1916, p. 530.
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mission to the Academy of Sciences. In 1754 he was made permanent
secretary of the French Academy. During the last years of his life
he was mainly occupied with the great French encyclopedia, which
was begun by Denis Diderot and himself. D’Alembert declined, in
1762, an invitation of Catharine II to undertake the education of her
son. Frederick the Great pressed him to go to Berlin. He made a
visit, but declined a permanent residence there. In 1743 appeared
his Traité de dynamigue, founded upon the important general principle
bearing his name: The impressed forces are equivalent to the effective
forces. D’Alembert’s principle seems to have been recognized before
him by A. Fontaine, and in some measure by Johann Bernoulli and
I. Newton. D’Alembert gave it a clear mathematical form and made
numerous applications of it. It enabled the laws of motion and the
reasonings depending on them to be represented in the most general
form, in analytical language. D’Alembert applied it in 1744 in a
treatise on the equilibrium and motion of fluids, in 1746 to a treatise
on the general causes of winds, which obtained a prize from the Berlin
Academy. In both these treatises, as also in one of 1747, discussing
the famous problem of vibrating chords, he was led to partial differ-
ential equations. He was a leader among the pioneers in the study of

e ;y”
of vibrating chords, he gave as the general solution,
y=f(x+at)+$(x—at),

and showed that there is only one arbitrary function, if y be supposed
to vanish for x=0 and x=I/. Daniel Bernoulli, starting with a par-
ticular integral given by Brook Taylor, showed that this differential
equation is satisfied by the trigonometric series

y=asin WT cos —+ B sin 1lrx 2;"+

and claimed this expression to be the most general solution. Thus
Daniel Bernoulli was the first to introduce “Fourier’s series” into
physics. He claimed that his solution, being compounded of an in-
finite number of tones and overtones of all possible intensities, was
a general solution of the problem. Euler denied its generality, on
the ground that, if true, the doubtful conclusion would follow that
the above series represents any arbitrary function of a variable.
These doubts were dispelled by J. Fourier. J. Lagrange proceeded to
find the sum of the above series, but D’Alembert o }ected to his
process, on the ground that it involved divergent series.

A most beautiful result reached by D’Alembert, with aid of his
principle, was the complete solution of the problem "of the precession
of the equinoxes, which had baffled the talents of the best minds.

1 R. Reiff, op. cit., I1. Abschnitt.

such equations. To the equatlon arising in the problem
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He sent to the French Academy in 1747, on the same day with A. C.
Clairaut, a solution of the problem of three bodies. This had become
a question of universal interest to mathematicians, in which each
vied to outdo all others. The problem of two bodies, requiring the
determination of their motion when they attract each other with
forces inversely proportional to the square of the distance between
them, had been completely solved by I. Newton. The “problem of
three bodies” asks for the motion of three bodies attracting each
other according to the law of gravitation. Thus far, the complete
solution of this has transcended the power of analysis. The general
differential equations of motion were stated by P. S. Laplace, but
the difficulty arises in their integration. The “solutions” given at
that time are merely convenient methods of approximation in special
cases when one body is the sun, disturbing the motion of the moon
around the earth, or where a planet moves under the influence of the
sun and another planet. The most important eighteenth century
researches on the problem of three bodies are due to J. Lagrange. In
1772 a prize was awarded him by the Paris Academy for his Essai
sur le probléme des trois corps. He shows that a complete solution of
the problem requires only that we know every moment the sides of
the triangle formed by the three bodies, the solution of the triangle
depending upon two differential equations of the second order and
one differential equation of the third. He found particular solutions
when the triangles remain all similar.

In the discussion of the meaning of negative quantities, of the
fundamental processes of the calculus, of the logarithms of complex
numbers, and of the theory of probability, D’Alembert paid some
attention to the philosophy of mathematics. In the calculus he
favored the theory of limits. He looked upon infinity as nothing but
a limit which the finite approaches without ever reaching it. His
criticisms were not always happy. When students were halted by
the logical difficulties of the calculus, D’Alembert would say, ‘“Allez
en avant, et la foi vous viendra.” He argued that when the prob-
ability of an event is very small, it ought to be taken o. A coin is to
be tossed 100 times and if head appear at the last trial, and not before,
A shall pay B 2! crowns. By the ordinary theory B should give A
1 crown at the start, which should not be, argues D’Alembert, be-
cause B will certainly lose. This view was taken also by Count de
Buffon. D’Alembert raised other objections to the principles of
probability.

The naturalist, Comte de Buffon (1707-1788), wrote an Essai
d’arithmétique morale, 1777. In the study of the Petersburg problem,
he let a child toss a coin 2084 times, which produced 10057 crowns;
there were 1061 games which produced 1 crown, 494 which produced
2 crowns and so on.! He was one of the first to emphasize the desir-

1 For references, see I. Todhunter, History of Theory of Probability, p. 346.
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ability of verifying the theory by actual trial. He also introduced
what is called “local probability” by the consideration of problems
that require the aid of geometry. Some studies along this line had
been carried on earlier by Jokn Arbuthnot (1658-1735) and Thomas
Simpson in England. Count de Buffon derived the probability that
a needle dropped upon a plane, ruled with equidistant, parallel lines,
will fall across one of the lines.

The probability of the correctness of judgments determined by a
majority of votes was examined mathematically by Jean-Amntoine-
Nicolas Caritat de Condorcet (1743-1704). His general conclusions
are not of great importance; they are that voters must be enlightened
men in order to ensure our confidence in their decisions.! He held
that capital punishment ought to be abolished, on the ground that,
however large the probability of the correctness of a single decision,
there will be a large probability that in the course of many decisions
some innocent person will be condemned.!

Alexis Claude Clairaut (1713-1765) was a youthful prodigy. He
read G. F. de I'Hospital’s works on the infinitesimal calculus and on
conic sections at the age of ten. In 1731 was published his Recherches
sur les courbes @ double courbure, which he had ready for the press
when he was sixteen. It was a work of remarkable elegance and se-
cured his admission to the Academy of Sciences when still under legal
age. In 1731 he gave a proof of the theorem enunciated by I. Newton,
that every cubic is a projection of one of five divergent parabolas.
Clairaut formed the acquaintance of Pierre Louis Moreau de M auper-
tius (1698-1759), whom he accompanied on an expedition to Lapland
to measure the length of a degree of the meridian. At that time the
shape of the earth was a subject of serious disagreement. I. Newton
and C. Huygens had concluded from theory that the earth was flat-
tened at the poles. About 1712 Jean-Dominique Cassini (1625-1712)
and his son Jacques Cassini (1677-1756) measured an arc extending
from Dunkirk to Perpignan and arrived at the startling result that
the earth is elongated at the poles. To decide between the conflicting
opinions, measurements were renewed. Maupertius earned by his
work in Lapland the title of “earth flattener” by disproving the
Cassinian tenet that the earth was elongated at the poles, and showing
that Newton was right. On his return, in 1743, Clairaut published
a work, Théorie de la figure de la Terre, which was based on the results
of C. Maclaurin on homogeneous ellipsoids. It contains a remarkable
theorem, named after Clairaut, that the sum of the fractions ex-
pressing the ellipticity and the increase of gravity at the pole is equal
to 2} times the fraction expressing the centrifugal force at the equator,
the unit of force being represented by the force of gravity at the
equator. This theorem is independent of any hypothesis with respect
to the law of densities of the successive strata of the earth. It em-

1 1. Todhunter, History of Theory of Prob., Chapter 17.
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bodies most of Clairaut’s researches. I. Todhunter says that “in
the figure of the earth no other person has accomplished so much as
Clairaut, and the subject remains at present substantially as he left
it, though the form is different. The splendid analysis which Laplace
supplied, adorned but did not really alter the theory which started
from the creative hands of Clairaut.”

In 1752 he gained a prize of the St. Petersburg Academy for his
paper on Théorie de la Lune, in which for the first time modern analysis
is applied to lunar motion. This contained the explanation of the
motion of the lunar apsides. This motion, left unexplained by I.
Newton, seemed to him at first inexplicable by Newton’s law, and
he was on the point of advancing a new hypothesis regarding gravi-
tation, when, taking the precaution to carry his calculation to a higher
degree of approximation, he reached results agreeing with observation.
The motion of the moon was studied about the same time by L. Euler
and D’Alembert. Clairaut predicted that ‘“Halley’s Comet,” then
expected to return, would arrive at its nearest point to the sun on
April 13, 1759, 2 date which turned out to be one month too late.
He applied the process of differentiation to the differential equation
now known by his name and detected its singular solution. The same
process had been used earlier by Brook Taylor.

In their scientific labors there was between Clairaut and D’Alembert
great rivalry, often far from friendly. The growing ambition of
Clairaut to shine in society, where he was a great favorite, hindered
his scientific work in the latter part of his life.

The astronomer Jean-Dominique Cassini, whom we mentioned
above, is the inventor of a quartic curve which was published in his
son’s Eléments d’astronomie, 1749. The curve bears the name of
“Cassini’s oval” or “general lemniscate.” It grew out of the study
o£ a c]i)roblem in astronomy.! Its equation is (x%+y%)%— 2a%(x*—y?)+
a'—ct=o.

Johann Heinrich Lambert (1728-1777), born at Miihlhausen in
Alsace, was the son of a poor tailor. While working at his father’s
trade, he acquired through his own unaided efforts a knowledge of
elementary mathematics. At the age of thirty he became tutor in a
Swiss family and secured leisure to continue his studies. In his
travels with his pupils through Europe he became acquainted with
the leading mathematicians. In 1764 he settled in Berlin, where he
became member of the Academy, and enjoyed the society of L. Euler
and J. Lagrange. He received a small pension, and later became
editor of the Berlin Ephemeris. His many-sided scholarship reminds
one of Leibniz. It cannot be said that he was overburdened with
modesty. When Frederick the Great asked him in their first inter-
view, which science he was most proficient in, he replied curtly, “AlL.”

1 G, Loria, Ebene Curven (F. Schiltte), I, 1910, p. 208.
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To the emperor’s further question, how he attained this mastery, he
said, “Like the celebrated Pascal, by my own self.”

In his Cosmological Letiers he made some remarkable prophecies
regarding the stellar system. He entered upon plans for a mathe-
matical symbolic logic of the nature once outlined by G. W. Leibniz.
In mathematics he made several discoveries which were extended
and overshadowed by his great contemporaries. His first research
on pure mathematics developed in an infinite series the root x of the
equation ¥™+px=qg. Since each equation of the form ax’+bx'=d
can be reduced to 2™+ px=gq in two ways, one or the other of the two
resulting series was always found to be convergent, and to give a
value of x. Lambert’s results stimulated L. Euler, who extended the
method to an equation of four terms, and particularly J. Lagrange,
who found that a function of a root of a—x+¢@(x)=0 can be expr
by the series bearing his name. In 1761 Lambert communicated to
the Berlin Academy a memoir (published 1768), in which he proves
rigorously that o is irrational. It is given in simplified form in Note IV
of A. M. Legendre’s Géométrie, where the proof is extended to =
Lambert proved that if x is rational, but not zero, then neither ¢
nor tan x can be a rational number; since tan 7/4=1, it follows that

%or # cannot be rational. Lambert’s proofs rest on the expression

for e as a continued fraction given by L. Euler ! who in 1737 had sub-
stantially shown the irrationality of ¢ and 2. There were at this
time so many circle squarers that in 1775 the Paris Academy found it
necessary to pass a resolution that no more solutions on the quadrature
of the circle should be examined by its officials. This resolution ap-
plied also to solutions of the duplication of the cube and the trisection
of an angle. The conviction had been growing that the solution of
the squaring of the circle was impossible, but an irrefutable proof
was not discovered until over a century later. Lambert’s Freye Per-
spective, 1759 and 1773, contains researches on descriptive geometry,
and entitle him to the honor of being the forerunner of Monge. In
his effort to simplify the calculation of cometary orbits, he was led
geometrically to some remarkable theorems on conics, for instance
this: “If in two ellipses having a common major axis we take two
such arcs that their chords are equal, and that also the sums of the
radii vectores, drawn respectively from the foci to the extremities of
these arcs, are equal to each other, then the sectors formed in each
ellipse by the arc and the two radii vectores are to each other as the
square roots of the parameters of the ellipses.” ?

Lambert elaborated the subject of hyperbolic functions which he
designated by sink x, cosh x, etc. He was, however, not the first to

1R. C. Archibald in Am. Math. Monthly, Vol. 21, 1914, P. 253.
2 M. Chasles, Geschichte der Geomelrie, 1839, p. 183.
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introduce them into trigonometry. That honor falls upon Vincenszo
Riccati (1707-1775), a son of Jacopo Riccati.!

In 1770 Lambert published a 7-place table of natural logarithms
for numbers 1-100. In 1778 one of his pupils, Johann Karl Schulze,
published extensive tables which included the 48-place table of nat-
ural logarithms of primes and many other numbers up to 10,009,
which had been computed by the Dutch artillery officer, Wolfram.
A feat even more remarkable than Wolfram’s, was the computation
of the common logarithms of numbers 1-100 and of all primes from
100 to 1100, to 61 places, by Abraham Sharp of Yorkshire, who was
some time assistant to Flamsteed at the English Royal Observatory.
They were published in Sharp’s Geometry Improv'd, 1717.

John Landen (1719-1790) was an English mathematician whose
writings served as the starting-point of investigations by L. Euler,
J. Lagrange, and A. M. Legendre. Landen’s capital discovery, con-
tained in a memoir of 1755, was that every arc of the hyperbola is
immediately rectified by means of two arcs of an ellipse. In his
“residual analysis” he attempted to obviate the metaphysical diffi-
culties of fluxions by adopting a purely algebraic method. J. La-
grange’s Calcul des Fonctions is based upon this idea. Landen showed
how the algebraic expression for the roots of a cubic equation could
be derived by application of the differential and integral calculus.
Most of the time of this suggestive writer was spent in the pursuits
of active life.

Of influence in the teaching of mathematics in England was Charles
Hutton (1737-1823), for many years professor at the Royal Military
Academy of Woolwich. In 1785 he published his Mathematical Tables,
and in 1795 his Mathematical and Philosophical Dictionary, the best
work of its kind that has appeared in the English language. His
Elements of Conic Sections, 1789, is remarkable as being the first work
in which each equation is rendered conspicuous by being printed in
a separate line by itself.?

It is well known that the Newton-Raphson method of approxima-
tion to the roots of numerical equations, as it was handed down from
the seventeenth century, labored under the defect of insecurity in
the process, so that the successive corrections did not always yield
results converging to the true value of the root sought. The removal
of this defect is usually attributed to J. Fourier, but he was anticipated
half a century by J. Raym. Mourraille in his Traité de la résolution
des équations en général, Marseille et Paris, 1768. Mourraille was for
fourteen years secretary of the academy of sciences in Marseille; later
he became mayor of the city. Unlike I. Newton and J. Lagrange,
Mourraille and J. Fourier introduced also geometrical considerations.
Mourraille concluded that security is insured if the first approximation

1 M. Cantor, op. cit., Vol. TV, 1908, p. 411.
2 M. Cantor, o0p. cit., Vol. 1V, 1908, p. 405.
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a is so selected that the curve is convex toward the axis of x for the
interval between a and the root. He shows that this condition is
sufficient, but not necessary.! . ,

In the eighteenth century proofs were given of Descartes Rule of
Signs which its discoverer had enunciated without demonstration.
G. W. Leibniz had pointed out a line of proof, but did not actually
give it. In 1675 Jean Prestet (1648-1690) published at Paris in his
Elemens des mathématiques a proof which he afterwards acknowledged
to be insufficient. In 1728 Johann Andreas Segner (1704-1777) pub-
lished at Jena'a correct proof for equations having only real roots.
In 1756 he gave a general demonstration, based on the consideration
that multiplying a polynomial by (v+—a) increases the number of
variations by at least one. Other proofs were given by Jean Paul de
Gua de Malves (1741), Isaac Milner (1778), Friedrich Wilhelm Stibner,
Abraham Gotthelf Kastner (1745), Edward Waring (1782), J. A.
Grunert (1827), K. F. Gauss (1828). Gauss showed that, if the num-
ber of positive roots falls short of the number of variations, it does so
by an even number. E. Laguerre later extended the rule to poly-
nomials with fractional and incommensurable exponents, and to in-
finite series.” It was established by De Gua de Malves that the
absence of 2m successive terms indicates 2m imaginary roots, while
the absence of 2m+1 successive terms indicates 2m+2 or 2m imagin-
ary roots, according as the two terms between which the deficiency
occurs have like or unlike signs. .

Edward Waring (1734-1798) was born in Shrewsbury, studied at
Magdalene College, Cambridge, was senior wrangler in 1757, and
Lucasian professor of mathematics since 1760. He published Mis-
cellanea analytica in 1762, Meditationes algebraice in 1770, Proprietalis
algebraicarum curvarum in 1772, and Meditationes analytice in 1776.
These works contain many new results, but are difficult of compre-
hension on account of his brevity and obscurity of exposition. He is
said not to have lectured at Cambridge, his researches being thought
unsuited for presentation in the form of lectures. He admitted that
he never heard of any one in England, outside of Cambridge, who had
read and understood his researches.

In his Meditationes algebraice are some new theorems on number.
Foremost among these is a theorem discovered by his friend Jokn
Wilson (1741-1793) and universally known as “Wilson’s theorem.”
Waring gives the theorem, known as “Waring’s theorem,” that every
Integer is either a cube or the sum of 2, 3,4, 5,6, 7,8 or g cubes, either
a fourth power or the sum of 2, 3 . . or 19 fourth powers; this has
never yet been fully demonstrated. Also without proof is given the
theorem that every even integer is the sum of two primes and every

! See F. Cajori in Bibliotheca mathematica, 3rd S., Vol. 11, 1911, Pp. 132-137.

2 For refel:enges to the publications of these writers, see F. Cajon in Colorado
College Publication, General Series No. 51, 1910, pp. 186, 187.
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odd integer is a prime or the sum of three primes. The part relating
to even integers is generally known as “Goldbach’s theorem,” but
was first published by Waring. Christian Goldbach communicated
the theorem to L. Euler in a letter of June 30, 1742, but the letter
was not published until 1843 (Corr. math., P. H. Fuss).

Waring held advanced views on the convergence of series.! He

taught that x+;£,;+31;+;1;+. .. converges when n>1 and diverges
when n<1. He gave the well-known test for convergence and
divergence which is often ascribed to A. L. Cauchy, in which the
limit of the ratio of the (n+1)‘» to the n‘» term is considered. As
early as 1757 he had found the necessary and sufficient relations which
must exist between the coefficients of a quartic and quintic equation,
for two and for four imaginary roots. These criteria were obtained
by a new transformation, namely the one which yields an equation
whose roots are the squares of the differences of the roots of the given
equation. To solve the important problem of the separation of the
roots Waring transforms a numerical equation into one whose roots
are reciprocals of the differences of the roots of the given equation.
The reciprocal of the largest of the roots of the transformed equation
is less than the smallest difference D, between any two roots of the
given equation. If M is an upper limit of the roots of the given equa-
tion, then the subtraction of D, 2D, 3D, etc., from M will give values
which separate all the real roots. In the Meditationes algebraice of
1770, Waring gives for the first time a process for the approximation
to the values of imaginary roots. If x is approximately a+1b, sub-
stitute x=a+a'+(b+d")i, expand and reject higher powers of ¢’ and
b’. Equating real numbers to each other and imaginary numbers to
each other, two equations are obtained which yield values of a’ and &',

Etienne Bézout (1730-1783) was a French writer of popular mathe-
matical school-books. In his Théorie générale des Equations Algé-
briques, 1779, he gave the method of elimination by linear equations
(invented also by L. Euler). This method was first published by him
in a memoir of 1764, in which he uses determinants, without, however,
entering upon their theory. A beautiful theorem as to the degree of
the resultant goes by his name. He and L. Euler both gave the degree
as in general m . n, the product of the orders of the intersecting loci,
and both proved the theorem by reducing the problem to one of
elimination from an auxiliary set of linear equations. The determi-
nant resulting from Bézout’s method is what J. J. Sylvester and later
writers call the Bézoutiant. Bézout fixed the degree of the eliminant
also for a large number of particular cases. “One may say that he
determined the number of finite intersections of algebraic loci, not
only when all the intersections are finite, but also when singular

1 M. Cantor, o0p. cit., Vol. 1V, 1908, p. 275.
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points, or singular lines, planes, etc., at infinity occasion the with-
drawal to infinity of certain of the intersection points; and this at a
time when the nature of such singularities had not been developed.” !

Louis Arbogaste (1759-1803) of Alsace was professor of mathe-
matics at Strasburg. His chief work, the Calcwd des Dérivations, 1800,
gives the method known by his name, by which the successive coeffi-
cients of a development are derived from one another when the ex-
pression is complicated. A. De Morgan has pointed out that the
true nature of derivation is differentiation accompanied by integration.
In this book for the first time are the symbols of operation separated

from those of quantity. The notation D,y for Z—% is due to him.

Maria Gaetana Agnesi (1718-1799) of Milan, distinguished as a
linguist, mathematician, and philosopher, filled the mathematical
chair at the University of Bologna during her father’s sickness.
Agnesi was a somnambulist. Several times it happened to her that
she went to her study, while in the somnambulist state, made a light,
and solved some problem she had left incomplete when awake. In
the morning she was surprised to find the solution carefully worked
out on paper.? In 1748 she published her Instituzioni Analitiche,
which was translated into English in 1801. The “witch of Agnesi”
or “Versiera” is a cubic curve x*y=g?*(a—y) treated in Agnesi’s In-
stituzioni, but given earlier by P. Fermat in the form (a®>—x?) y=a®
The curve was discussed by Guido Grandi in his Quadratura circuls
et hyperbole, Pisa, 1703 and 17102 In two letters from Grandi to
Leibniz, in 1713, curves resembling flowers are discussed; in 1728
Grandi published at Florence his Flores geometrici. He considered
curves in a plane, of the type p=r sinnw, and also curves on a sphere.
Recent studies along this line are due to Bodo Habenicht (189s),
E. W. Hyde (1875), H. Wieleitner (1906).

The leading eighteenth century historian of mathematics was Jean
Etienne Montucla (1725-1799) who published a Histoire des mathé-
matiques, in two volumes, Paris, 1758. A second edition of these two
volumes appeared in 1799. A third volume, written by Montucla,
was partly printed when he died; the rest of it was seen through the
press by the astronomer Joseph Jéréme le Frangois de Lalande
(1732-1807), who prepared a fourth volume, mainly on the history of
astronomy.*

Joseph Louis Lagrange (1736-1813), one of the greatest mathe-
maticians of all times, was born at Turin and died at Paris. He was
of French extraction. His father, who had charge of the Sardinian

TH. S. White in Bull. Am. Math. Soc., Vol. 15, 1909, p. 331.

2 L'Intermédiaire des mathématiciens, Vol. 22, 1915, p. 241.

3 G. Loria, Ebene Curven (F. Schiitte), I, 1910, p. 79.

4 For details on other mathematical historians, see S. Giinther’s chapter in
Cantor, 0p. cit., Vol. IV, 1908, pp. 1-36.




EULER, LAGRANGE AND LAPLACE 251

military chest, was once wealthy, but lost all he had in speculation.
Lagrange considered this loss his good fortune, for otherwise he might
not have made mathematics the pursuit of his life. While at the
college in Turin his genius did not at once take its true bent. Cicero
and Virgil at first attracted him more than Archimedes and Newton.
He soon came to admire the geometry of the ancients, but the perusal
of a tract of E. Halley roused his enthusiasm for the analytical method,
in the development of which he was destined to reap undying glory.
He now applied himself to mathematics, and in his seventeenth year
he became professor of mathematics in the royal military academy at
Turin. Without assistance or guidance he entered upon a course of
study which in two years placed him on a level with the greatest of
his contemporaries. With aid of his pupils he established a society
which subsequently developed into the Turin Academy. In the first
five volumes of its transactions appear most of his earlier papers.
At the age of nineteen he communicated to L. Euler a general method
of dealing with “isoperimetrical problems,” known now as the Cal-
culus of Variations. This commanded Euler’s lively admiration, and
he courteously withheld for a time from publication some researches
of his own on this subject, so that the youthful Lagrange might com-
plete Ais investigations and claim the invention. Lagrange did quite
as much as Euler towards the creation of the Calculus of Variations.
As it came from Euler it lacked an analytic foundation, and this
Lagrange supplied. He separated the principles of this calculus from
geometric considerations by which his predecessor had derived them.
Euler had assumed as fixed the limits of the integral, 4. e. the extrem-
ities of the curve to be determined, but Lagrange removed this re-
striction and allowed all co-ordinates of the curve to vary at the same
time. Euler introduced in 1766 the name “calculus of variations,”
and did much to improve this science along the lines marked out by
Lagrange. Lagrange’s investigations on the calculus of variations
were published in 1762, 1771, 1788, 1797, 1806.

Another subject engaging the attention of Lagrange at Turin was
the propagation of sound. In his papers on this subject in the Mis-
cellanea Taurinensia, the young mathematician appears as the critic
of I. Newton, and the arbiter between Euler and D’Alembert. By
considering only the particles which are in a straight line, he reduced
the problem to the same partial differential equation that represents
the motions of vibrating strings.

Vibrating strings had been discussed by Brook Taylor, Johann
Bernoulli and his son Daniel, by D’Alembert and L. Euler. In solving
the partial differential equations, D’Alembert restricted himself to
functions which can be expanded by Taylor’s series, while Euler
thought that no restriction was necessary, that they could be arbi-
trary, discontinuous. The problem was taken up with great skill by
Lagrange who introduced new points of view, but decided in favor of
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Euler. Later, de Condorcet and P. S. Laplace stood on the side of
D’Alembert since in their judgment some restriction upon the arbi-
trary functions was necessary. From the modern point of view,
neither D’Alembert nor Euler was wholly in the right: D’Alembert
insisted upon the needless restriction to functions with a limitless
_number of derivatives, while Euler assumed that the differential and
integral calculus could be applied to any arbitrary function.!

It now appears that Daniel Bernoulli’s claim that his solution was
a general one (a claim disputed by D’Alembert; J. Lagrange and L.
Euler) was fully justified. The problem of vibrating strings stimu-
lated the growth of the theory of expansions according to trigonometric
functions of multiples of the argument. H. Burkhardt has pointed
out that there was also another line of growth of this subject, namely
the growth in connection with the problem of perturbations, where
L. Euler started out with the development of the reciprocal distance
of two planets according to the cosine of multiples of the angle be-
tween their radii vectoris.

By constant application during nine years, Lagrange, at the age
of twenty-six, stood at the summit of European fame. But his intense
studies had seriously weakened a constitution never robust, and though
his physicians induced him to take rest and exercise, his nervous
system never fully recovered its tone, and he was thenceforth subject
to fits of melancholy. .

In 1764 the French Academy proposed as the subject of a prize
the theory of the libration of the moon. It demanded an explanation,
on the principle of universal gravitation, why the moon always turns,
with but slight variations, the same phase to the earth. Lagrange
secured the prize. This success encouraged the Academy to propose
for a prize the theory of the four satellites of Jupiter,—a problem of
six bodies, more difficult than the one of three bodies previously
treated by A. C. Clairaut, D’Alembert, and L. Euler. Lagrange over-
came the difficulties by methods of approximation. Twenty-four
years afterwards this subject was carried further by P. S. Laplace.
Later astronomical investigations of Lagrange are on cometary per-
turbations (1778 and 1783), and on Kepler’s problem. His researches
on the problem of three bodies has been referred to previously.

Being anxious to make the personal acquaintance of leading mathe-
maticians, Lagrange visited Paris, where he enjoyed the stimulating
delight of conversing with A. C. Clairaut, D’Alembert, de Condorcet,
the Abbé Marie, and others. He had planned a visit to London, but
he fell dangerously ill after a dinner in Paris, and was compelled to
return to Turin. In 1766 L. Euler left Berlin for St. Petersburg, and
he pointed out Lagrange as the only man capable of filling the place.

1 For details sce H. Burkhardt’s Entwicklungen nach oscillirenden Funktionen

und_Integration der Differentialgleichungen der mathematischen Physik. Leipzig,
1908, p. 18. This is an exhaustive end valuable history of this topic.
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D’Alembert recommended him at the same time. Frederick the Great
thereupon sent a message to Turin, expressing the wish of “the great-
est king of Europe” to have “the greatest mathematician” at his
court. Lagrange went to Berlin, and staid there twenty years. Find-
ing all his colleagues married, and being assured by their wives that
the marital state alone is happy, he married. The union was not a
happy one. His wife soon died. Frederick the Great held him in
high esteem, and frequently conversed with him on the advantages
of perfect regularity of life. This led Lagrange to cultivate regular
habits. He worked no longer each day than experience taught him
he could without breaking down. His papers were carefully thought
out before he began writing, and when he wrote he did so without a
single correction.

During the twenty years in Berlin he crowded the transactions of
the Berlin Academy with memoirs, and wrote also the epoch-making
work called the Mécanique Analytique. He enriched algebra by re-
searches on the solution of equations. There are two methods of
solving directly algebraic equations,—that of substitution and that
of combination. The former method was developed by L. Ferrari,
F. Vieta, E. W. Tchirnhausen, L. Euler, E. Bézout, and Lagrange;
the latter by C. A. Vandermonde and Lagrange.! In the method of
substitution the original forms are so transformed that the determina-
tion of the roots is made to depend upon simpler functions (resolvents).
In the method of combination auxiliary quantities are substituted
for certain simple combinations (“types’) of the unknown roots of
the equation, and auxiliary equations (resolvents) are obtained for
these quantities with aid of the coefficients of the given equation. In
his Réflexions sur la résolution algébrique des équations, published in
Memoirs of the Berlin Academy for the years 1770 and 1771, Lagrange
traced all known algebraic solutions of equations to the uniform prin-
ciple consisting in the formation and solution of equations of lower
degree whose roots are linear functions of the required roots, and of
the roots of unity. He showed that the quintic cannot be reduced in
this way, its resolvent being of the sixth degree. In this connection
Lagrange had occasion to consider the number of values a rational
function can assume when its variables are permuted in every possible
way. In these studies we see the beginnings of the theory of groups.
The theorem, that the order of a subgroup is a divisor of the order
of the group is practically established, and is known now as “La-
grange’s theorem,” although its complete proof was first given about
thirty years later by Pietro Abbati (1768-1842) of Modena in Italy.
Lagrange’s researches on the theory of equations were continued after
he left Berlin. In the Résolution des équations numériques (1798) he
gave among other things, a proof that every equation must have a
root,—a theorem which before this usually had been considered

1 L. Matthiessen, op. cit., pp. 80-84.
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self-evident, Other proofs of this were given by J. R. Argand, K. F.
Gauss, and A. L. Cauchy. Ina note to the above work Lagrange uses
Fermat’s theorem and certain suggestions of Gauss in effecting a com-
plete algebraic solution of any binomial equation.

In the Berlin Mémoires for the year 1767 Lagrange contributed a
paper, Sur la résolution des équations numériques. He explains the
separation of the real roots by substituting for x the terms of the
progression, o, D, 2D, . . ., where D must be less than the least dif-
ference between the roots. Lagrange suggested three ways of com-
puting D: One way in 1767, another in 1795 and a third in 1798. The
first depends upon the equation of the squared differences of the roots
of the given equation. E. Waring before this had derived this im-
portant equation, but in 1767 Lagrange had not yet seen Waring'’s
writings. Lagrange finds equal roots by computing the highest com-
mon factor between f(x) and f’(x). He proceeds to develop a new
mode of approximation, that by continued fractions. P. A. Cataldi
had used these fractions in extracting square roots. Lagrange enters
upon greater details in his Additions to his paper of 1767. Unlike
the older methods of approximation, Lagrange’s has no cases of
failure. “Cette méthode ne laisse, ce me semble, rien i désirer,” yet,
though theoretically perfect, it yields the root in the form of a con-
tinued fraction which is undesirable in practice.

While in Berlin Lagrange published several papers on the theory
of numbers. In 1769 he gave a solution in integers of indeterminate
equations of the second degree, which resembles the Hindu cyclic
method; he was the first to prove, in 1771, “ Wilson’s theorem,” enun-
ciated by an Englishman, John Wilson, and first published by E.
Waring in his Meditationes Algebraice; he investigated in 1775 under
what conditions = 2 and = § (— 1 and == 3 having been discussed by
L. Euler) are quadratic residues, or non-residues of odd prime num-
bers, ¢; he proved in 1770 Bachet de Méziriac’s theorem that every
integer is equal to the sum of four, or a less number, of squares. He
proved Fermat’s theorem on x"+yr=z", for the case n=4, also Fer-
mat’s theorem that, if a>+b%=c?, then ab is not a square.

In his memoir on Pyramids, 1773, Lagrange made considerable use
of determinants of the third order, and demonstrated that the square
of a determinant is itself a determinant. He never, however, dealt
explicitly and directly with determinants; he simply obtained acci-
dentally identities which are now recognized as relations between
determinants. !

Lagrange wrote much on differential equations. Though the sub-
ject of contemplation by the greatest mathematicians (L. Euler,
D’Alembert, A. C. Clairaut, J. Lagrange, P. S. Laplace), yet more
than other branches of mathematics do they resist the systematic
application of fixed methods and principles. The subject of singular
solutions, which had been taken up by P. S. Laplace in 1771 and 1774,
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was investigated by Lagrange who gave the derivation of a singular
solution from the general solution as well as from the differential
equation itself. Lagrange brought to view the relation of singular
solutions to envelopes. Nevertheless, he failed to remove all mystery
surrounding this subtle subject. An inconsistency in his theorems
caused about 1870 a complete reconsideration of the entire theory of
singular solutions. Lagrange’s treatment is given in his Calcul des
Fonctions, Lessons 14-17. He generalized Euler’s researches on total
differential equations of two variables, and of the ninth order; he
gave a solution of partial differential equations of the first order (Berlin
Memoirs, 1772 and 1774), and spoke of their singular solutions, ex-
tending their solution in Memoirs of 1779 and 1785 to equations of
any number of variables. The Memoirs of 1772 and 1774 were refined
in certain points by a young mathematician Paul Charpit (?-1784)
whose method of solution was first printed in Lacroix’s Traité du
calcul, 2. Ed., Paris, 1814, T. II, p. 548. The discussion on partial
differential equations of the second order, carried on by D’Alembert,
Euler, and Lagrange, has already been referred to in our account of
D’Alembert.

While in Berlin, Lagrange wrote the “ Mécanigue Analytique,” the
greatest of his works (Paris, 1788). From the principle of virtual
velocities he deduced, with aid of the calculus of variations, the whole
system of mechanics so elegantly and harmoniously that it may fitly
be called, in Sir William Rowan Hamilton’s words, ““a kind of scien-
tific poem.” It is a most consummate example of analytic generality.
Geometrical figures are nowhere allowed. “On ne trouvera point de
figures dans cet ouvrage” (Preface). The two divisions of mechanics
—statics and dynamics—are in the first four sections of each carried
out analogously, and each is prefaced by a historic sketch of principles.
Lagrange formulated the principle of least action. In their original
form, the equations of motion involve the co-ordinates z, y, z, of the
different particles m or dm of the system. But %, y, z, are in general
not independent, and Lagrange introduced in place of them any
variables §, ¢, ¢, whatever, determining the position of the point at
the time. These “ generalized co-ordinates’ may be taken to be inde-
pendent. The equations of motion may now assume the form

ddT _dT
3 E aE TR
or when B, ¢, ¢, . . . are the partial differential coefficients with
respect to €, ¥, ¢, . . . of one and the same function V, then the form
d4dT_dr dv_
dtdf’ dt Tdé
The latter is par excellence the Lagrangian form of the equations of
motion. With Lagrange originated the remark that mechanics may
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be regarded as a geometry of four dimensions. To him falls the honor
of the introduction of the potential into dynamics. Lagrange was
anxious to have his Mécanique Analytique published in Paris. The
work was ready for print in 1786, but not till 1788 could he find a
publisher, and then only with the condition that after a few years
he would purchase all the unsold copies. The work was edited by
A. M. Legendre.

After the death of Frederick the Great, men of science were no
longer respected in Germany, and Lagrange accepted an invitation
of Louis XVI to migrate to Paris. The French queen treated him
with regard, and lodging was procured for him in the Louvre. But
he was seized with a long attack of melancholy which destroyed his
taste for mathematics. For two years his printed copy of the Mé-
canique, fresh from the press,—the work of a quarter of a century,—
lay unopened on his desk. Through A. L. Lavoisier he became in-
terested in chemistry, which he found ‘“as easy as algebra.” The
disastrous crisis of the French Revolution aroused him again to ac-
tivity. About this time the young and accomplished daughter of the
astronomer P. C. Lemonnier took compassion on the sad, lonely
Lagrange, and insisted upon marrying him. Her devotion to him
constituted the one tie to life which at the approach of death he found
it hard to break.

He was made one of the commissioners to establish weights and

- measures having units founded on nature. Lagrange strongly favored
the decimal subdivision. Such was the moderation of Lagrange’s
character, and such the universal respect for him, that he was retained
as president of the commission on weights and measures even after
it had been purified by the Jacobins by striking out the names of A. L.
Lavoisier, P. S. Laplace, and others. Lagrange took alarm at the
fate of Lavoisier, and planned to return to Berlin, but at the estab-
lishment of the Ecole Normale in 1795 in Paris, he was induced to
accept a professorship. Scarcely had he time to elucidate the founda-
tions of arithmetic and algebra to young pupils, when the school was
closed. His additions to the algebra of L. Euler were prepared at
this time. In 1797 the Ecole Polytechnique was founded, with Lagrange
as one of the professors. The earliest triumph of this institution was
the restoration of Lagrange to analysis. His mathematical activity
burst out anew. He brought forth the Théorie des fonctions analytiques
(1797), Legons sur le calcul des fonctions, a treatise on thé same lines
as the preceding (1801), and the Résolution des équations numeriques
(1798), which includes papers published much earlier; his memoir,
Nouvelle méthode pour risoudre les équations littérales par le moyen des

séries, published 1770, gives the notation y’ for ‘;—Z, which occurs

however much earlier in a part of a memoir by Frangois Daviet de
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Foncenex in the Miscellanea Taurinensia for 1759, believed to have
been written for Foncenex by Lagrange himself.! In 1810 he began
a thorough revision of his Mécanique analytique, but he died before
its completion.

The Théorie des fonctions, the germ of which is found in a memoir
of his of 1772, aimed to place the principles of the calculus upon a
sound foundation by relieving the mind of the difficult conception of
a limit. John Landen’s residual calculus, professing a similar object,
was unknown to him. In a letter to L. Euler of Nov. 24, 1759, La-
grange says that he believed he had developed the true metaphysics
of the calculus; at that time he seems to have been convinced that
the use of infinitesimals was rigorous. He “used both the infinitesimal
method and the method of derived functions side by side during his
whole life” (Jourdain). Lagrange attempted to prove Taylor'’s
theorem (the power of which he was the first to point out) by simple
algebra, and then to develop the entire calculus from that theorem.
The principles of the calculus were in his day involved in philosophic
difficulties of a serious nature. The infinitesimals of G. W. Leibniz
had no satisfactory metaphysical basis. In the differential calculus
of L. Euler they were treated as absolute zeros. In I. Newton’s limit-
ing ratio, the magnitudes of which it is the ratio cannot be found,
for at the moment when they should be caught and equated, there is
neither arc nor chord. The chord and arc were not taken by Newton
as equal before vanishing, nor after vanishing, but wken they vanish.
“That method,” said Lagrange, “has the great inconvenience of con-
sidering quantities in the state in which they cease, so to speak, to be
quantities; for though we can always well conceive the ratios of two
quantities, as long as they remain finite, that ratio offers to the mind
no clear and precise idea, as soon as its terms become both nothing
at the same time.”” D’Alembert’s method of limits was much the
same as the method of prime and ultimate ratios. When Lagrange
endeavored to free the calculus of its metaphysical djfficulties, by
resorting to common algebra, he avoided the whirlpool of Charybdis
only to suffer wreck against the rocks of Scylla. The algebra of his
day, as handed down to him by L. Euler, was founded on a false
view of infinity. No rigorous theory of infinite series had then been
established. Lagrange proposed to define the differential coefficient
of f(x) with respect to x as the coefficient of 4 in the expansion of
f(x+h) by Taylor’s theorem, and thus to avoid all reference to limits.
But he used infinite series without ascertaining carefully that they
were convergent, and his proof that f(x+A) can always be expanded
in a series of ascending powers of h, labors under serious defects.
Though Lagrange’s method of developing the calculus was at first
greatly applauded, its defects were fatal, and to-day his “method of

1 Philip E. B. Jourdain in Proceed. 5tk Intern. Congress, Cambridge, 1912, Cam-
bridge, 1913, Vol. II, p. s40.



258 A HISTORY OF MATHEMATICS

derivatives,” as it was called, has been generally abandoned. He
introduced a notation of his own, but it was inconvenient, and was
abandoned by him in the second edition of his Mécanigue, in which
he used infinitesimals. The primary object of the Théorie des fonctions
was not attained, but its secondary results were far-reaching. It
was a purely abstract mode of regarding functions, apart from geo-
metrical or mechanical considerations. In the further development
of higher analysis a function became the leading idea, and Lagrange’s
work may be regarded as the starting-point of the theory of functions
as developed by A. L. Cauchy, G. F. B. Riemann, K. Weierstrass,
and others.

The first to doubt the rigor of Lagrange’s exposition of the calculus
were Abel Birja (1752-1816)of Berlin, the two Polish mathematicians
H. Wronski and J. B. Sniadecki (1756-1830), and the Bohemian
B. Bolzano, who were all men of limited acquaintance and influence.
It remained for A. L. Cauchy really to initiate the period of greater
rigor.

Instructive is C. E. Picard’s characterization of the time of La-
grange: “In all this period, especially in the second half of the eight-
eenth century, what strikes us with admiration and is also somewhat
confusing, is the extreme importance of the applications realized,
while the pure theory appeared still so ill assured. One perceives it
when certain questions are raised like the degree of arbitrariness in
the integral of vibrating chords, which gives place to an interminable
and inconclusive discussion. Lagrange appreciated these insufficiencies
when he published his theory of analytic functions, where he strove
to give a precise foundation to analysis. One cannot too much
admire the marvellous presentiment he had of the rdle which the
functions, which with him we call analytic, were to play; but we may
confess that we stand astonished before the demonstration he be-
lieved to have given of the possibility of the development of a function
in Taylor’s series.” !

In the treatment of infinite series Lagrange displayed in his earlier
writings that laxity common to all mathematicians of his time, ex-
cepting Nicolaus Bernoulli IT and D’Alembert. But his later articles
mark the beginning of a period of greater rigor. Thus, in the Calcul des
Jonctions he gives his theorem on the limits of Taylor’s theorem. La-
grange’s mathematical researches extended to subjects which have
not been mentioned here—such as probabilities, finite differences,
ascending continued fractions, elliptic integrals. Everywhere his
wonderful powers of generalization and abstraction are made manifest.
In that respect he stood without a peer, but his great contemporary,
P. S. Laplace, surpassed him in practical sagacity. Lagrange was
content to leave the application of his general results to others, and
some of the most important researches of Laplace (particularly those

Y Congress of Arts and Science, St. Louis, 1904, Vol. 1, p. s03.
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on the velocity of sound and on the secular acceleration of the moon)
are implicitly contained in Lagrange’s works.

Lagrange was an extremely modest man, eager to avoid contro-
versy, and even timid in conversation. He spoke in tones of doubt,
and his first words generally were, “ Je ne sais pas.” He would never
allow his portrait to be taken, and the only ones that were secured
were sketched without his knowledge by persons attending the meet-
ings of the Institute.

ierre Simon Laplace (1749-1827) was born at Beaumont-en-Auge
in Normandy. Very little is known of his early lifc. When at the
height of his fame he was loath to speak of his boyhood, spent in
poverty. His father was a small farmer. Some rich neighbors who
recognized the boy’s talent assisted him in securing an education.
As an extern he attended the military school in Beaumont, where at
an early age he became teacher of mathematics. At eighteen he went
to Paris, armed with letters of recommendation to D’Alembert, who
was then at the height of his fame. The letters remained unnoticed,
but young Laplace, undaunted, wrote the great geometer a letter on
the principles of mechanics, which brought the following enthusiastic
response: “ You needed no introduction; you have recommended your-
self; my support is your due.” D’Alembert secured him a position
at the Ecole Militaire of Paris as professor of mathematics. His future
was now assured, and he entered upon those profound researches
which brought him the title of “the Newton of France.” With
wonderful mastery of analysis, Laplace attacked the pending problems
in the application of the law of gravitation to celestial motions. Dur-
ing the succeeding fifteen years appeared most of his original contri-
butions to astronomy. His career was one of almost uninterrupted
prosperity. In 1784 he succeeded E. Bézout as examiner to the royal
artillery, and the following year he became member of the Academy
of Sciences. He was made president of the Bureau of Longitude; he
aided in the introduction of the decimal system, and taught, with
J. Lagrange, mathematics in the Lcole Normale. When, during the
Revolution, there arose a cry for the reform of everything, even of
the calendar, Laplace suggested the adoption of an era beginning with
the year 1250, when, according to his calculation, the major axis of
the earth’s orbit had been perpendicular to the equinoctial line. The
year was to begin with the vernal equinox, and the zero meridian was
to be located east of Paris by 185.30 degrees of the centesimal division
of the quadrant, for by this meridian the beginning of his proposed
era fell at midnight. But the revolutionists rejected this scheme, and
made the start of the new era coincide with the beginning of the
glorious French Repyblic.!

Laplace was justly admired throughout Europe as a most sagacious

1 Rudolf Wolf, Geschichic der Astronomie, Miinchen, 1877, p. 334.
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and profound scientist, but, unhappily for his reputation, he strove
not only after greatness in science, but also after political honors.
The political career of this eminent scientist was stained by servility
and suppleness. After the 18th of Brumaire, the day when Napoleon
was made emperor, Laplace’s ardor for republican principles suddenly
gave way to a great devotion to the emperor. Napoleon rewarded
this devotion by giving him the post of minister of the interior, but
dismissed him after six months for incapacity. Said Napoleon, *“La-
place ne saisissait aucune question sous son véritable point de vue; il
cherchait des subtilités partout, n’avait que des idées problematiques,
et portait enfin I’esprit des infiniment petits jusque dans I'administra-
tion.” Desirous to retain his allegiance, Napoleon elevated him to
the Senate and bestowed various other honors upon him. Neverthe-
less, he cheerfully gave his voice in 1814 to the dethronement of his
patron and hastened to tender his services to the Bourbons, thereby -
earning the title of marquis. This pettiness of his character is seen
in his writings. The first edition of the Systéme du monde was dedi-
cated to the Council of Five Hundred. To the third volume of the
Mécanigue Céleste is prefixed a note that of all the truths contained
in the book, the one most precious to the author was the declaration he
thus made of gratitude and devotion to the peace-maker of Europe.
After this outburst of affection, we are surprised to find in the editions
of the Théorie analytique des probabilités, which appeared after the
Restoration, that the original dedication to the emperor is suppressed.

Though supple and servile in politics, it must be said that in religion
and science Laplace never misrepresented or concealed his own con-
victions however distasteful they might be to others. In mathematics
and astronomy his genius shines with a lustre excelled by few. Three
great works did he give to the scientific world,—the Mécanique Céleste,
the Exposition du systéme du monde, and the Théorie analytique dcs
probabiités. Besides these he contributed important memoirs to the
French Academy.

We first pass in brief review his astronomical researches. In 1773
he brought out a paper in which he proved that the mean motions
or mean distances of planets are invariable or merely subject to small
periodic changes. This was the first and most important step in his
attempt to establish the stability of the solar system.! To I. Newton
and also to L. Euler it had seemed doubtful whether forces so numer-
ous, so variable in position, so different in intensity, as those in the
solar system, couid be capable of maintaining permanently a condition
of equilibrium. Newton was of the opinion that a powerful hand
must intervene from time to time to repair the derangements occa-
sioned by the mutual action of the different bodies. This paper was
the beginning of a series of profound researches by J. Lagrange and

I1D. F. J. Arago, “Eulogy on Laplace,” translatcd by B. Powell, Smilhksonian
Report, 1874.
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Laplace on the limits of variation of the various elements of planetary
orbits, in which the two great mathematicians alternately surpassed
and supplemented each other. Laplace’s first paper really grew out
of researches on the theory of Jupiter and Saturn. The behavior of
these planets had been studied by L. Euler and J. Lagrange without
receiving satisfactory explanation. Observation revealed the ex-
istence of a steady acceleration of the mean motions of our moon and
of Jupiter and an equally strange diminution of the mean motion of
Saturn. It looked as though Saturn might eventually leave the
planetary system, while Jupiter would fall into the sun, and the moon
upon the earth. Laplace finally succeeded in showing, in a paper of
1784-1786, that these variations (called the “great inequality”) be-
longed to the class of ordinary periodi¢ perturbations, depending upon
the law of attraction. The cause of so influential a iperturbation was
found in the commensurability of the mean motion of the two planets.

In the study of the Jovian system, Laplace was enabled to deter-
mine the masses of the moons. He also discovered certain very
remarkable, simple relations between the movements of those bodies,
known as “Laws of Laplace.” His theory of these bodies was com-
pleted in papers of 1788 and 1789. These, as well as the other papers
here mentioned, were published in the Mémoirs présentés par divers
savans. The year 1787 was made memorable by Laplace’s announce-
ment that the lunar acceleration depended upon the secular changes
in the eccentricity of the earth’s orbit. This removed all doubt then
existing as to the stability of the solar system. The universal validity
of the law of gravitation to explain all motion in the solar system
seemed established. That system, as then known, was at last found
to be a complete machine.

In 1796 Laplace published his Exposition du systéme du monde,
a non-mathematical popular treatise on astronomy, ending with a
sketch of the history of the science. In this work he enunciates for
the first time his celebrated nebular hypothesis. A similar theory
had been previously proposed by I. Kant in 1755, and by E. Sweden-
borg; but Laplace does not appear to have been aware of this.

Laplace conceived the idea of writing a work which should contain
a complete analytical solution of the mechanical problem presented by
the solar system, without deriving from observation any but indis-
pensable data. The result was the Mécanique Céleste, which is a_
systematic presentation embracing all the discoveries of I. Newton,
A. C. Clairaut, D’Alembert, L. Euler, J. Lagrange, and of Laplace
himself, on celestial mechanics. The first and second volumes of this
work were published in 1799; the third appeared in 1802, the fourth
in 1805. Of the fifth volume, Books XI and XII were published in
1823; Books XIII, XIV, XV in 1824, and Book XVI in 1825. The
first two volumes contain the general theory of the motions and figure
of celestial bodies. The third and fourth volumes give special theories
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of celestial motions,—treating particularly of motions of comets, of
our moon, and of other satellites. The fifth volume opens with a
brief history of celestial mechanics, and then gives in appendices the
results of the author’s later researches. The Mécanique Céleste was
such a master-piece, and so complete, that Laplace’s immediate suc-
cessors were able to add comparatively little. The general part of
the work was translated into German by Jokann Karl Burkhardt
(1773-1825), and appeared in Berlin, 1800-1802. Nathaniel Bowditch
(1773-1838) brought out an edition in English, with an extensive com-
mentary, in Boston, 182¢9-1839. The Mécanique Céleste is not easy
reading. The difficulties lie, as a rule, not so much in the subject
itself as in the want of verbal explanation. A complicated chain of
reasoning receives often no explanation whatever. J. B. Biot, who
assisted Laplace in revising the work for the press, tells that he once
asked Laplace some explanation of a passage in the book which had
been written not long before, and that Laplace spent an hour endeavor-
ing to recover the reasoning which had been carelessly suppressed
with the remark, “Il est facile de voir.” Notwithstanding the impor-
tant researches in the work, which are due to Laplace himself, it
naturally contains a great deal that is drawn from his predecessors.
It is, in fact, the organized result of a century of patient toil. But
Laplace frequently neglects properly to acknowledge the source from
which he draws, and lets the reader infer that theorems and formule
due to a predecessor are really his own.

We are told that when Laplace presented Napoleon with a copy
of the Mécanique Céleste, the latter made the remark, ‘“M. Laplace,
they tell me you have written this large book on the system of the
universe, and have never even mentioned its Creator.” Laplace is
said to have replied bluntly, “Je n’avais pas besoin de cette hy-
pothése-la.” This assertion, taken literally, is impious, but may it
not have been intended to convey a meaning somewhat different
from its literal one? I. Newton was not able to explain by his law of
gravitation all questions arising in the mechanics of the heavens.
Thus, being unable to show that the solar system was stable, and
suspecting in fact that it was unstable, Newton expressed the opinion
that the special intervention, from time to time, of a powerful hand
was necessary to preserve order. Now Laplace thought that he had
proved by the law of gravitation that the solar system is stable, and
in that sense may be said to have felt no necessity for reference to the
Almighty.

We now proceed to researches which belong more properly to pure
mathematics. Of these the most conspicuous are on the theory of
probability. Laplace has done more towards advancing this subject
than any one other investigator. He published a series of papers,
the main results of which were collected in his Théorie analytique des
probabilités, 1812. The third edition (1820) consists of an introduction
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and two books. The introduction was published separately under
the title, Essai philosophique sur les probabilités, and is an admirable
and masterly exposition without the aid of analytical formule of the
principles and applications of the science. The first book contains
the theory of generating functions, which are applied, in the second
book, to the theory of probability. Laplace gives in his work on
probability his method of approximation to the values of definite
integrals. The solution of linear differential equations was reduced
by him to definite integrals. The use of partial difference equations
was introduced into the study of probability by him about the same
time as by J. Lagrange. One otp the most important parts of the
work is the application of probability to the method of least squares,
which is shown to give the most probable as well as the most conven-
ient results. .

Laplace’s work on probability is very difficult reading, particularly
the part on the method of least squares. The analytical processes
are by no means clearly established or free from error. “No one was
more sure of giving the result of analytical processes correctly, and
no one ever took so little care to point out the various small con-
siderations on which correctness depends” (De Morgan). Laplace’s
comprehensive work contains all of his own researches and much
derived from other writers. He gives masterly expositions of the
Problem of Points, of Jakob Bernoulli’s theorem, of the problems taken
from Bayes a?d Count de Buffon. In this work as in his Mécanique
Céleste, Laplace is not in the habit of giving due credit to writers that
preceded him. A. De Morgan ! says of Laplace: “There is enough
originating from himself to make any reader wonder that one who
could so well afford to state what he had taken from others, should
have set an example so dangerous to his own claims.”

Of Laplace’s papers on the attraction of ellipsoids, the most im-
portant is the one published in 1785, and to a great extent reprinted
in the third volume of the Mécanique Céleste. It gives an exhaustive
treatment of the general problem of attraction of any ellipsoid upon
a particle situated outside or upon its surface. Spherical harmonics,
or the so-called “Laplace’s coefficients,” constitute a powerful analytic
engine in the theory of attraction, in electricity, and magnetism. The
theory of spherical harmonics for two dimensions had been previously
given by A. M. Legendre. Laplace failed to make due acknowledg-
ment of this, and there existed, in consequence,'between the two
great men, “a feeling more than coldness.” The potential function,
V, is much used by Laplace, and is shown by him to satisfy the partial

. . LWV W - ,
differential equation a?+§2-+&7=0. This is known as Laplace’s

1 A. De Morgan, An Essey on Probabilities, London, 1838 (date of Preface)
p- 1I of Appendix I.



264 A HISTORY OF MATHEMATICS

equation, and was first given by him in the more complicated form
which it assumes in polar co-ordinates. The notion of potential was,
however, not introduced into analysis by Laplace. The honor of
that achievement belongs to J. Lagrange.

Regarding Laplace’s equation, P. E. Picard said in 1904: “Few
equations have been the object of so many works as this celebrated
equation. The conditions at the limits may be of divers forms. The
simplest case is that of the calorific equili{rium of a body of which
we maintain the elements of the surface at given temperatures; from
the physical point of view, it may be regarded as evident that the
temperature, continuous within the interior since no source of heat
is there, is determined when it is given at the surface. A more general
case is that where . . . the temperature may be given on one portion,
while there is radiation on another portion. These questions . . .
have greatly contributed to the orientation of the theory of partial
differential equations. They have called attention to types of deter-
minations of integrals, which would not have presented themselves
in remaining at a point of view purely abstract.” !

Among the minor discoveries of Laplace are his method of solving
equations of the second, third, and fourth degrees, his memoir on
singular solutions of differential equations, his researches in finite
differences and in determinants, the establishment of the expansion
theorem in determinants which had been previously given by A. T.
Vandermonde for a special case, the determination of the complete
integral of the linear differential equation of the second order. In
the Mécanique Céleste he made a generalization of Lagrange’s theorem
on the development of functions in series known as Laplace’s theorem.

Laplace’s investigations in physics were quite extensive. We men-
tion here his correction of Newton’s formula on the velocity of sound
in gases by taking into account the changes of elasticity due to the
heat of compression and cold of rarefaction; his researches on the
theory of tides; his mathematical theory of capillarity; his explanation
of astronomical refraction; his formule for measuring heights by the
barometer. :

Laplace’s writings stand out in bold contrast to those of J. Lagrange
in their lack of elegance and symmetry. Laplace looked upon mathe-
matics as the tool for the solution of physical problems. The true
result being once reached, he devoted little time to explaining the
various steps of his analysis, or in polishing his work. The last years
of his life were spent mostly at Arcueil in peaceful retirement on a
country-place, where he pursued his studies with his usual vigor
until his death. He was a great admirer of L. Euler, and would often
say, “Lisez Euler, lisez Euler, c’est notre maitre 3 tous.”

The latter part of the eighteenth century brought forth researches
on the graphic representation of imaginaries, all of which remained

1 Congress of Arts and Science, St. Louis, 1904, Val. I, p. 506.
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quite unnoticed at that time. During the time of R. Descartes, I.
Newton and L. Euler, the negative and the imaginary came to be
accepted as numbers, but the latter was still regarded as an algebraic
fiction. A little over a hundred years after J. Wallis’s unsuccessful
efforts along the line of graphic representation of imaginaries, “a
modest scientist,” Henri Dominique Truel, pictured imaginaries upon
a line that was perpendicular to the line representing real numbers.
So far as known, Truel published nothing, nor are his manuscripts
extant. All we know about him is a brief reference to him made by
A. L. Cauchy,! who says that Truel had his graphic scheme as early
as 1786, and about 1810 turned his manuscripts over to Augustin
Normauf, a ship builder in Havre. W. J. G. Karsten’s graphic scheme
of 1768 was confined to imaginary logarithms. The earliest printed
graphic representation of v —1 and a+bv —1 was given in an “ Essay
on the Analytic Representation of Direction, with Applications in
Particular to the Determination of Plane and Spherical Polygons”
presented in 1797 by Caspar Wessel (1745-1818) to the Royal Academy
of Sciences and Letters of Denmark and published in Vol. V of its
Memoirs in 179g9. Wessel was born in Jonsrud, in Norway. For
many years he was in the employ of the Danish Academy of Sciences
as a surveyor. His paper lay guried in the Transactions of the Danish
Academy for nearly a century. In 1897 a French translation was
brought out by the Danish Academy.? Another noteworthy publica-
tion which remained unknown for many years is an Essay ? published
in 1806 by Jean Robert Argand (1768-1822) of Geneva, containing a

geometric representation of a+V—1b. Some parts of his paper are
less rigorous than the corresponding parts of Wessel. Argand gave
some remarkable applications to trigonometry, geometry and algebra.
The word “modulus,” to represent the length of the vector a+ib,
" is due to Argand. The writings of Wessel and Argand being little
noticed, it remained for K. F. Gauss to break down the last opposition
to the imaginary. Gauss seems to have been in possession of a graphic
scheme as early as 1799, but its fuller exposition was deferred until
1831.

During the French Revolution the metric system was introduced.
The general idea of decimal subdivision was obtained from a work of
Thomas Williams, London, 1788. On April 14, 1990, Mathurin
Jacques Brisson (1723-1806) proposed before the Paris Academy the
establishment of a system resting on a natural unit of length. A
scheme was elaborated which originally included the decimal sub-
division of the quadrant of a circle, as is shown by the report made to

1 Cauchy, Exercices d’Analyse et de phys. math., T. IV, 1847, p. 157.

2 See also an address on Wessel by W. W. Beman in the Proceedsngs of the Am.
Ass'n Adv. of Science, Vol. 46, 1897.

3 Imaginary Quantities. Their Geomelrical Inlerpretation, Translated from the
French of M. Argand by A. S. Hardy, New York, 1881,
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the Academy of Sciences on March 19, 1791, by a committee con-
sisting of J. C. Borda, J. Lagrange, P. S. Laplace, G. Monge, de Con-
dorcet. This subdivision is found in the Francois Callet (1744-1798)
logarithmic tables of 1795, and other tables published in France and
Germany. Nevertheless the decimal subdivision of the quadrant did
not then prevail.! The commission composed of Borda, Lagrange,
Laplace, Monge and Condorcet decided upon the ten-millionth part
of the earth’s quadrant as the primitive unit of length. The length
of the second’s pendulum had been under consideration, but was
finally rejected, because it rested upon two dissimilar elements,
gravity and time. In 1799 the measurement of the earth’s quadrant
was completed and the meter established as the natural unit of length.

Alexandre-Théophile Vandermonde (1735-1796) studied music
during his youth in Paris and advocated the theory that all art rested
upon one general law, through which any one could become a com-
poser with the aid of mathematics. He was the first to give a con-
nected and logical exposition of the theory of determinants, and may,
therefore, almost be regarded as the 