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PEEFACE.

THE mathematical discussions in this little book are

quite elementary, and geometrical in character, except

that, in three instances, two differentiations and an

integration of the most rudimentary kind have been

used. In a very few cases, the results of analysis have

been simply accepted; and even of these, few as they

are, some are given only to verify conclusions already

arrived at independently.
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But ordinary observers, and even astronomers themselves, are

not in the habit of referring terrestrial objects around them to

the sphere of vision. Such objects are referred to what writers

on perspective call the plane of vision at right angles to the

line of sight, which the eye, as it were, always carries about

with it. There are different reasons for this. The idea of the

plane of vision is, in some respects, simpler than that of the

sphere of vision, and presents itself more immediately to the

observer ; and this the more readily as it is always of limited

angular extent. Besides this, all ordinary drawings and pic-

tures are made on plane surfaces, for different obvious reasons.
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ASTRONOMY.

CHAPTER I.

ON A VISUAL ILLUSION" AFFECTING CERTAIN

ASTRONOMICAL PHENOMENA.

IN considering the visual positional relations of the heavenly

bodies to each other and to various given lines and planes, it is

of course necessary to regard them as projected on an imaginary

spherical surface whose centre is at our point of view.

But ordinary observers, and even astronomers themselves, are

not in the habit of referring terrestrial objects around them to

the sphere of vision. Such objects are referred to what writers

on perspective call the plane of vision at right angles to the

line of sight, which the eye, as it were, always carries about

with it. There are different reasons for this. The idea of the

plane of vision is, in some respects, simpler than that of the

sphere of vision, and presents itself more immediately to the

observer ; and this the more readily as it is always of limited

angular extent. Besides this, all ordinary drawings and pic-

tures are made on plane surfaces, for different obvious reasons.

B



2 ON A VISUAL ILLUSION AFFECTING

When the eye is stationary the angular extent of distinct

vision is quite small. Even if the eye be allowed to move, while

the head still remains stationary, the angular range of vision, or

the extent of the field of view which can be attained without

too much disturbing effort, though much greater than before, is

still small
;
and therefore in such cases the difference between

the plane of vision and the sphere of vision may be practically

of very little importance.

But it would be otherwise if the plane of distinct vision could

be made larger, for then its own perspective would sensibly

affect the question. We need not, however, go into this ; for

if we would compare two objects whose horizontal angular

distance is too great for them to appear in the same limited

field of view, we turn the head, or perhaps the whole body,

round a vertical axis from one to the other
; and we see each

by turns in its own separate limited plane of vision, and usually

with a very indistinct idea of the geometrical relations between

those different planes. This is the main cause of the illusion

now in question.

We may just mention here the most striking instance of such

illusion, returning to it further on, for explanation. It has the

advantage of being easily observed every month. If the crescent

moon be not less than two or three days old, the sun being near

setting, the middle of her illuminated limb, which, of course, is

turned directly towards the sun, will seem to point decidedly

above the sun. As the angular distance of the moon from the sun

increases, the apparent discrepancy becomes more marked, and,

as the present writer happens to know, competent astronomers

and mathematicians, who of course are perfectly aware of the

real conditions of the case, will acknowledge that they cannot

divest themselves of the feeling that they actually see the middle

of the moon's illuminated limb to be pointing several degrees

above the sun.

The unequal raising of the sun and the moon by refraction

has no share in producing the illusion ; for its effect is to raise
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the sun, which is at the horizon, more than it does the moon,

which is higher in the sky, and so to diminish the illusion to

a slight extent.

Every great circle of the sphere of vision is, to the eye viewing

it simply and unconnectedly, a right line, because the eye is in

the plane of it. The horizon is such a great circle, and it is to

the eye a right line
;
a straight edge held in the hand can be

applied to it and will fit at any place. Not only this, but the

horizon presents itself to the mind as everywhere a right line
;

for a reason which we shall mention presently.

But if we could draw any other great circle on the sphere of

vision, or on the vault of heaven, though it, also, would be to the

eye viewing it unconnectedly perfectly straight in every part,

it would intersect the horizon in two opposite points, while

having some elevation above the horizon at its middle part;

therefore to the mind of the beholder, who is so habituated to

dealing with lines &c. as drawn on plane surfaces, and knows

that two right lines, as existing on such surfaces, cannot meet

in two points, that line would present itself as an arch. Its

inclination to the horizon would be continually varying, as ifc

was followed by the eye from end to end. A person standing

opposite the middle of a very long, straight, horizontal, archi-

tectural feature, or other such line, of sufficient height, can

only with difficulty divest himself of the idea that as he turns

his head from side to side, he sees that line as a curve with its

concavity downwards ; since near him it presents itself as

horizontal ;
but on each side as sloping down to the horizon.

If we suppose a straight line to be traced on the sky at a

considerable altitude, we should not refer its direction, at any

point, immediately to the horizon, perhaps quite out of sight.

But we should do what would be equivalent : that is, refer its

direction, at any point, to the vertical at that point ; and we

always have a pretty accurate consciousness of the vertical from

the sense that we have of the direction of gravitation. As we
B2
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consider, in succession, at not too great an altitude, the imaginary
vertical great circles which we trace for ourselves in succession

while turning the body round, we take them as parallel to each

other, because they have been similarly related to the successive

outlooks. But they are actually converging ; the consequence

is that a straight line or great circle traced across them would

cut them at very perceptibly different angles ;
even within a

comparatively short distance. It cuts at different angles lines

which in one sense have the same direction, or are parallel after

their own fashion, being all at right angles to the horizon, and

therefore it seems to be curved.

But why does the horizontal great circle look straight, whilst

another inclined to it looks curved ; both being straight ? The

reason is that, in looking round, the observer turns his head, or

his whole body, on a vertical axis, so that every point of the

horizon has the same directional relation to his outlook, as he

faces it standing erect. The horizon, therefore, naturally

becomes the most general line, or plane, to which the position

of an object is referred. But this is not the case with the other

great circle. As the beholder turns round on his vertical axis,

which is inclined to the plane of that great circle, every point

of that circle has a different relation of direction to his outlook,

as he stands erect ; consequently when the eye is made to run

round it in the ordinary way it seems curved.

But if, while holding himself up straight, he were bound to a

post which then was inclined until it w'as at right angles to the

plane of the great circle now in question, and if the post were

then rotated on its axis, the familiar horizon being hid from

view, that great circle, as he was turned round, would appear to

him to be straight, for the same reason that the horizon ordinarily

does so
;
and if he fixed his attention very strongly on that line,

then the horizon, if uncovered, would seem to him to be curved

as he was being turned round. That this would be so can be

proved by an easy experiment. Stand near the corner of a long

enough room, or lobby, or passage, and view the opposite cornice,
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or the juncture of wall and ceiling, running along the length

of the room &c. The cornice will be everywhere straight to

the eye ; yet its visual inclination to the horizon increases con-

tinually as the eye follows it from the nearer to the further

end. Hold a straight rod vertically, with both hands, so as to

visually cross the cornice
;
now while the arms remain rigid and

unmoved, in order that the rod shall be always vertical, turn

the whole body from side to side briskly enough, keeping the

eye and attention strongly fixed on the visual intersection of rod

and cornice ;
and the cornice will appear to be curved with the

concavity downwards, on account of the continual change of its

visual angle of intersection with the vertical rod. A few trials

may be necessary in order to catch the effect, as it is considerably

diminished by the knowledge that the cornice is straight, and by
the observer's involuntarily comparing consecutive portions of

it with each other
; which latter cannot be done in the case

of an imaginary straight line on the sky.

To return to the case of the crescent moon referred to already.

Suppose that our latitude is nearly that of London, say 51J,
and that the young moon is 45 from the sun, which is setting ;

and, to obtain a mean condition, let the time be an equinox and

the moon on the celestial equator ;
the altitude of the moon will

be 26. If the straight line along which the middle of her

illuminated limb points towards the sun could be traced on the

sky. its inclination to the horizon would be, of course, at the sun

38| (the'complement of the latitude) ; but at the moon it would

be about 29|. That straight line therefore is steeper at the sun

than at the moon by 9. If persons who had not considered the

matter, and even some others, when off their guard, tried to

trace that line by the eye, they would start from the moon at a

a downward slope of 294, and preserve that slope as well as

they could, until reaching the horizon
; just as they would do if

dealing with a straight line on a plane surface directly facing

them. This of course will carry them many degrees above the
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sun. But if the observer were in some unaccustomed attitude,

say half reclining and looking obliquely over his shoulder, so as

to obscure his sense of the vertical or horizontal direction, and

'if all known horizontal and vertical lines were properly con-

cealed from view, and if he had a good eye for straightness and

symmetry, he would doubtless be able, having started in the

proper direction from the moon, to continue his trackless course

until hitting off the sun.

Perhaps the simplest, and for some persons the most striking,

exhibition of this deception would be when the moon is in the

first quarter, or " half moon," and the sun is setting. Suppose
the altitude of the moon to be, at the time, m degrees. The

terminator, or boundary of light and shade on the moon, is

straight and vertical, and the middle of the illuminated limb is

pointing horizontally, and yet directly at the sun which is

setting m degrees lower down. If we try to follow by the eye
the direction in which it points, we shall be tempted to trace for

ourselves an imaginary line on the sky everywhere horizontal

and having always the same distance from the horizon, as we
should do in a diagram on a plane surface ;

and the result will

be that our production of a line, which really points directly at

fche sun, will pass m degrees above the sun. (Such a line, if

traced on the sky, would be a small circle of the celestial sphere,

and, paradoxical as it -sounds, everywhere convex towards the

straight horizon.)

In this case the illusion is obvious, and felt at once to be

something that requires explanation ;
besides which it is not

calculated to lead to any ulterior mistake.

But there is another exhibition of this illusion which is not of

so innocent a character
;

it does not manifestly betray itself as

an illusion, and it has given rise to misconception. It is a

seeming phenomenon which by ordinary persons is not con-

sidered to require explanation, because it appears at first sight to

depend so evidently on another principle. Even those who
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must be aware of the actual circumstances in this case, have not,

so far as wo know, given any warning on the subject, at least in

print.

Every one must have noticed what seems like the well-marked

curvature of the path of an ordinary meteor or shooting-star,

whether a sporadic one, such as may be seen on every clear

night, or one belonging to a shower, provided its apparent path

be not too near the vertical. This apparent phenomenon was,

as the present writer can testify, very strikingly displayed (if

this be not a bull) by the shower of Andromedids *, or Bielids,

on November 27, 1872. Certain others also remarked the same,

as anyone must have done. Any pictures (not diagrams on a

star map) that we see of meteoric showers invariably give a

decided curvature, concave downwards, to the luminous tracks.

To most persons there is no difficulty about this
;
but quite the

contrary. One of the observers just referred to, speaking of that

shower of Andromedids a couple of days after its occurrence,

remarked how interesting it was to see the curvature of the

trajectories of the celestial projectiles due to gravitation.

But a moment's consideration will show that this is quite a

mistake. The nearest point of any of these visible tracks was

probably not less than forty-five miles distant, the track itself

being many miles in length. Now the very longest period of

visibility that we can allow to any of those meteors is two

seconds, in which time one of those bodies would fall, considering

the resistance of the air, less than 64 feet. But a linear deflec-

tion of 64 feet would be quite insensible to the eye in such

luminous tracks as we have mentioned ; even supposing it to be

at right angles to the apparent track, which will but seldom

happen. The case, of course, is quite different of a large

meteorite which is seen by an observer to fall to the ground, not

far off, after having been visible for a longer time. The illusion

now in question is clearly due to the constant change of the

* These are sometimes cabled "
Anclromedes," as though the name of the

constellation were Androme.
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inclination to the horizon of the sensibly straight luminous

tracks of the meteors.

It is true that, unless the direction of the motion of a meteor

is parallel to that of the earth, when the meteor enters the

earth's atmosphere the resistance of the air will not only pro-

duce a violent retardation of its velocity, but will cause a

deflection and curvature in the path of the meteor relatively to

fixed space. But this curvature will not be visible to the observer.

This is easily seen thus: Suppose the meteor to be visible, even

before entering the atmosphere, the observer would see only its

motion relative to the earth, the air, and himself, all regarded as

stationary ;
when the meteor, with this apparent motion, enters

the apparently stationary atmosphere there is nothing to cause

any perceptible change in the direction of its motion ; no curva-

ture visible to the beholder will be produced by the resistance of

the air in the path of the meteor. (Nor will there be any

change in the position of the apparent radiant produced by said

resistance. We mention this because the contrary has been

directly contended for.)

The reason why the seeming curvature in a meteor's track is

not greater than it is seems to be this, that the eye is not only

comparing the track with the vertical, or the horizontal, at every

point, but it is also to some extent comparing contiguous lengths

of the track with each other
;
and this tends to correct and

diminish the illusion.

For this reason the more rapid the flight of the meteor, the

less will be the appearance of curvature in its path, for in such

cases the visible path approaches more nearly to the condition of

a luminous line seen at once from end to end, the parts of which

can be more readily compared with each other. This was well

illustrated by many of the quick-moving Perseids of August 10,

1883 *.

* There is a detail of this illusion which is worth mentioning. It

appeared to be very noticeable with a large proportion of the meteors of

Nov. 27, 1872. Near the end of visibility, the apparent downward curva-
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The illusion of which we now speak may easily lead some

persons into error when endeavouring to fix upon the radiant

point of a very sparse meteoric system.

If the insufficiently-experienced observer has not been for-

tunate enough to catch with his eye any of the few meteors

pretty near to the radiant point, he will, in producing the visible

parts of the meteor-tracks backwards, almost certainly pass

above the radiant, and so fix its position higher than it ought to

be. Or, if on the look-out for meteors belonging to a certain

known radiant, he might easily refer thereto some sporadic

meteors really coming from a different origin at a lower altitude,

when perhaps it might be important to know that, in fact, none

belonging to the radiant were to be seen on that night.

Conversely, when endeavouring to fix the position of a visible

but very faint object, say a new comet, by using alignments with

known stars at considerable angular distances from the object,

he may easily do the opposite ; that is. assign to it a position

lower than the true one. From his alignments the very faint

object might be found again on the following night by himself,

though perhaps not by another, whose skill in allowing for the

illusion now in question might be either greater or less than

his.

This illusion might, with some persons, slightly affect the

apparent curvature of a comet's tail, if very long. Some years

ture of the meteor's path seems to increase somewhat rapidly, as in the

ballistic trajectory of a projectile, caused by the resistance of the air. This

also is represented in some pictures of meteoric showers. But though

gravitation, with the resistance of the air, would really produce such

an effect, it is utterly impossible, for the reason given above, that it could

have been perceptible to the eye. The deception may be due, in some way,

to the fact that the eye is following the apparently curved path of a luminous

point whose velocity is being, for two distinct reasons, ever more and more

rapidly retarded. This seeming phenomenon gives rise to another mis-

apprehension. It makes the meLeors look, at the end of their luminous

tracks, as though they were no farther off than the falling stars of a rocket.
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ago there was a difference of opinion between two correspondents

in a popular scientific periodical respecting the curvature of the

(long) tail of the great comet of 1882. This was, in all proba-

bility, produced by the cause above mentioned. This might be

not unimportant, in view of the conclusions as to the composi-
tion of comets' tails drawn by Bredichin and others from their

curvature in connection with the known motions of the comets.

But a comet's tail, being a visible and permanent object during
the observation, so that different parts of it can be compared

directly with each other, is much less liable to be affected by
the illusion now in question.



CHAPTER II.

THE EFFECT OF THE EARTH'S ROTATION ON CERTAIN

MOVING BODIES.

IT was believed by Aristotle and by Ptolemy that the earth's

rotation, if it existed, should affect the motion of certain freely

moving bodies. Galileo also perceived that this must be so,

while rejecting the particular effects contemplated by them, at

least by the latter. (See Chapt. III., Note A.) Newton was

the first to point out that freely falling bodies must deviate to

the east of the vertical, on account of the rotation of the earth
;

and he suggested that experiments should be made with these in

order to obtain direct proof of that rotation. Such experiments

were tried by Hooke, in 1680, but with an insufficient height of

fall. In 1836 Edward Sang, C.E., of Edinburgh, showed that the

earth's rotation could be demonstrated by means of what is now

called the gyrostat ;
but he did not carry out any experiments

therewith. In 1837 the subject was discussed, in connection

with the flight of projectiles, by Poisson. It came much more

prominently before the general public when Poucault exhibited

his famous Pendulum to the French Academy in Eeb. 1851.

Shortly afterwards he devised, for himself, and actually per-

formed, the experiment with the gyrostat which had been

proposed fifteen years before by Sang.

A common and popular explanation of the deflection of

projectiles, currents of air, &c., from the rotation of the earth,

is that if, in our JS". latitudes, a body be moving southwards

it is all the while passing over ground which has a greater

velocity eastwards, from the rotation of the earth, than the
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ground which it has started from, or has lately crossed, and that

therefore it is left behind a little towards the west, or the right

hand, by the surface of the ground beneath it
;

and that, for

corresponding contrary reasons, when moving northwards it will

gain on' that surface towards the east, or still to the right

hand. This is, of course, perfectly true
;

but the particulari-

zation of the meridional direction is often intended to imply,

what is sometimes directly declared, viz., that the above state-

ments are not applicable to bodies moving in the east and west

direction. It is strangely forgotten that if a point on the solid

ground south or north of an observer is moving towards his left,

when he faces it, relatively to him as centre, with a certain

angular velocity, a point on the ground east or west of him must

be doing the very same ; and that therefore a sufficiently free

Jiorizontally-moving body must be left behind, to the right in N.,

and to the left in S., latitudes, in whatever azimuth direction it

may be going; and that, other things being equal, ita apparent

deflection must be the same for all azimuths of motion.

The period of the earth's rotation is, of course, a sidereal (not

a solar) day ;
this contains 86,164 seconds of mean solar time.

The angle described in one second of solar time is, then,

360/86,164, or 15-04 seconds of arc, which in circular measure

is 27r/86,164, or 1/13,713*; this then represents the earth's

angular velocity of rotation, which we shall denote by u).

The resolution and composition of rotations is among the first

elements of rigid dynamics. The two components of the earth's

rotation with which we are now concerned are F, or that about

the vertical line at the locality in question as axis, whose

angular rate is w sin X, X being the latitude of the place, and M\
or that about the horizontal meridional line at the locality as

axis, whose angular rate is w cos X. (See NOTE A.)

* It is interesting to note that 13,713 is, itself, the mantissa of its own

logarithm to five decimal places. But we need not attach anj mystical

significance to this coincidence.
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We may give here a practical illustration of the existence of

these two components of the earth's rotation. If in N. latitudes

a star close to the horizon be observed with a telescope whose

eye-piece is furnished with a micrometer scale, the star will be

found to have a motion in the horizontal direction towards the

right (whatever vertical motion it may have compounded there-

with) ;
and this horizontal motion will be found to be the same

for all stars close to the horizon in whatever azimuth direction

they may be : and the angular rate of the horizontal motion will

prove to be that of the earth's rotation multiplied by the sine of

the latitude
;
this being due to the earth's component rotation V.

Similarly, if one observes any stars close to the prime vertical, or

the great circle passing through the zenith and the E. and W.

points on the horizon, he will find that they all have the same

rate of motion along that great circle (whatever other motion

they may have compounded therewith) ;
and this angular rate of

motion along the prime vertical will prove to be that of the

earth's rotation multiplied by the cosine of the latitude ; this

being due to the earth's component rotation M.

Of sufficiently free bodies, those which are moving horizontally

are affected by the component F", by which the surface of the

ground at the place of observation rotates in its own (instan-

taneous) plane. Those which are moving vertically, whether

upwards or downwards, are affected by the component rotation

Mi by which the surface of the ground is always being tilted

over eastwards.

We shall first consider those which are influenced by the

component V. It may be best to begin with an imaginary case,

for illustration. Suppose a body started to slide on a perfectly

frictionless, even, horizontal surface, or floor, in a vacuum. If

the floor were stationary the body would, of course, describe,

from inertia, a right line thereon with a uniform velocity v. But

as the floor is always rotating in its own (instantaneous) plane
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with the angular Telocity o> sin \, and as there is no connection

between the floor and the body which would make the latter

partake of the rotation, it will not do so; but it and its radius-

vector will be left behind, and that line, if visible, would appear

to rotate about the point of starting, watch-wise in IN", latitudes,

and counter-watch-wise in S. latitudes, with the uniform angular

velocity w sin X, while being itself described by the body with the

uniform linear velocity v. Consequently the body would describe

about the point of starting, as pole, a spiral of Archimedes,

whose equation would be r = : 0. If the body were started
(i) sin A.

from the middle of the floor, with so small a velocity that it

would not reach the edge of the floor for a few days, it would

present the curious phenomenon of revolving (with an ever

widening orbit) round the point of starting for no apparent reason.

We must, however, content ourselves with the consideration

of masses moving horizontally under more ordinary conditions.

The winds afford a familiar instance. The explanation of the

direction of the trade-winds and cyclones is now pretty generally

known, and needs only to be mentioned. The greater heating

of the air by the sun in the neighbourhood of the thermal equa-

tor causes that air to ascend, which occasions an indraught of

the lower air both from the !N". and from the S. For a non-rotating

earth, the general direction of these would be meridional
; but

the rotation of the earth causes an apparent turning to the right

on the north side, and to the left on the south side, of the

equator ;
thus producing the N.E. trades on the north side, and

the S.E. trades on the south side, of that line.

A sufficient local extra heating of the air in N. latitudes

causes, in a similar way, an indraught of the lower air from all

sides; the component rotation V causes the converging masses of

air to pass in N. latitudes to the right of the centre of the super-

heated area, which produces a vortex turning in the opposite

direction to that of the hands of a watch lying face upwards on the

table ; the corresponding result in south latitudes being a vortex
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turning the other way, or with the hands of the watch. Such

vortices being called cyclones.

Ocean currents must be very considerably affected by compo-
nent rotation F; but these are subject to a variety of other

important influences of which we shall mention only prevailing

winds, land barriers, and mutual interference. It would be

generally impossible to distinguish the effect now in question

from others, and useless to speculate thereupon ; except perhaps

in one apparently simple instance, with which, as it happens, we
are practically concerned. It can hardly be doubted that it is

largely in consequence of component rotation V that the warm
Gulf Stream bears so strongly on the coast of north-western

Europe. It may be worth while to advert to the following :

There are five great ocean vortices. The two in N. latitudes,

viz., that in the N". Pacific and that in the N. Atlantic, both turn

watch-wise. The three in S. latitudes, viz., that in the S.E.

Pacific, that in the S. Atlantic, and that between S. Africa and

Australia, all turn counter -watch -wise. It seems highly

probable that all this is, at least, promoted by the earth's

rotation. If a great ocean vortex were due to an extensive

current movement of the water, produced somehow under the

condition of the earth's rotation, the direction of its turning
would be such as we have just mentioned, and opposite to that of

a cyclone in the same latitudes produced as above described.

The course of the flight of migrating birds is probably some-

times affected by component rotation F". But as the consideration

of their case would involve some speculation, let us propose to

ourselves another one which might actually occur. The keeper of

a light-house several miles out from the coast has some homing

pigeons, bred by himself, which are well acquainted with the

district. One is let go from a point on the coast ; it starts at

once to return directly to the light-house; the bird is guided

solely by his sight of the light-house, and the water being per-

fectly smooth, he is without means of knowing that he is always

edging sideways to the right of the instantaneous straight line
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from himself to the light-house : he will keep his head always

pointed directly towards the light-house, and to do this he must

be continually turning very slowly towards the left, doubtless

without perceiving that he is doing so. The forward velocity

of his flight is uniform, and his involuntary sideward motion to

the right will go on increasing, until the resistance of the per-

fectly still air to that motion becomes great enough to prevent

any further increase therein
; the sideward velocity then

has reached its final magnitude, and becomes constant, like the

forward velocity. The bird's visible course, or that relative to

the surface of the earth, will then become, quam prox., a loga-

rithmic spiral described backwards towards its pole, which is at

the light-house. (See NOTE B.)

Let A be the point at which this has taken place. If now the

latitude be 51 30', that of London, and the distance from A to

the light-house be 10 miles, and the bird's velocity of flight be

at the mean for such cases, say 800 yards per minute, or 40 feet

per second, and his weight 14 oz., and the coefficient of sideward

shifting 9-8, which we have good reason to believe is pretty

nearly correct ;
then his greatest departure to the right of his

intended straight line of flight from A to his home will be just

about 70 yards, at the distance of 3-68 miles from the light-house.

If this departure seems somewhat small, let us remember that it has

taken place in spite of the bird's constant (unconscious) endeavour

to avoid it, and in spite of the lateral resistance of the air.

Probably there is always a sensible deviation of this kind when

a bird is travelling to a sufficiently distant intended goal. His

flight, however, being generally over the land, the sight of the

more prominent objects in view would make him more or less

aware of his sideward shifting, and thus suggest to him to make

some allowance for it by directing his head to the proper side of

the goal, or the left in jSf. latitudes
;
but the amount of angular

allowance necessary would depend on the velocity of flight, and

on the latitude, and also on the bird's own weight and his

coefficient of sideward shifting ; and it seems very unlikely that
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instinct, much as it can do, would enable him to make due

allowance on account of these
; though it would doubtless enable

him to provide against a cross wind.

We see, then, that the familiar expression,
" As straight as

the crow flies," should not be lightly used, without distinctly

postulating the condition that the bird is making due correction

for the rotation of the earth.

In the case of a railway engine and train running along a

perfectly straight reach of the line, the rails being perfectly level

with each other, the sideward shift is prevented by the resistance

of the right-hand rail in 1ST. latitudes, and of the left-hand rail

in S. latitudes
;
and it is said that the right-hand rail and the

flanges of the right-hand wheels get more wear in N. latitudes,

on this account, than the others.

This is undoubtedly so. We know already (see NOTE B) that

the expression for the pressure P against the right-hand rail is

W; ...... (1)

in which v is the velocity in feet per second and W the weight
of the moving body (see NOTE B). For an engine going at

30 miles an hour, or 44 feet per second, in the latitude of

London 51 30', this would be l/6410th part of its weight, and

if this weight were 30 tons the whole pressure would be 10'48 Ib. ;

and this would have to be distributed among all the right-hand

wheels. The effect, then, is so small that it must be undistin-

guishable ;
as it would be altogether overborne and masked by

a gentle "cross wind, or by a difference of level between the rails,

say 4*71 feet apart, of only 1/lOOth inch
;
or by a gentle curve

in the line of 60 miles radius
; not to mention other causes of

unequal wear on the two rail?.

It is said also that rivers in N. latitudes must, for the same

reason, wear away their right-hand banks slightly more than

their left ones. This is undoubtedly true
;
but the effect is

utterly imperceptible ;
not only because the greatest velocity of

a river flow is relatively so small, but also on account of the

c
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incalculably greater effect of various other causes of inequality

in the erosion of the banks.

Among moving bodies influenced by V must be mentioned

the famous Foucault's Pendulum; but this is deserving of a

chapter to itself, which we shall give it.

We now come to moving bodies which are affected only by

the earth's other component rotation M, that is to say those

moving vertically, whether upwards or downwards. Just as in

N. latitudes, a sufficiently free body, projected or moving away

horizontally from before a spectator standing vertically, will

deviate towards his right, so if gravitation could be neglected,

to a spectator lying horizontally in the meridian in jST. latitudes,

with his feet to the south, a body projected away from before

him in the plane of the prime vertical will deviate to his right,

owing to the rotation of that plane in itself with the angular

velocity w cos \. Gravitation alters the case, except for a ver-

tical discharge or movement. If the observer lie on his back

and discharge the projectile vertically upwards its deflection

towards his right is one to the west. If he lie face downwards,

say at the edge of a mural cliff, and discharge, or simply drop,

the body downwards, its deflection towards his right is one to

the east.

We shall here discuss the latter, viz., a body dropped from a

height. That such must deviate to the east of the plumb-line is

easily seen otherwise thus. A point on the surface of the ground

is moving eastwards, from the rotation of the earth, with the

linear velocity Etu cos X, R being the earth's radius
;
but a point

directly over it, at the height A, is moving eastwards with the

velocity (R-t-A)w cos \. The latter is therefore moving east-

wards faster than the former with the additional velocity Tim cos X ;

consequently a body simply dropped from the upper point will,

at its fall, have left the lower point behind it towards the west.

This deviation, 3, of the body towards the east, if the resistance
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of the air to the falling body be neglected, is given by the

equation

3=ffowcosX, ....... (2)

which is, for same h, one fourth of the Westward Shift in the

Chapter on the Deviation of Projectiles (since, for same A, this t

is half the other). (For proof see NOTE C.) It being in a vacuum

7i=|<7tf
2

;
and the above expression for this deviation can be

written |A / w cos X, as it usually is.

A body dropped from a height must have also, as is evident,

and as was pointed out by Hooke, a very small deviation towards

the south
; this is not produced by Jlf, but by the horizontal

(southward) component of the centrifugal force of the earth's

rotation being greater at the top of tjie height of fall than at

the ground (except at the equator, where both are zero). Its

magnitude, which is easily obtained geometrically, is only

JAZ'V sin 2\, or | w2
sin 2/\ ; neglecting the resistance of the

J
air. The presence of w2

in it shows, at a glance, that it must

be excessively small for all practicable experiments. In that of

Guglielmiui, mentioned below, it would be less than 1 /30,000th
of an inch. (The formulas now given agree with that of Prof.

Bartholomew Price obtained analytically.) If, in the analytical

discussion of the deviation of a falling body from the vertical,

quantities of higher (i. e. smaller) orders of magnitude than the

first are neglected, this component of it does not emerge into

view. A body projected vertically upwards is not affected in this

manner, either in its ascent or descent.

Experiments have been carried out by various persons to

detect the deviation of falling bodies from the vertical owing to

the rotation of the earth. For instance by Guglielmini, in 1792,

in a tower at Bologna (lat. 44 30'), with a height of fall of

241 feet; by Benzenberg, in 1803, in a tower at Hamburg

(lat. 53 33'), with a fall of 234 feet, and, in 1804, in a coal-

mine at Schlebusch, Westphalia (lat. 51 25'), with a fall of

c2
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262 feet
;
and by Reich, in 1 832, in a mine near Freiberg,

Saxony (lat. 50 53'), with a fall of 488 feet. These experi-

ments, especially those of Reich, were, as far as regards the

eastward deviation, satisfactory, considering the delicacy of their

nature and the great difficulty of avoiding various causes of in-

accuracy, some of which could produce disturbances often very

much greater than the deviation to be determined. (See NOTE D.)

It is self-evident that, the height of fall being given, the

a stward deviation will be greater if the time of falling can be

made so in a proper manner. Therefore, for given h, the east-

ward deviation is greater in resisting air than in a vacuum.

( But we shall find in Chapt. III. that this last is not the case

with the westward deviation of the point of fall of a body

discharged vertically.)

This suggests a more convenient method of carrying out such

experiments as the above. By making the falling body descend

slowly enough we can obtain an eastward deviation, <), large

enough to be satisfactorily determined, \vith very much smaller

heights of fall than those mentioned above. The falling body

might be a sort of parachute, very easily designed and con-

structed, which, like a shuttle-cock, would be kept rotating about

its vertical axis by the resistance of the air. If this were such

that it would descend with a uniform velocity, v, of three feet

per second, it would have, with a fall of only 80 feet in the

latitude of London, a deviation, , to the east of just over one

inch, allowing a little for the lateral resistance of the air. This

deviation is 17 times as much as if the fall had been in a vacuum,

and probably 14 times as much as that of a bullet let fall in air.

In this case the equation is

2=^oi cos X; (3)

the 2/3 of equation. (2) being Inow unity (see NOTE E). Since

t is here
7i/v,

this value of o is to cos X. Therefore, for the

same parachute, the deviation varies as 7i
2

. Observe the last

paragraph of NOTE E.
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The parachute might be an inverted cone, about three inches

in diameter, composed, say, of tracing-paper, and furnished with

two very small wings opposite each other and set obliquely so

as to cause rotation. If the vertical angle of such cone be 90,
or a little less, it will descend steadily with the velocity mentioned.

It should, of course, be made to descend within a chimney-like

box, to protect it from movements of the air ; and this should

be in a suitable place inside a building ;
so that there might be

no convection currents within the box, caused by inequalities

of temperature on different sides of it. It would probably be

impossible, except by accident, to make the parachute so sym-
metrical about its axis that it would not be slightly deflected

from its proper line of fall by the resistance of the air. But

because of its rotation it would descend in a cylindrical helix of

very small diameter, the axis of which would be the mean line

of descent and the actual line in a vacuum. If a large enough
number of experiments were instituted, in which the parachute

was made to start with the same side in different azimuths, the

small errors arising from the semidiameter of the helix would be

self-compensating. The very small lateral resistance of the air

would, of course, slightly diminish the lateral deviation from

the rotation of the earth.

A free pendulum (that is one free to swing in any direction,

like Foucault's Pendulum, and unlike a knife-edge pendulum, or

that of a clock) is affected, as to its rate of oscillation, by its

sharing in component rotation M. It is, whether it be hanging

at rest, or oscillating, rotating about the meridional horizontal

line through its point of support, with the angular velocity

o) cos A. There is, therefore, a downward centrifugal force, as

we shall express it, acting on the pendulum at its centre of mass,

which, taking the mass as unity, is Vw2
cos

2
/\ ; r being its mass-

radius, or distance of the centre of mass from the axis of rota-

tion. It is evident that if the plane of vibration be E. and W.,

this centrifugal force, though apparently conspiring with g, will

not increase the rate of vibration, because it is always directed



22 THE EFFECT OF THE EAETH's ROTATION

along the pendulum rod ; it is not parallel with the direction of

g, except incidentally, at the instant when the pendulum is at

the lowest point. Consequently the period of a free pendulum

swinging E. and W. is not affected by its rotation with M
But if the plane of swing be in the meridian, the centrifugal

force due to the rotation of that plane about the horizontal N.

and S. line through the point of suspension is always parallel to

the direction of g, and not in the line of the pendulum rod
;

except at the instant when the pendulum is at the lowest point.

It is always proportional to the distance of the centre of mass

from the said axis of rotation ; but if the amplitude of swing of

the pendulum be very small, as it ought always to be in the

scientific use of the pendulum, this never differs sensibly from r.

The pendulum, therefore, is oscillating, not simply under g

acting at the centre of mass, but also under the parallel, con-

spiring, and sensibly constant centrifugal force rw
2
cos

2

X, acting

at the same centre (the mass is still taken as unity). It is very

easy to see that if the plane of vibration be not in the meridian,

but inclined thereto at the azimuth angle 2, we shall have

for the time t of the vibration of the free pendulum, not

t = TTA /- but (see NOTE F)V g ,

\ 1 IT- cos2 X cos 2; r , quam procc. . (4)
9 I % J

If then the free pendulum's radius of oscillation I be that of a

seconds pendulum, it will gain, in consequence of its own rota-

2

tion with M, 5 cos
2
X cos z sec. in every swing. It being a

J

Foucault's Pendulum, its plane of vibration will rotate relatively

to the material surface of the ground once in 24 sidereal hours

/ sin X. Therefore its rate of gaining is constantly varying from

zero to its maximum, and back again, with a period of 12

sidereal hours / sin X.

If the pendulum is oscillating meridionally at the equator
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(where it will retain its azimuth of oscillation), so that the gain

shall be greatest, and if r be 37 inches, which is perhaps a fair .

mean value of it, the gain will be at the rate of one second in

125 years. Of course the practical unimportance of this does

not detract from its dynamical interest. At the poles of the

earth, where cos
2 \ vanishes, the vibration period of the free

pendulum is unaffected by the rotation of the earth.

We now come to moving bodies which are affected by both

components, V and M, of the earth's rotation.

Some of the movements of the atmosphere and of the ocean,

must be modified by V and by M at once
;
each making its own

special contribution to the whole effect.

There is a phenomenon which must be largely due to both

components of the earth's rotation acting together as auxiliaries.

There would appear to be, in equatorial regions, a continuous

current from E. to W. in the upper parts of the atmosphere, at

the height of 20 miles or so. The peculiar sunsets which began
with the great eruption of Krakatoa, in 1883, passed thence

successively westward round the equator. It was evident that

their cause was, at first, of limited extent, and that it was

travelling in the direction mentioned. Before it became too

diffused and widely spread, several passages of it round the

equator could be distinguished, showing that it completed the

circuit of the equator in about 13 days. It seems impossible to

account for this but by the great cloud of fine dust from that

unusually violent eruption ; such dust being known to be capable

of producing such effects. That dust must have been carried by
a continuous current in the upper air over the equator from E.

to W., at the rate of 76 miles per hour. It is obvious,

from what we have seen respecting the trade-winds, that Fand
M would both conspire to produce this current, helped, no doubt,

by the daily revolution round the earth of the sun's heating

effect on the atmosphere.

We now turn to the pendulum swinging on knife-edges. This
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is affected by M, as to its rate of oscillation, precisely in the

same manner as the free pendulum, considered above, which has

for the instant the same azimuth of oscillation
; but, unlike the

latter, its rate is affected by V also. The plane of its oscillation

rotates about the vertical line through its position of rest with

the angular velocity w sin X. This produces, in this pendulum,

a centrifugal force directed away from the pendulum's position

of rest, and opposing gravity. Then for very small amplitudes

of oscillation, we have for the time t of the knife-edge pendulum,

as affected by both components, or the whole, of the rotation of

the earth (see NOTE G)

(5)
(J

If always made to swing in the meridian, it will gain at the

equator at the same rate as a free pendulum so swinging which

has the same I and r
;
and it will lose at the poles at that same

rate (though of course the free pendulum will not do so) ;
and

at latitude 45 its rate will be unaffected by its rotation with

the earth. In general, in order that the knife-edge pendulum
should be unaffected by its rotation with the earth, its plane of

vibration should have such an azimuth z that cosz= tan
2
X.

This relation is, of course, impossible in latitudes higher than

45 ; therefore in such latitudes the knife-edge pendulum must

always swing, because of its rotation with the earth, more slowly

than is due to the length of its radius of oscillation.

We see that two pendulums with the same calculated Z, or

radius of oscillation, at the same locality, and with parallel planes

of oscillation, will not go together with perfect accuracy, on the

rotating earth, unless they have also the same r, or mass-radius.

If the pendulum be a straight uniform rod, it will have the same

I, or calculated radius of oscillation, viz., two thirds of its whole

length, whether it be swinging about one end, or about a point

of trisection
;
but its r will be three times as great in the former

case as in the latter
;
and the rate of gaining will also be greater

in the same proportion.
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We see also that, in consequence of its rotation with the earth,

the point of suspension and the actual centre of oscillation of a

pendulum are not interchangeable ; except under the condition

that the centre of mass is halfway between those two points,

which, of course, is a quite possible condition.

The present matter would be of no practical importance in the

ascertainment of the value of g by pendulum experiments. Still

it should not be passed over altogether without notice
;

it ought
to be at least mentioned, if only for the purpose of pointedly

excluding it from consideration. A difference of one hundredth

of an inch in the height of the barometer would be taken account

of in obtaining the value of g by the pendulum ; and it is by no

means self-evident beforehand that the rotation of the instrument

with the earth has less effect on its rate of vibration than that

apparently quite insignificant item of consideration.

The apparent course of a projectile is affected by both com-

ponent rotations, V and M. But it will be better to consider

this separately in the next chapter.

NOTE A, from p. 12. In Pig. 1 let the circle be the outline of

the earth, P its north pole, and C its centre. Let D be the

situation of the place of observation at a certain instant, and

PDA the meridian line of said place, DEG being its parallel of

latitude. Suppose that the rotation of the earth about its axis

PC, in the direction indicated by the arrow, would carry the

place of observation from D to E in one second of time. Draw

tangents at D and E to the surface of the earth in the meridian

planes of those points, meeting the production of the earth's

axis in H, and complete the diagram. The angle FDH is evi-

dently the latitude of D, or X. In one second the earth has

turned through the angle ACB, or DFE, or w. But the hori-

zontal N. and S. line through the place of observation, now at E,

has turned only through the angle DHE. Now the angles DHE
and DFE, being both exceedingly small and with the same sub-
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tense, as we may call it, they are inversely proportional to their

radii HD and jiF, or directly as sin \ to 1. Therefore in one

second the face of the ground at the place of observation has

turned in its own plane through o> sin A.

Again, CD and CE produced are vertical lines at D and E.

Therefore, in the same time, the vertical line at the place of

observation has turned eastwards about the horizontal N". and S.

line, as axis, through DOE. Now DCE and ACB, being both

exceedingly small and with equal radii, they are to each other

directly as their subtenses, or as FD to CA, that is as cos X to 1.

Therefore in one second the vertical line at the place of obser-

vation has turned eastwards about the N. and S. horizontal line

at that place as axis, through w cos X.

NOTE B, from p. 16. First let us prove the following, to be

used again in p. 17. A perfectly free body is moving horizon-
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tally, always directly away from its starting-point. Its radius-

vector, or the line from that point to itself, will have, in N. latft., a

uniform angular velocity of deflection to the right, relatively to

the ground beneath, the magnitude of which is w sin X. Now let

the body have the uniform velocity v along its radius-vector r,

so that r= ^, t being the length of the time of the movement.

The velocity of the linear sideward shifting of the body is

rw sin X, or vtw sin X ;
it therefore increases uniformly with the

ime, that is with a constant acceleration, which we shall call a.

The linear space described in the first second of time under this

constant acceleration is v u) sin X. Therefore a= 2twsinX, per

sec., per sec. Multiplying the right side of this equation by m,
the mass of the body, and the left side by the equivalent W/#
(W being the weight of the body and g gravity), we have for

ma, or the apparent sideward pull on the body, or E,

9
The rightward sidling of the body, relatively to the ground

beneath it, is as though it were produced by a constant force or

pull P, of the magnitude now given. And if that sideward

shifting be stopped by some impediment (such as the right-hand

rail in the case of a railway train in N. lats.), the forward v

remaining the same, the body will continue to press against the

impediment with that force F.

Now if the impediment be that of the resistance of the air,

the body's, in this case the pigeon's, sideward motion will at first

increase, until the consequently increasing resistance of the air

to that motion becomes =F. The sideward velocity then

becomes uniform, like the bird's forward velocity along the

radius-vector.

Let s be the sideward shift in one second when this has taken,

place. Then s/v is the tangent of the angle between the tangent

to the curve and the radius-vector, at any point of the curve.

That angle is then constant ; and this is a distinguishing property

of the logarithmic spiral.
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n s rdQ s dr
Ur thus -=

, as is evident, or dd= : whence
o

6= ~
log r+ C

;
C being a constant which we do not now want

to determine. Thus when the sideward velocity becomes uniform,
but not until then, the curve settles into a logarithmic spiral
whose pole is at the starting-point.

Now suppose the bird to do the opposite, viz., to fly towards
a given point with the velocity v, always turning so as to keep
his head directly towards the point, notwithstanding his con-

tinual shifting rightwards from the rotation of the earth. It is

easily seen that he will describe a similar spiral backwards; the

polo being at the goal-point. In Fig. 2, Aa and be are intended

Fig. 2.

to represent v, ab and cd to represent s. As in p. 16, A is not

the pigeon's starting-point on his homeward flight ; but the

point at which his sideward shifting has become constant. For

clearness this figure and the next have been drawn altogether out

of scale. L is the light-house.
o

The equation 6= logr+(?, though perfectly accurate if the

problem, as stated, be regarded as one of abstract kinematics,

will, for certain obvious dynamical reasons, not be realizable in

the concrete case of the pigeon for distances too near the pole.

If the logarithmic spiral A bd were produced backwards towards

the pole L, it would make an infinite number of turns round the

pole before reaching it
; which, in accordance with the statement

of the problem, would have to be described by the bird in a very

short time. Near the pole the bird could not, and would not if

he could, do as we have proposed for him. But for the distances

therefrom with which we are now concerned we cannot doubt



ON CEKTAIN MOVING BODIES. 29

that he would do so
;
and his departure from the logarithmic

spiral due to his inertia (for there would be such) would be quite

insensible.

Let us assume that the resistance of the air to the transverse

velocity is proportional to the square of that velocity, and there-

fore to s
2
. The resistance due to the final transverse velocity

being, as we have called it, F, s=ZC/y/F ;
in which K is a con-

stant. "We know the value of F from the above
;
that of K can

be ascertained only by experiment*. It would appear that it is

just about 9-8, if the weight of the bird be expressed in ounces.

The approximate correctness of this has received a certain satis-

factory confirmation. We have then

g _o. A'" ^n XW
P, nr Q .a /* X 40 x sin 51 30' JI4

V g V 13713x32-2

which is 0-4366 ft. ;
and s/v, the tangent of the tangential

angle, is 0-0109, or 1/92, very nearly. We neglect the quite

unimportant effect of the difference of latitude between A and

the light-house.

The greatest departure of the pigeon to the right of AL is

easily obtained very approximately in this case. Since s/v is so

very small, it differs very slightly indeed from the circular

measure of the angle 38', of which it is the tangent, and also

from the sine of that angle. If DB, Fig. 3, be the greatest

distance of the curve from LA, the tangent at D is parallel to

LA., and DLA is equal to what we have called the tangential

angle of the curve. DB, which we wish to ascertain, is

LB- or (as DLA is so very small) LD -
, quam prox. Now

v
;

*

*
Experiments were made with a falling inverted cone of light paper esti-

mated as presenting to the air through which it moved a horizontal areal

section equivalent (not equal) to that of the side aspect of a flying homer.

The coefficient K ^s the number of feet fallen through by the cone in one

second, after attaining its final velocity, divided by the square root of the

number of ounces in its weight.
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let be the angle between LA and the selected axis or prime

vector, wherever that may be, and & the angle between LD and

the same
;
then we have 61= - log LA+ K, and 0'= - log LD+ K.

Therefore 00', or angle DLA, or q. pr.,
-

thus - =- log! ; whence log =1, which is the logarithm
v v L.JD LD

of the base of the system of logarithms, viz. : the Naperian.

Thus LA/LD=that base ;
and LD is 10 miles /2-7182*, or 3-68

miles, and DB is this X -
(i. e. by -%) which is 70 yards, very

nearly.

Fig. 3.

NOTE C, from p. 19. Though the following geometrical proof

of this, by R. A. Proctor, is on the same lines as that given in

Chapt. III., NOTE C, for another deviation, we may consider it

here on account of the use to be made of it in the next NOTE to

this.

In Pig. 4, let bed be the surface of the earth and C its centre,

and let ab be the height of the fall. The body, ready to drop

from a, has been describing the continuation of ea beyond a,

with a uniform areal velocity about C. When let go it describes

the (absolute) curve ad under the force of gravitation directed

to (7, and therefore with the same areal velocity about C as it

had before. The curve ad, though really an ellipse with the

centre of the earth in one focus, is sensibly a parabola. Suppose

that when the body has reached d, the top of the height of fall has
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reached e; draw eO. We can see quite easily, a priori, that cd

and cf are so exceedingly small, relatively to ab and be, that the

proportional difference between ec and ef may be neglected with-

Fig. 4.

out sensible inaccuracy. Now the areas a Ce and aCd are equal,

as describable in the same time ; and therefore taking away
the part common to both, aef is equal to fCd. Then, since

abce is sensibly a rectangle, and, as we have said, ec may be

taken for ef without appreciable error, we have, from a well-

known property ofthe parabola, ^ab x bc= |Tt x cd ; or ^ARw cos \t

=|Ro ;
E being the earth's radius. That is to say, 3= ffaw cos \.

Q.E.D.

NOTE D, from p. 20. This Guglielmini must not be confounded

with the distinguished physicist, with the same surname, also of

Bologna, who died in the year 1710. He described his above

experiments in a work De motu terrce diumo, Bologna, 1792,

quoted by Delambre in Astron. Theor. et Prat. torn. ii. p. 192.

Benzenberg described his experiments in a book Versuclie uber

das Gesetz des Falles, Dortmund, 1804, and in Versuclie uber die

Umdrehung der Erde neu berechnet, Diisseldorff, 1845. For an

account of Reich's Fallversuche uber die Umdrehung der Erde,

see Poggendorff's Annalen, vol. xxix. 1833, p. 494, as also

Houel's De deviatione meridionali corjporum libere cadentium,
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Utrecht, 1839. This experiment has been tried also at Verviers

in Belgium, and doubtless elsewhere.

E, from page 20. This can be readily seen thus. In

Fig. 4 the curve ad is sensibly a parabola ;
but now as the velocity

of descent is uniform, ad is sensibly a right line (but of course

much longer than before for the same ab). The area aCd is still

equal to aCe
;
because the resistance of the air on which it

depends is sensibly (though not accurately) a central force,

though directed from C ; and aef, which we have agreed to take

as aec, is now one half of ab x be, instead of one third of it
;

consequently the equation (2) becomes 3= ^wcos X. Q.E.D.

Of course the parachute, after being let go, will not attain its

final and constant velocity until it has fallen a short distance
;

in the present case about one foot. This will make the resulting

deviation less than what is given in formula (3), just demon-

strated
; but, for a fall of 80 feet, or more, the difference is so

small, proportionally, as to be quite unimportant.

NOTE F, from p. 22. The absolute centrifugal force being, as

we have said, rw2
cos

2
X, if the plane of vibration be inclined to

that of the meridian at the azimuth angle z, the effective part of

the c.f . will be ro>
2
cos

2
X cos z, and the pendulum will oscillate

under g+ rw 2
cos

2
X cos z, acting at the centre of mass and

parallel to g. Therefore the time of vibration of the free

pendulum is not HA / -, but

v;
which can be written, quam prox., as equation (4) in text.

NOTE G, from p. 24. It is easy to see that for very small

amplitudes of oscillation the tangential component of the c. f.,

now in question, acting on the centre of mass away from the

position of rest of the pendulum, is no 2
sin

2
X sin 0. This then

acts at the same point, and according to the same law of distance
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from the point of rest, as the tangential component of gravity 9

or
cj

sin d. Therefore, while in p. 22, and in NOTE F, no2
cos

2 \ cos z

had to be added to g, now rw 2
sin

2 A must be subtracted from their

sum, making g+ rw2

(cos
2
X cos z sin

2

A). Therefore the time of

vibration of the knife-edge pendulum, as affected by its rotation

with both V and M, is

rw
a

(cos
a
A cos z sin

2

A)'

which can be written, quam prox., as equation (5) in text.



CHAPTER III.

DEVIATION OF PKOJECTILES FKOM THE ROTATION OF

THE EAETH.

THIS interesting subject, though coming under the heading of

the last chapter, seems worthy of having a chapter to itself.

It is treated imperfectly in elementary books, &c., which cannot

afford to give it the amount of space that could be desired. A
sometimes important factor of the question, viz., the westward

shift ,of the point of fall of the projectile from the earth's

rotation, is usually overlooked ; and this sometimes gives

occasion to certain incorrect statements (see footnote, p. 42) :

besides which, in the works just referred to the alteration of the

range of the projectile's flight by the rotation of the earth is

neglected altogether. (See NOTE A.)

The present subject, though a very interesting one in itself, is

of but little practical importance. The effects with which we

are now concerned are so overborne and masked by other disturb-

ances of accuracy in the intended flight of projectiles, that they

may be not even mentioned in a modern text-book of gunnery.

They are, however, recognized by the Boyal Artillery Institution.

It is hardly necessary to observe that the deviation now in

question is, unlike the others, only apparent, and relative to us ;

like the rising and setting of the sun. It is not the projectile

which departs from its course in a certain direction, but the

earth which turns beneath it in the opposite direction.

The principle concerned in the deviation of projectiles from
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the rotation of the earth depends on the existence of the two

components of the earth's angular movement of rotation, which

we have considered in Chapter II. The component of the

earth's rotation which has the vertical line at the place of dis-

charge as its axis we have called component rotation V, its

angular velocity being <u sin \ ; that which has the horizontal

meridian line at the place of discharge as its axis, we have called

component rotation M, its angular velocity being w cos X. We
shall now consider the apparent effects of these separately on

the projectile's motion.

The net effects on the projectile's motion consist of alteration

of range and lateral deflection
; but these do not correspond,

respectively, to the two causes just mentioned. The orderly

arrangement of this subject presents, therefore, a slight difficulty.

The simplest and most convenient division seems to be that

presented in the following summary.

N.B. The resistance of the air is provisionally disregarded ;

but we shall consider further on how it affects the applicability

of the following formulae.

Summary. The shift of the point of fall of the projectile from

what it would be for a non-rotating earth is compounded of

three shifts (a), (6), and (c), which can be considered and

calculated separately, viz. :

(a) The ^purely} Longitudinal Shift. This is directed along

the line of projection. The alteration of range is an increase, or

a decrease, respectively, according as the direction of firing has

in it any easting or westing. Therefore, except in firing due S.

or N"., when it is zero, it always has an eastward tendency.

Other things being equal, this varies as the sine of the azimuth

of projection. Like (6), it is proportional to the range and to

the time of flight (but it depends also on the angle of the pro-

jectile's descent). Like (c), it is due to the earth's component
rotation M.
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(6) The (purely} Transverse Shift at right angles to the line

of projection. It is a deflection to the right hand in N., and to the

left in. S. latitudes. Other things heing equal, this is the same

for all azimuths, or horizontal directions, of projection. It is

proportional to the range and to the time of flight. It is due to

the earth's component rotation V.

(c) The Westward Shift. This is directed due W., hoth in N.

and in S. latitudes. Other things being equal, this is the same

for all azimuths of projection. It is proportional to the height

of the trajectory and to the time of flight. For firing N. or S.,

this is, of course, wholly a transverse shift or deflection ; for firing

E. or W., it is wholly a longitudinal shift, or alteration of range.

But of course, in general, this shift is both a deflection and an

alteration of range. The alteration of range involved in it,

whether increase or decrease, is always opposite to the purely

longitudinal shift (a). The deflection involved in it is to be

added to, or subtracted from (6), according to circum-

stances. This shift, like (a), is due to the earth's component
rotation M

; but it depends thereon in a totally different

manner; being connected with the 'height, not the range,

of the trajectory.

The net result is a whole longitudinal shift of the point of fall

of the projectile, or alteration of range, which is (a) modified

by one resolved part of (c) ;
and a whole transverse shift, or

deflection, which is (6) modified by the other resolved part

of(c).

We now proceed to the demonstration of the above. It should

be remembered that the following calculations are only approxi-

mately correct, even for a vacuum. Certain quantities of higher

orders than the first are neglected; but the result of this is

practically insensible
;
as the ranges attainable by actual ordnance

are so very small in proportion to the dimensions of the earth,

and, moreover, as the longest time of flight of any actual pro-

jectile is so very small compared with the period of the earth's

rotation.
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(a) The (purely} Longitudinal Shift. This shift along the line

of projection constitutes an alteration of range, which will be,

both in N. and in S. latitudes, an increase, if the direction of

projection have in it any easting, and a decrease if any westing.

The question of this shift, as it presents itself to us, is simply a

kinematical one.

We shall begin the consideration of this with the case of firing

E. It is evident that if the surface of the ground at the place of

discharge were moving straight on in its own plane, its motion

would cause no difference in the range, on the earth's surface, of

the trajectory. But the surface of the ground at the locality of

firing is being always tilted over towards the east, with the

angular velocity w cos X, whilst being translated in that direction.

Whilst the projectile is flying, as now supposed, towards the east,

the ground beneath it is turning away from it downwards, if we

may so express it ; so that the projectile will pass above the

point on the surface of the ground on which it would have fallen

for a non-rotating earth
;
and it will not reach the ground until

it has gone some distance beyond that point. The opposite of

this takes place, of course, in the case of firing W.* Thus 'this

shift of the point of fall is due east, both for E. and for W.

firing ;
and it has an eastward tendency for all azimuths of

discharge, except ]ST. and S.

It is quite easily seen (NOTE B) that the magnitude of this

alteration of range for E., and for W., firing is

rt cot c M cos X ; (1)

in which r is the length of range, t the time of flight in

seconds, the angle of descent at the end of the trajectory, w the

earth's angular velocity of rotation about its axis, or angle

described per second (which, as we have seen in Chapt. II. is

* It is evident that there is also an increase or a decrease, respectively,

in the height of the trajectory for E. and for W. firing, and an accom-

panying increase or decrease in the height at which the ball would hit a

target.
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represented in circular measure by the fraction 1/13713), and A

the latitude of the place of discharge.

For any azimuth of discharge, z *. this must be multiplied by
siri z

; so that in general this alteration of range is

rt cot w cos X sin z
; (2)

an increase, if there be any easting in the direction of discharge,

with sin z positive ;
a decrease, if there be any westing, with sin z

negative. This is applicable both to IS", and to S. latitudes.

(6) The (purely) Transverse Shift. This, as we have said, is

a shift of the point of fall of the projectile, from what it would be

for a non-rotating earth, at right angles to the line of projection.

It is directed to the right baud in N., and to the left in S.,

latitudes.

Considering for the moment only the earth's component
rotation F", to which this shift is due : if a projectile were dis-

charged towards some suitable object standing on the ground,

that is, discharged in the plane passing vertically at the instant

through that object, it would continue to move in that plane.

But in consequence of the turning of the surface of the ground

in its own plane, with the angular velocity w sin A, the object

aimed at would pass, in N. latitudes, to the left of the vertical

plane of discharge ; leaving the projectile behind to the right of it.

It is evident that the rate of this apparent angular deviation of

the projectile to the right, or the angle described in one second,

being due to this cause alone, must be the same for all azimuths,

or horizontal directions, of discharge, and equal to w sin A. The

angle described during the time of flight, t seconds, is t w sin A ;

arid to get the linear shift of the point of fall of the projectile,

from what it would be on a non-rotating earth, at the end of t,

we must multiply this by the range r. ^ow this shift, as is

evident, does not involve any alteration in the length of the

range ;
it is simply an apparent linear deflection from the line of

* We now reckon the azimuth from S. eastwards, and continuously right

round the horizon.
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Discharge. It is very easily seen that the expression for this

(purely) transverse shift (to the right in N., and left in S.

latitudes), neglecting the resistance of the air, is

rt w sin X (3)

Let us observe that the question of this deflection is, like that

of (), merely a kinematical one, relating only to angular and

linear motion
;

it differs, in this respect, from the question of the

westward shift, which, as we shall see, is a dynamical one. Let

us observe also that the above evaluation of the (purely) trans-

verse shift rests simply upon the fact that the moving body

accomplishes the distance r, in the time
, quite irrespectively of

the law of its velocity in its flight.

(c) The Westward Shift. This is a shift due W., both in F.

and in S. latitudes, of the point of fall of the projectile, from

what it would be for a non-rotating earth. The present question,

unlike that of the (purely) transverse shift and the (purely)

longitudinal shift, is, as we have said, a dynamical one..

Still supposing the projectile to move in a vacuum, we shall

consider first the case of a shot fired vertically.

During its flight the locality of discharge has not been simply

translated towards the E. by the rotation of the earth (if this

were so, those would be right who say that a bullet fired vertically

will fall on the muzzle of the gun) ; but, as already mentioned,

it has also been tilted over somewhat towards the E. The

vertical line of the place has moved angularly towards the E., so

that the projectile is left behind by it towards the W., both in

]X". and in S. latitudes ; just as it is left behind towards the right

in consequence of the horizontal component, at the place, of the

earth's rotation. But by the time the projectile has returned to

the earth its westward falling-behind from the vertical line will

have increased. It is evident that the magnitude of this shift

is connected with the greatest height to which the projectile

attains, as well as with the time of flight.

The amount of this westward shift in a vacuum, for vertical
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firing, is
-J

Tit w cos X ;
li being the greatest height attained by

the projectile. This results from the principle of the equable

description, by the projectile, of areas about the centre of the

earth, or Kepler's Second Law, and the fact that the area

included by the sensibly parabolic (absolute) trajectory and the

(level) ground is two thirds of the rectangle under base and

height of trajectory. For proof see NOTE C.

Now it is evident that there must be always, for any angular

elevation of discharge, as well as for vertical firing, such an

action as this connected with the vertical component of a

projectile's motion, and that the westward deviation, or shift, of

the place of fall of the projectile, must be the same as for vertical

firing, if h and t be the same, and that, cceteris paribus, it must

be the same for all azimuths of firing. Therefore the amount

of this shift due W., for any trajectory with given A, is the same

as that mentioned above for vertical firing. It is

(4)

As a general rule, this involves both an alteration of range and

a deflection. The alteration of range is compounded with shift

(a\ treated above ; the deflection with shift (6).

As to the alteration of range involved in this westward shift,

it is this shift multiplied by sin z (see footnote, p. 38) ; therefore

this alteration of range is

J Tit a) cos X sin z
; ...... (5)

which is a decrease of range if the direction of discharge have in

it any easting, and an increase if any westing. There is, of

course, no change of range for S. and for N. firing. All this

is applicable both to N. and to S. latitudes.

As to the deflection involved, it is, of course, this westward

shift multiplied by cos z
;
therefore this deflection is

| Tit w cos X cos z....... (6)

This deflection, as is evident, is to the right, whenever the
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direction of discharge has in it any southing, and to the left

when any northing ;
it is zero for E. and for W. firing. All

this being applicable both to BT. and to S. latitudes.

Net Results. The whole resulting longitudinal shift, or altera-

tion of range, for any azimuth of discharge z, whether the

latitude be N". or S., is (2) minus (5), or

t wcosX (r cot S -*ft)sinz (7)

If 3 be small enough, as it is in all ordinary trajectories (whose

angles of elevation never exceed 45), r cot 3 will be greater

than
-|

h
;

and if there be any easting in the direction of

discharge, which would make sin z positive, the alteration of

range will be an increase ;
and if there be any westing in that

direction, making sin z negative, a decrease
;
and vice versa, if

$ be great enough to make r cot 3 less than %-h; which last

would imply a very high angle of elevation, such as is never in

practical use. If these two quantities be equal, there will be no

alteration of range for any azimuth of projection. To make

them equal, the angle of elevation of discharge must be, in a

parabolic trajectory, 60 (see NOTE F) ; but in a ballistic

trajectory that angle must be less than 60; how much less

depends on circumstances. The factor sin z shows, what indeed

is evident beforehand, that in any case, for firing due S. or N.,

there will be no alteration of range; and that for firing due

E. or W. the alteration is a maximum, whether positive or

negative. Both parts of this shift are due to M.

Again : The whole resulting transverse shift, or deflection, of the

point of fall of the projectile, for any azimuth of discharge z,

is the algebraical sum of (3) and (6) taken with their proper

signs ;
that is

t w(rsm\-\-h cos A cos 2) (8)

This total deflection consists, then, of two parts ;
one being

due to the earth's component rotation V and proportional to the

range r
;
the other being due to the earth's component rotation
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M and, for given z, proportional to the height h of the tra-

jectory.

Taking for example the case of N. lats. If the direction of

discharge have in it any southing, cos z is positive, and we see,

what indeed is evident "beforehand, that the whole actual

deflection is the sum of the two, and a maximum for firing due

S. If the direction of discharge have in it any northing, cos z

is negative, and the whole deflection is then the difference of the

two ; and, if cos 2 he equal to
-^

tan X, the whole deflection

will be zero. If cos z be greater than ^ tan X, as it may

easily be with a combination of great enough h, sufficient

northing of discharge, and low enough latitude, the whole

deflection will be to the left
; though the latitude be N. *

(See

Figs. 5 and 6.) Correspondingly, mutatis mutandis, for south

latitudes.

It may be of interest to observe that while the purely longi-

tudinal shift can never exist alone, the purely transverse shift

would exist alone for firing from the N. or the S. pole, and the

westward shift would be the only one for firing from the equator

either due N. or S.

The Resistance of the Air as affecting the above Formulce. So

far we have disregarded the resistance of the air to the motion

* It is often stated in elementary books, &c., that the deflection of a

projectile from the rotation of the earth is to the right in N., and to the

left in S., latitudes, and, for a given trajectory, the same fqr all azimuths of

discharge, and that there is no deflection if the projectile be discharged

from the equator. But this is to consider only the (purely) transverse

shift (6), formula (3), in disregard of the .transverse component of the

westward
oshift, formula (6). However, it is true that for ordinary (that is,

somewhat flattish) trajectories in middle and higher latitudes the actual

whole deflection is to the right in N., and to the left in S., lats. ; but

it is by no means the same for all azimuths of projection (see table in

p. 46).
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Of the projectile while discussing the three shifts of the point of

it fall due to the rotation of the earth. But we shall find that,

although the resistance of the air has such a great influence on

the motion of projectiles, diminishing the range, and making the

trajectories to be ballistic instead of parabolic ones, yet it affects

but very little the applicability of our above formulae.

The reason of this is that those formulae are expressed in

terms of those elements of the trajectory on which the shifts

directly depend ; viz., the range, the height of the apex, the

angle of descent, and the time of flight. The shifts, as we have

seen, do ,not depend on any relations (whether parabolic or

ballistic) of those elements to each other
;

it is only the magni-

tudes of the specified elements which are concerned, whether

they have been attained with or without the resistance of the

air.

With respect to formula (3) for the (purely) transverse shift,

it is, as we have already said, independent of the law of the

horizontal motion of the projectile. The horizontal component

of the resistance of the air to that motion does not affect, in the

slightest degree, the validity of that formula, which is concerned

only with the easily observed magnitude of the range and that

of the time of flight, without any reference to the law of

the velocity under which the range has been attained.

With respect to formula (1), for the (purely) longitudinal

shift, the same remark applies to the range, as it occurs therein ;

and as r) is the actual angle of descent, relative to the spectator,

at the instant of the fall of the projectile, formula (1) needs no

modification for the resistance of the air to the projectile's own

forward motion.

With respect to formulae (4), for the westward shift, and (5),

for its component deflection, and (6), for its component alteration

of range, which all depend upon h, their applicability is hardly

affected by the vertical component of the resistance of the air to

the projectile's motion (see NOTE D).

But if the validity of the above formulae is thus practically
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uninfluenced by the resistance of the air to the projectile's own

proper forward motion, how is it with respect to the transverse

resistance of the air to the projectile's apparent motion of

deviation due to the earth's rotation ? It is evident, at once, that

this must cause a diminution of the shifts, and also that, con-

sidering the high densities of the projectiles with which we are

concerned, this diminution must be quite small. It can be

easily calculated, from empirical data bearing on the subject,

that the greatest deviation in the following long-range tables

has to be diminished, on this account, only by considerably less

than one hundredth part, and that the other (smaller) deviations

in those tables are to be diminished in still smaller respective

proportions. We may now, therefore, neglect this particular

altogether.

For parabolic trajectories in a vacuum the above formula

could be readily expressed in terms of the initial velocity of the

discharge, its angle of elevation, and g, by means of the familiar

equations for such trajectories. But in that shape they would be

altogether unsuitable for ballistic trajectories in resisting air, as

they would involve the special relations to each other of the

elements of parabolic trajectories *.

In illustration of the above, it will probably be most inter-

esting to select an extreme example, suggested by the " Jubilee

Bounds "
fired at Shoeburyness in April and July, 1888, in

celebration of the 50th Anniversary of the Queen's Accession to

* We may mention here that all the foregoing formulae, arrived at

geometrically, are in accordance with the results of Professor Bartholomew

Price's analytical discussion of the same subject (excepting a certain lapsus

calami) in his Infinitesimal Calculus, 2nd ed., 1889, vol. iv., though he has

not explicitly separated the different parts of the question. His expressions

are intended for parabolic trajectories in vacuo ; they are in terms of the

initial velocity, the elevation of the discharge, and g, and involve the

principles of such trajectories ; they are, therefore, inapplicable to ballistic

ones. (See NOTE E.)
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the Throne. See the paper by Lieut. A. H. Wolley-Dod, E.A.,

in the Minutes of Proceedings of the Royal Artillery Institution,

vol. xvi., p. 491, also Bashforth's Revised Account of Experiments

made luith the Bashforth Chronograph, 1890, p. 114, &c., also

the London Times, Sept. 25th, 1890.

The cannon used was a 9'2 in. wire breech-loading gun,

weighing 22 tons; the charge 270 Ib. of powder; the shot

an ogival-headed bolt with diameter 9*2 in., length about

28-5 in., and weight 380 Ib. ; the muzzle velocity 2360 ft. per

sec. (or a little more). On July 26, with the elevation of 45, the

greatest .range was attained ; viz., the enormous one of 21,800

yds., or nearly 12'4 miles
;
but this was with the assistance of

a " favourable moderate " wind. Prof. Bashforth calculated that

the range in still air would have been 19,944 yds., or 11*33

miles. Though such calculations profess to be only approximate,

yet, as Lieut. Wolley-Dod observes,
" It seems to have been

amply proved that, even at extreme ranges, the formulae and

tables will give correct results."

We shall now adopt the trajectory as calculated by Bashforth
;

it being the last one given by him in p. 116 of his work referred

to above. His calculation has been made for a horizontal plane

27 ft. below the muzzle of the gun ;
but the effect of this on the

deviations may be called quite insensible.

The comparative smallness of the alterations of range is due

to the greatness of the angle of elevation of discharge, involving

a relatively large h and a high angle of descent
;
in consequence

of which the two oppositely-directed elements of alteration of

range (formula 7) are beginning to approach equality.
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We may now give a diagrammatic illustration, Figs. 5, 6, 7,

8, for diverse azimuths of discharge, but with the same trajectory

in all four cases, viz., that selected for the above tables. But

lat. 15 N". is now selected in order that the three shifts may,
for convenience, not differ too much in magnitude. We could,

of course, take the shifts of the point of fall of the projectile in

any order we please : but it will be convenient to begin, as above,

with (a), the purely longitudinal shift. The principle of con-

struction is the same, and the lettering correspondent in all four

figs. The thick line Im is the latter part of the range for a non-

rotating earth
;
m being the end thereof. The dotted line mn is

the purely longitudinal shift, whether an increase or a decrease

of range. The dotted line no is the purely transverse shift, to

the right, the lat. being N. The dotted line op is the westward

shift. And the double line mp is the whole shift compounded of

the others. The letters Z, m, ra, o, p, taken in alphabetical order,

enable "the reader to compare these four diagrams at a glance.

From m draw me due east, whether the lat. be N. or S., its

length representing the value given by formula (1), which is, in

this case, 58'3 yards (this me is the purely longitudinal shift for

E. and for W. firing) ;
from e draw en at right angles to above

range ;
mn is the (purely) longitudinal shift, its value being

58-3 yds. X sin z, formula (2). From n draw no in the line of m,
that is at right angles to the range, and towards the right hand

in N. lats., and towards the left in S. lats., its length repre-

senting the value given by formula (3) ;
this is the (purely)

transverse shift, the magnitude of which is, in this case, 25*7 yds.

From o draw op due west, whether the latitude be N". or S., its

length representing the value given by formula (4) ; this is the

westward shift, the magnitude of which is, in this case, 42-0 yds.

Then the double line mp represents, in magnitude and direction,

the whole shift of the point of fall of the projectile compounded

of the three shifts just mentioned. The whole, or net, longi-

tudinal" shift is sensibly the orthographic, .projection of mp on

mn ;
and the whole or net transverse shift is the distance of p
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from mn, since both of these shifts are so very small relatively

to the range. On the scale of these Figs, the thick line repre-

senting the undisturbed range ending at m should be 41 -5 feet

long. For a given trajectory, as we see, the lines no, op, and

the line of construction me are constant for all azimuths of pro-

jection ; but not so any other lines. In Figs. 5 and 6 the actual

net transverse shift is to the left, though the latitude is north.

It would, of course, be greater if the direction of discharge were

due N. For azimuth of discharge 142 10', or 37 50' E. of N.,

formula (8) becomes zero, and there is no lateral deflection. The

proportionally very small effect of the resistance of the air on our

formula is still neglected.

The following distances and times of flight with the Martini-

Henry Eifle and Bullet, fired so as to have the range of 1000

yds., are taken from Mackinlay's Text-book of Gunnery, 1887,

p. 159
;
the weight of the bullet being !! oz. and its diameter

0-45 inch (the angle of elevation about 2 31', muzzle velocity

1353 ft. per sec.
;
these two items, however, do not now concern

us).

The deflections here given are the (purely) transverse ones,

formula (3). They are calculated for lat. 51 31', N. The

deflection, formula (6), involved in the westward shift, has been

disregarded ;
as it is relatively very small in such flat trajectories.

Even at the distance of the full 1000 yds., with height of tra-

jectory 45-5 ft., it would not amount, even at its maximum for

N. and for S. firing, to th inch. But, for this same trajectory,

the increase of range for E. and the decrease for'W., firing would

be as much as about 2*3 yds.

Distance,

yards.

200

400

600

800

1000

Time of flight,

seconds.
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The diminution of these deflections from the lateral resistance

of the air is evidently exceedingly small. It would appear that

in the last deflection, where it is greatest, it would only be able

to diminish by 1 the digit in the second place of decimals.

A, from p. 34. Aristotle contemplated a connection

between the earth's rotation, if it existed, and the movement of

certain projectiles. He argued (De Coelo^ II, 14, 6) that since,

as he believed, a heavy body projected vertically upwards falls

back on the point of discharge, the earth must be without

rotation. He gives no hint of what the effect of the earth's

rotation would be in this case, if it existed. But Ptolemy con-

tended {Almagest , I, 7) that if the earth rotated with the

enormous eastward linear velocity of its surface involved (except,

of course, in very high latitudes) in a globe of its si/e turning

completely round in one day, flying birds and projectiles could

never get eastward of their point of departure, but would be left

a long way behind to the westward of that point.

It was reserved for Galileo to give the now so obvious

refutation of this objection of Ptolemy's, which he does in his

Systema Cosmicum. Galileo, however, seems to have considered

the connection between the motion of projectiles and the rotation

of the earth, not for its own sake, but merely with the object of

removing what was regarded by many as a most serious difficulty

in the way of the system of Copernicus. His mind was fixed so

strongly on this important object that he did not care to go, as

fully as he might and could have done, into the question with

which we are now concerned.

In page 225 of the London edition, 1663, when disproving the

supposed effect, according to Ptolemy's ideas, of the earth's

rotation, if it existed, on the motion of a body dropped from a

height, he ignores altogether the real deviation from the vertical

that must be produced in the fall of such a body by that

rotation ;
and in page 239 he categorically and distinctly declares

that a cannon ball discharged vertically would fall back on the

E2
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mouth of the cannon, notwithstanding the rotation of the earth.

Now, as we have said, Aristotle's words, taken as they stand,

mean only that the earth's rotation would prevent a body dis-

charged vertically from falling back on the point of discharge.

Thus, then, if we judge them simply by what they say, Aristotle

was right and Galileo wrong on this point ! But it is greatly to

be feared that if we could cross-examine Aristotle and get him

to be more explicit, he might commit himself undesirably ;
and

on the other hand, it would not be fair to take Galileo at his

word on this point ; because we have reason for knowing, from

the very work now referred to, that he was better on the present

question than he here represents himself to be. His attention

was so wholly engrossed with proving that the eastward trans-

lation of the surface of the earth with everything on it has no

effect, relatively to us, on the motion of projectiles &c., that he

here disregards the angular tilting of that surface towards the

east
; although he does not do this elsewhere.

NOTE B, from p. 37. The proof of this is quite simple. Let

us first suppose that we are at the equator, and that the discharge

is due E. Let , Fig. 9, be the point of discharge ; ag the

Fig. 9.

Wn ^^ ^^
h

position of the surface of the ground (whose curvature may be

now neglected) at the instant of discharge ; afg the trajectory,

which would intersect the surface at g, if the earth did not

rotate; all the position of the surface of the ground at the

instant of fall of the projectile at Ti. We are now concerned

solely with the rotation of the surface of the ground about a

horizontal N. and S. axis at a, perpendicular to the plane of the

paper. The angle gah is wt, and very small, even for the longest
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attainable time of flight of a projectile. Draw gi perpendicular
to ah ; ih is the increase of range now under consideration.

Now ih is so very small relatively to ag and ah that these two

lines may be taken, without sensible error, as having the pro-

portion of equality. Let the angle of descent ghi be . Then

hi, the increase of range now in question, is gi cot ; but gi (as

the angle gai is so very small) is rut. Therefore (for firing due

E. at the equator) hi= rut cot 8. For azimuth z, we must take,

as is evident, r sin z, instead of r ; and for latitude X, we must

take, as we know, o> cos X, instead of w. Hence for any latitude

and azimuth, this alteration of range, hi, = rwt sin z cos X cot c ;

in which r may be regarded without any sensible proportional

error as being ah, the actual range. As with this demonstration,

so with the diagram Fig. 9, it is only very approximately correct.

The trajectory afh would not rigorously coincide with the

supposed one afg, as far as it goes ; the former would not be a

simple prolongation of the latter, though exceedingly near

thereto.

NOTE C, from p. 40. The following proof of this (for a

vacuum) by Mr. R. A. Proctor, appeared some years ago in the

London English Mechanic.

First take the case of a projectile discharged vertically at the

equator. Let aped, Fig. 10, be the surface of the earth, whose

w

curvature and eastward translation must now be recognized.

The lines drawn perpendicular thereto at a, e, and d meet at the
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centre, (7, of the earth. Let a be the position of the point of

discharge at the instant of discharge ;
cibe the orbit described by

the projectile about the centre, (7, of the earth
; bp its greatest

height above the surface of the ground ; the orbit is an ellipse

differing insensibly from a parabola. Let e be the position of

the point of fall at the instant of fall
;
d the position of the point

of discharge at the same instant, which will be, as we know,
ahead of e. The projectile, having been moving in the backward

prolongation of the line ae with a uniform velocity, describing

equal areas in equal times about C, has received, at or, an

impulse along the radius-vector Ca. If it were quite free it

would move uniformly in its new direction of motion, still

describing areas about (7, per unit of time, equal to the former.

But it is acted on by the force of gravity directed to C
; this,

however, leaves it still describing, about that point, areas the same

as before. Therefore the area a Ceb area aCd, and area abe =
area eCd. That is, from a property of the parabola, %ae x bp

*=
^Rxed; R being earth's radius. But though the difference, ed,

between ae and ad cannot be ignored, it being the very subject

of investigation, yet as it is relatively so exceedingly small, ae

and ad have very nearly the proportion of equality ; so that we

can, with very small error, write ad for ae, in our last equation.

Hence, very approximately, f ad x bp= \R x ed. But as we are at

the equator, ad=ll<t)t; therefore ^R<,)tJi=lR x ed; and ed=i,}t7i.

But, for any other latitude A, we must evidently use w cos A,

instead of w. Hence ed, the westward shift of the point of fall

of the projectile, is -|w cos\th. This, of course, is as true for

the vertical component of the motion of the projectile in any

trajectory as for that in vertical firing ;
which is at once self-

evident if we think of a trajectory whose plane is N. and S. Of

course the sensibly parabolic orbit, with which we have been now

engaged, would not be visible to the observer
;
the path described

relatively to him, and what he would see, for vertical firing,

* The inaccuracy introduced by the curvature of the earth's surface into

this value of the area abe is quite insensible.
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would be like that represented by the dotted curve dfe, whose

height, of course, is equal to bp ; the motion of the projectile

therein being from d by /to e, or westward, while its motion in

the absolute orbit abe is eastward.

D, from p. 43. This may be seen thus : Let a'e'd',

Fig. 11, be the surface of the earth along the equator. The

Fig. 11.

normals, or lines perpendicular thereto, at a', e
1

, and d' meet at

the centre C of the earth. Let the projectile be discharged from

a gun pointing vertically at a', in resisting air. Its absolute

trajectory will not now be sensibly an upright parabola, as in

NOTE C ; but something like a'b'e, whose greatest height is b'p'.

Let d' be the position at which the place of discharge has arrived

at the instant of the fall of the projectile. We are now concerned

only with the vertical component of the resistance of the air,

which is sensibly the same as the whole resistance ; the very
small difference between them has the effect of diminishing very

slightly the westward shift.

Now as the vertical component of the resistance of the air is

directed towards the centre C of the gravitation attraction, it

does not affect the equable description of areas about (7.

Therefore (see NOTE B) the area a'b'e is equal to the area e'Cd' ;

and this is so quite independently of the law of the vertical motion

of the projectile.

Now if the curve a'b'e' were a parabola tilted over a little
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towards the left, its area would be the same as that of an

upright parabola with the same "
base," as we may call it, a'e',

and height b'p' (with, of course, a greater parameter). But

though the curve be not a tilted parabola, it is evident that its

area cannot differ much from that of such a parabola.

However, we can easily ascertain, by mechanical means, that

its area is sensibly |Y x Vp'. Let us take, as the least favour-

able case, the extreme trajectory discussed in the 'first two tables

above, and, selecting a sufficiently large scale, lay down on thick

card-board the line a'e' (the proportional difference between

which and ad' is quite insignificant) to represent 19*7 miles,

which is the linear space described by a point on the equator in

68*3 seconds, the time of flight. Let us draw then a line

parallel to a'e', at the height representing 3-72 miles, and having
laid down the angle b'a'e 47 38', and the angle b'e'a' 32 6' *,

sketch in the curve so as to touch the line just mentioned. On

cutting out the figure a'b'e and weighing the piece of card,

we shall find that its area is sensibly ^a'e'xb'p', or, as in

NOTE B, ^a'd' x b'p', very approximately. Whence, as in same

place, e'd'*=-%wth at the equator, and |wcos\ th at any other

latitude A. This being so with the present extreme height of

ascent of the projectile, 3-72 miles, it will be so, a fortiori, with

smaller heights of ascent, in which the base a'e (very nearly

proportional to t) will have a greater ratio to the height.

The -above, as is evident, applies to the greatest height attained

by a projectile in any trajectory in air, just as well as if it were

discharged vertically.

,
from p. 44. Although the relations among themselves

of the respective elements of ballistic and of parabolic trajectories

are essentially very different, there is a considerable series of

accidental practical exceptions presented to us in Bashforth's

table of trajectories in p. 116 of his work referred to above.

* It is easily seen that these two angles result from the data in the last

line of the table given by Bashforth in the work above mentioned, p. 116.
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With respect to large projectiles, of high specific gravity,

describing extensive trajectories, such as we have in that table,

it so happens that if a ballistic and a parabolic trajectory have

the same t, the respective h's may have quite a small proportional

difference. Of course the distribution of t between the ascent

and the descent would be very different in the two cases. For

the smaller trajectories in that table, the ballistic h is less than

the parabolic, with the same t
; for the larger trajectories, the

ballistic h is greater than the parabolic ; and for a considerable

intermediate series they are almost equal. Therefore, for such

as the , last mentioned, the ballistic h in our formula (4) can be

replaced by ^fg, or 4 2

, nearly, with a very small proportional

error ; and formula (8) for the whole transverse shift, which is

the most interesting deviation of a projectile, will be approxi-

mately correct for such cases, if written

tw (r sin X+ t
2
cos X cos z), .... (9)

which depends only on the easily ascertained elements of the

trajectory, r and t.

We may here observe that, for more ordinary, and comparatively

flattish, trajectories, in middle and higher latitudes, such as that

of London, the 7i-part in formula (8) is much smaller than the

?--part ; and therefore, in such cases, whatever proportional error

is introduced into the westward shift by substituting therein

4tz
for /*, it involves a much smaller proportional error in the

whole transverse deflection.

Taking these two considerations together, we find that even

in the first example in the table in p. 46 above, in which the

Ti- part of the whole deflection is a maximum for that table, the

li itself being, moreover, of unusually great proportional magni-

tude, the error in the whole deflection produced by using the

parabolic h, for 68-3 seconds, would not be more than 1'3, out

of 104-85, yds. : say -^th part.

An interesting apparent paradox is presented by Bashforth's

table of trajectories referred to above, in which the initial

velocity is the same in all cases. It is this that though the
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velocity of the projectile at the end of its flight diminishes at

first, as we pass from a smaller to a greater range, which we
should expect it to do, yet afterwards it does the reverse. That

is, after we have passed the range of about 14,000 yards, the

greater the distance which has been traversed through resisting

air, the greater is the remaining velocity of the projectile at its

fall. After we have been informed of this, we can see for our-

selves how it may be possible. The initial velocity being given,

when the projectile is discharged with a greater elevation,

gravity is diminishing its velocity, during its ascent, more

rapidly ;
and therefore, for this reason, by itself, the average

resistance of the air over the whole trajectory is diminished
;
and

that in a higher ratio than the diminution of the average velocity.

But, further, the lessening of the resistance is promoted by the

circumstance that the middle part of a higher trajectory is

described in rarer air. The whole loss of kinetic energy, and of

v
2

, which has been endured by the projectile when about to fall

(the ground being level), is proportional to the average resistance

multiplied by the length of the curve of the trajectory ; and it is

very conceivable that under certain circumstances the propor-

tional diminution, which we know to exist, of the first factor of

this product might exceed the proportional increase of the second ;

leaving the v
2

,
and therefore the v, of the projectile greater after

its longer flight. This actually obtains, as regards the series of

trajectories now in question, with ranges of 14,000 yards and

upwards.

NOTE F, from p. 41. The following two memoranda, although

outside the immediate subject of this Chapter, are appended here

at the end of it, on account of their great interest. 6 is the

angle of elevation of discharge.

(1) In the case of a vacuum and a parabolic trajectory, we
could substitute for r, in (7), its value in terms of h. viz.

4 7i/tan 6
;
thus obtaining, for the whole alteration of range from

the rotation of the earth,
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This shows that, for a vacuum in any latitude and with any
azimuth of discharge, there would be no alteration of range if

tan 0=^3; that is, if = 60. If the direction of firing has

any easting in it, sin z will be positive ;
and if be less than 60,

the range will be increased
;
but if be greater than 60, the

range will be diminished by the rotation of the earth
;
and vice

versa, when the direction of firing has any westing in it. This

has been pointed out already, as regards firing due E. or "W., by
Professor Price

;
but we see that it holds equally for all azimuths

of projection.

(2) In the case of a vacuum and a parabolic trajectory, we
could substitute for h, in (8), its value in terms of r, viz.

%r tan thus obtaining, for the whole deflection from the

rotation of the earth,

trw cos X (tan X+ 3 tan 6 cos z).

Hence there would be no deflection if tan 6 cos z and 3 tan X

were equal and of opposite signs. For firing due N., cos z is

1. Therefore, for firing K". in a vacuum, there would be no

deflection if tan = 3 tan X ; as pointed out already by Professor

Price. For N. firing there is, as we know, no alteration of

range ; therefore, in this case, there would be no shift whatever

of the point of fall of the projectile from the rotation of the

earth.
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CHAPTER IV.

FOUCAULT'S PENDULUM.

THIS subject, like the last preceding one, though belonging to

Chapter II., will be better discussed in a place by itself.

The idea of employing a pendulum, in the manner now to be

considered, for the purpose of proving the rotation of the earth,

was first proposed and carried out into practice by Foucault in

1851. The pendulum so used has, therefore, come to be called

by his name. It consists simply of a heavy bob hanging by a

single cord or wire, and free to swing in any direction. If it be

set oscillating in a plane, there is nothing to make that plane

partake of the earth's component rotation V (see last Chapter)

about the vertical line at the locality. As the horizontal surface

beneath the pendulum, on which the direction of oscillation is

marked, is turning round in its own (instantaneous) plane,

counter-watch-wise, with the angular velocity o> sin X, the plane

of oscillation is left behind and will seem to the observer, who

is unconscious of his own motion along with the earth, to have

a rotation, with that rate, in the opposite direction, or that of

the motion of a watch lying face upwards on the table.

We may here note that a reader must be sometimes puzzled

by a statement which is often inconsiderately made without any

qualification, though nothing wrong be really intended by it.

He will find it stated that the Pendulum oscillates always
11 in the same plane" (italics not ours), and that the plane of

oscillation " remains always parallel to itself," and that it "always
retains its own direction," and that it

"
is fixed," and that it

" has fixity of position," &c. This is so only in the respect just
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mentioned, viz. that it does not partake of the earth's component

rotation V, nor turn at all about the vertical line as axis. But

the plane of oscillation participates, after its own fashion, in the

earth's component rotationM about the horizontal meridional line

at the place of observation. "When that plane is in the meridian,

or N. and S., it turns about said line, as axis, with the angular

velocity w cos X; when it is at right angles to the meridian, or E.

and W., it does not turn about that line at all
;
at that time it

really does, though for a very short period,
" retain its own direc-

tion." In general, if z be its azimuth or inclination to the plane

of the meridian, its rate of turning about the horizontal N. and S.

line is w cos X cos z
;
the angle z always varying and increasing

with the time. It is then inconvenient and, for learners, mis-

leading to speak without reservation of the plane of oscillation as

"
remaining always parallel to itself," when it has, in reality, the

peculiar varying angular movement just described. However,
we are free, now, to disregard this movement, as it does not

sensibly affect the present question.

Foucault communicated an account of his Pendulum to the

French Academy on February 3, 1851, which appears in the

Comptes Rendus for that date. A description of it taken from

his own paper will be found also in Phil. Mag. 1851, first half,

p. 575, and in Edinb. New Phil. Journ. vol. li. 1851, p. 101.

Though the main principle of this Pendulum, as propounded

by Foucault and stated above, is simple enough and to be called

a kinematical one, the complete theory of it, even for a vacuum,

presents an exceedingly difficult dynamical problem, one indeed

apparently incapable of complete solution. This problem has

been investigated by many able mathematicians, from 1851

downwards
; perhaps the latest paper on the subject is that by

M. De Sparre,
" Sur le Pendule de Foucault" presented to the

French Academy and reported on in the Comptes Rendus, April 13,

1891.

The causes of disturbance in the desired performance of this
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Pendulum are of several quite different kinds, which, however,

cannot be kept altogether separate, on account of their interaction.

The first kind is connected with the setting-up of the instru-

ment. It is obvious that there should be the greatest practicable

equality of freedom in all directions at the point of suspension,

whether the Pendulum be supported by a cord, or wire, yielding

by its flexibility or its elasticity ;
or whether it be by a fine

point, say of steel, resting on a very hard smooth surface, say

of agate. Deficiency of accuracy in this respect will be of less

importance, the greater the length of the Pendulum.

There should be of course very great steadiness and rigidity

in the supporting structure
;

unless this have perfectly equal

elasticity in all horizontal directions, a condition not to be easily

attained. If the Pendulum be heavy, which for certain reasons

it ought to be, and if it be suspended from a beam there will be

some small elastic yielding in the transverse, with almost none

in the longitudinal direction of the beam. In order to obtain

great length in the Pendulum, which is desirable for certain

reasons, it has been hung in church-towers, sometimes surmounted

by spires. But the elastic swaying of such structures at a con-

siderable height from the ground under the varying pressure of

a moderate wind is very appreciable, and in some cases might

quite annul the advantage derivable from the great length of

the Pendulum. That the instrument should be safe from the

direct interference of the movements of the air, it should, as a

general rule, be confined in a draught-proof case. The dis-

turbances referred to, so far, may be almost quite avoided by the

exercise of very great care and accuracy.

The second kind of disturbance is inherent in the very nature

of the Pendulum itself. Suppose it to be set swinging on a

non-rotating earth
;

if the oscillations were exactly in a plane

they would, of course, remain so, and the plane would remain

stationary. But if they were not in a plane, the bob would

describe, in a vacuum, what may be called an ellipse, whose axis-

major would continually rotate in the same direction as that in
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which the bob was describiog the curve. If I be the length of the

pendulum and a and b the semi-axis major and minor of the ellipse,

both relatively very small, then on a non-rotating earth and in a

vacuum, a would accomplish a complete rotation in the time of a

whole vibration, or two complete swings of the pendulum (that is

~l 8 Z
2

-
sees.) multiplied by n -^ very nearly. That is to say,

the angular movement of the axis-major in one second would be,

in circular measure, ^ *1g j^~ very nearly. See articles in Phil.
O I 12

Mag. 1851, second half, and Williamson and Tarleton's Dynamics,

p. 214 (see also NOTE A). This result is only approximate,

though very closely so, for great enough Z, or small enough ab.

It would obtain also on the rotating earth, though of course in

combination with the effects of the rotation.

In order to keep this disturbance as small as may be, Z should

be as great and the product ab as small as possible without

practical disadvantage. If it were practicable to keep b at zero,

that would, of course, be sufficient to keep the above expression

for this angular movement so, likewise
;
but we shall find that

this is not practicable, though it can be approached to pretty

nearly.

There is another unavoidable source of interference with the

desired performance of this Pendulum
;
which is that, as we have

seen, it is affected, though very slightly, by the earth's component

rotation M about the horizontal meridional line at the place of

observation, and that, therefore, its behaviour is not altogether

independent of the azimuth of its mean plane of oscillation. It

may be that certain variations in the rate of rotation of that plane,

as described by some experimenters, have been, to some extent,

due to this circumstance. Let us note the following for the sake of

illustration
; though it is sensibly quite unimportant. The rate

of that angular movement (in a vacuum) of the line of apses

mentioned above is, as we have seen, proportional to \/<7

cceteris jparibus ; y being the whole downward acceleration, in-
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eluding that of the centrifugal force from the rotation of the

instrument connected with M. But we have seen that when

the Pendulum is swinging N. and S. the downward centrifugal

force is a maximum, and when the Pendulum is swinging E. and

W. that force is zero. Therefore, if this effect could exist by

itself, the line of apses would move very slightly faster when

near N. and S. than when near E. and "W. As another illustra-

tion, we may observe that the behaviour of this Pendulum is not

entirely independent of the azimuth of oscillation with which

it is started. We shall meet with still another illustration

further on.

The gyrostat, when used to prove the rotation of the earth,

is quite free from such complications as those now referred to.

The third kind of interference with the desired performance

of this Pendulum is that arising from the resistance of the air.

For very small velocities, this resistance would be directly pro-

portional to the velocity, very nearly ; if there were not anything

to prevent this. But there is something to prevent this
;
for as

the amplitude of swing must be kept small and the axis-minor

of the ellipse exceedingly small, the Pendulum is always moving

in air which has been already disturbed by itself. If it were

moving in a wide enough ellipse to avoid this, the resistance of

the air, if acting by itself, would cause a retrograde movement

of the apses of the ellipse ;
but in the case of a quite small axis-

minor this would be lessened by the movement of the air following

in the wake of the bob. There is then reason for believing that,

in this case, this effect of the resisting air is unimportant. See

NOTE B. But there is another which, though it is indirect, is of

much more consequence. While the axis-minor is small, but

appreciable, the stream of air following in the wake of the bob

in one swing will not act centrically and directly against the bob

in its return
;
but it is evidently always tending to turn it away

from the axis-major ;
this is strongest while the bob is descending

towards the axis-minor, and the effect is to increase the axis-

minor. This tendency must grow with the growth of its own
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result, until the ellipse becomes wide enough for the cause to cease.

This is, no doubt, one reason why the axis-minor (unless it be

exceedingly small) grows larger, at first absolutely, and then

relatively, during the continuance of an experiment with this

Pendulum.

It would therefore be impossible to calculate the effect of the

resistance of the air on the behaviour of the instrument, as the

precise conditions of it are unknown and altering continuously

with the lapse of time.

To diminish as much as possible the relative importance of the

air, the bob must be, of course, as large as convenient and of

high density. It should also be very homogeneous and carefully

turned in a lathe and suspended accurately in its axis of figure.

We have seen that, besides the precautions necessary in the

making and mounting of the Pendulum, there is the very impor-

tant one of starting it properly, so as to have as small an axis-

minor of its path as possible. For this purpose the plan has

been generally followed of starting the Pendulum by drawing it

to one side by a thread attached to a stationary object, and when

the Pendulum has come to rest of severing the thread by burning

it. But, on account of the rotation of the earth, the centre of

the bob will in this case pass to the right of the point of rest in

northern latitudes. The plan has therefore been adopted of

projecting it from the point of rest with the view of making it

swing to and fro through that point. But supposing that it did

this at first, it would describe, relatively to the table beneath ifc

and to the accompanying air, a series of loops all described in

the same direction (and therefore not "
figures-of-8," as sometimes

called), and the tangential resistance of the air near the outer

ends of the loops, although excessively small, would, by con-

tinued action in the same direction and by accumulation of effects,

cause the axis of the bob to pass to the right of the central point

of rest. If the linear amplitude of oscillation were too large,

this might well have a quite sensible effect.

It is therefore all important, in experiments with this instru-
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ment, to use as small an amplitude of oscillation as practicable ;

in order to diminish, as much as possible, three quite different

causes of disturbance noted above. This was not sufficiently

attended to at first.

It should be remembered that any roughish experiments with

Foucault's Pendulum are necessarily quite delusive. In conse-

quence of insufficient guarding against the causes of disturbance,

it has happened, even with some experiments considered worthy
of being described in a scientific journal, that the line of apses

has actually gone the wrong way ! This has, not unnaturally,

given occasion to certain persons, including the famous "Parallax"

to ridicule the principle of this Pendulum altogether.

The later experiments of Mr. Thomas Gr. Bunt, of Bristol,

described by himself in different papers in the Phil. Mag. for

1851 and 1852, were carried out with unusual care to minimise

the causes of disturbance, and they were, for that reason, specially

successful. He started with a linear amplitude of swing of only

one inch on each side of the point of rest. He mentions that

(the axis-minor of the ellipse described being always kept very

small) all his Pendulums had two nodal lines nearly at right

angles to each other, at which the direction of revolution of the

bob in the ellipse changed to the opposite. This affords another

illustration of the fact that this Pendulum is not altogether

indifferent to the azimuth of its mean plane of oscillation.

An interesting table of results obtained by various experi-

menters with Foucault's Pendulum will be found in pp. 44, 45

of Kev. Dr. Haughton's Manual of Astronomy.

NOTE A, from p. 63. That the axis-major of the ellipse must

rotate (in a vacuum) in the direction in which the Pendulum

describes the curve can be seen quite easily without analysis.

The force directed to the point of rest, under which the Pendulum

is oscillating, is accurately g sin
;
d being the angular distance

from the point of rest. Therefore when is very small, the
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Pendulum is moving under a central force which is very nearly

indeed directly proportional to the linear distance
;

it therefore

describes very nearly a fixed " central ellipse." But, from the

exigencies of the experiment, 6 cannot be allowed to be exceed-

ingly small
;
and therefore the force, which is proportional to

sin 0, varies, as is evident, more slowly than the distance, whether

linear or angular, from the point of rest; and the deficiency in

the central force, owing to this, which is at first excessively

small, increases with the distance from the point of rest and at

a much higher ratio. This causes a progressive motion of each

end of the axis-major ;
because in the neighbourhood of the apse,

where the deficiency is greatest, the central force takes longer to

stop the rising of the bob from the centre of force and to pull it

round the apse than it would do if it were accurately proportional

to the distance
;
the bob will not attain its apse, and begin to

turn back again, until it has passed the position of the last

preceding corresponding apse. For a corresponding contrary

reason, the said deficiency in the central force, as occurring near

the ends of the axis-minor, would tend to produce a retrograde

motion of each of those points. But the former tendency is

greater than the latter
;
since the said deficiency is greater at

the ends of the axis-major than at those of the axis-minor, in a

much higher proportion than the distances from the centre of the

ellipse. The importance of this consideration is enormously

enhanced by the fact that the axis-minor must be always kept

very small. The whole result is consequently a progressive

rotation of the ellipse.

NOTE B, from p. 64. That the resistance of the still air, if it

could act separately, would cause an angular movement of the

axis-major in the direction contrary to that in which the bob

describes the ellipse, can be seen in a similar manner. See

Fig. 12, in which the axis-minor is, for clearness, made greatly

too large in proportion. Whilst the bob is going from D to A,

the resistance of the air, which is tangential to the curve, tends

F2
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to make A regress ;
because it causes the bob of the pendulum

to cease rising from E, and begin to turn downwards, sooner than

it would do without that resistance
;
that is before it has reached

the last preceding position of A. But whilst the bob is going
from A to B, the tangential resistance tends, in a corresponding

manner, to make B progress. The former effect, however, exceeds

the latter
;
because whilst the bob is rising from D to A its

velocity and the consequent resistance of the air are at their

maximum at first ;
but whilst the bob is going from A to B the

velocity and the resistance only reach their maximum at last.

The whole result will be that the "
ellipse

" would rotate retro-

gressively if the resistance of the still air were the only disturber

of the elliptic motion. This is corroborated by the experiments

of Mr. Alexander Gerard. However, if the ellipse be narrow

enough, the last-mentioned effect will evidently be increased by
the resistance of the wake-stream

;
so that the whole effect may

be quite small.



CHAPTER V.

ON THE POSITION OF THE DYNAMICAL HIGH TIDE

RELATIVELY TO THE CELESTIAL TIDE-PRODUCING BODY.

As is often done for simplicity, we shall consider only the tides

that would be produced in a canal of uniform depth and of uni-

form width running right round the earth's equator and

returning into itself
;
and we shall suppose the tide-producing

heavenly body to be always in the plane of the equator. We
shall, moreover, confine our attention, at first, to the tides

caused by the moon.

We need not do more than remind the reader that the lunar

tidal forces are directed as the outer broken-line arrows in Figs.

15 and 16, the moon being away to the right, and that they

consist only of the differential attraction of the moon on the

water of the ocean, or the difference, both as to magnitude and

direction, between her attraction at the centre of the earth and

at the various parts of the superficial ocean. The tangential

tidal force at a point on the earth's surface having the angular

distance from the moon is f^ sin 20y ; and the radial force

at that point is f "03 (cos 20 -|- 3)7 ; r being the earth's radius,

M the moon's mass, R the moon's distance from the earth, and

y the unit of gravitation. These forces are, then, inversely pro-

portional to R3
. The differential tidal force is at its maximum

directly under the moon, where it is all radial, and where it is

only about l/29th of the moon's whole attraction at the distance
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of the earth, or about l/8,400,000th of g, or the earth's attrac-

tion at its surface. If the earth always kept the same side

turned towards the moon, the lunar tidal forces would, of

course, produce one tidal protuberance in the water on the side

of the earth next the moon, and another on the opposite side.

The protuberances would be stationary on the earth, and the

discussion of their magnitude &c. would be one of hydrostatics

only ; they are therefore called statical tides, or equilibrium

tides.

But as the earth rotates under the moon, the actual case in

our equatorial canal would be very different. The two tidal

protuberances and intervening depressions, in order to keep up
with the moon, would have to sweep right round the canal in

the mean period of 24 hours 50-5 minutes, at the
1

rate of 1003-5

miles per hour. This they would do, not after the manner of a

tremendous torrent moving bodily along with that enormous

velocity, but in the style of a smooth ground-swell in the sea,

whose gentle wave-forms may be travelling onwards with a con-

siderable speed, although the individual particles of the water

are only moving backwards and forwards, for short distances,

with quite small velocities. This is the manner in which the

actual tides in our oceans really do travel. We are therefore

concerned with a dynamical question, and have to do, not with
<;

statical," but with "
dynamical," tides. The present subject

is one on which it is very easy to go wrong ;
it contains several

instances of what any person insufficiently acquainted with it

would naturally regard, at first sight, as apparent paradox.

Let us begin by noting briefly the way in which the water

moves in a travelling wave, or water-undulation. Anyone can

observe this for himself when watching sufficient wind-waves on

the sea
; although such surface undulations differ importantly in

certain respects from tidal ones, whose disturbances extend to

the bottom of the ocean. See Fig. 13, which represents two

waves moving towards the right. The upper dotted arrows
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show the directions of the movement of the various parts of the

water. The lower arrows the directions of the gravitation forces

due to the disturbance of level. On the crest of the wave the

water is moving horizontally forwards with the greatest velocity;

at the bottom of the trough the water is moving horizontally

backwards with the greatest velocity. At the points of mean

Fig. 13.

level, halfway up the slopes of the wave-ridge, the water is

moving neither forwards nor backwards, but on the front slope,

vertically upwards ; while proceeding to form the upper part of

the ridge by addition in front
;
and on the hinder slope, verti-

cally downwards ;
while withdrawing from the hinder part of

the wave-ridge. In a wind-wave each particle of water moves

in a fore-and-aft vertical circle
;
in a tide-wave in a very elon-

gated ellipse with minor axis vertical ; this axis diminishing as

we descend, until it vanishes at the bottom. The progress of

the wave form is produced by continual addition of water in

front, and subtraction of water behind. It is very easily seen

that the velocity of the wave-form, though so entirely different

from that of the particles of the water, will be proportional,

cceteris paribus, to the latter
; and also that for a given velocity

of the wave-form, its magnitude will increase or diminish in the

same proportion as the velocity of the particles of water.

Such a wave, having been started by some cause, would, on

the cessation of that cause, continue to move onwards of itself,

at its own proper rate, in consequence of the forces occasioned

by the disturbance of level. There would be the unbalanced

weight of the part of the wave projecting above mean level, and

the unbalanced deficiency of weight in the part below mean

level resulting in an upward pressure in that part, Fig. 13. Ifc

is evident that the said pressure and deficiency of pressure is
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proportional to the volume of water above, and deficiency thereof

below mean level
;

that is to say (the oscillations being rela-

tively small), proportional to the greatest heights and depressions

of the .water. The forces are then always proportional to the

distance from the position of rest ; as in the case of a common

pendulum oscillating with a relatively small linear amplitude ;

and the oscillations are therefore isochronous, or performed in

equal times, whatever be their magnitude; if this be always

relatively small. Of course the forces will be, cceteris paribus,

proportional to
</,

the intensity of gravitation. If the defor-

mation were so produced that the prominences and depressions,

when left to themselves, would have no horizontal motion, the

wave-forms (though not all the water) would simply oscillate up
and down, constituting stationary waves. But if started to

move in either direction, they would continue to move, of them-

selves, in that direction, at their own rate, until their motion

was destroyed by friction.

The above-mentioned unbalanced weight and deficiency of

weight in different parts of the wave, acts in a two-fold manner.

While the weight of the prominences tends to depress them, and,

by hydrostatic pressure, to force outwards the water of the in-

tervening parts below the mean level, the tangential component
of gravitation on the more superficial parts of the water on the

wave-slopes is part of the whole motive force. The radial (or

vertical) forces, whether downward or upward, and the tangen-

tial forces resulting from gravity conspire with each other in

causing the movement of the water of a free wave ;
and there-

fore the whole effect is the same in general character (which is

all that now concerns us) as though the gravitation forces were

entirely tangential.

This is true of the lunar tidal forces also; the radial and the

tangential conspire with each other in their constant effort to

lower the water at 90 away from the moon, and to raise it

under, and on the off side from, the moon
;
their whole general

effect is the same as if they were entirely tangential. This con-
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sideration is strengthened by the fact that the tidal effect of the

lunar radial (or vertical) forces is quite insignificant as -com-

pared with that of the tangential ones.

Therefore, considering what our present object is, we may, if

convenient, treat both the gravitation forces and the lunar tidal

forces as though they were wholly tangential; and it will be

very convenient to do so presently.

The two tidal waves with which we have to do constitute

what we shall call an ellipse, it being nearly such
;

as repre-

sented by the ellipse in Pig. 14, which is Pig. 13 adapted to our

Pig. 14.

present purpose. They are supposed, in the diagram, to be

moving, or revolving, relatively to the body of the earth

(represented by the shaded circle), in the direction of the hands

of a watch. The dotted arrows outside the ellipse represent the

horizontal movements of the water itself; in accordance with

what we have described above as the movements of the water in

a wave. The arrows within the ellipse represent the positions

and directions of the tangential and radial gravitation forces.

The tangential forces are acting throughout one half of their

reach, or extent, concurrently with, and through the other half

against, the motions of the water which would be produced by
them in a free wave

;
as with all ordinary oscillations, for

instance those of a common pendulum.

Now it so happens that the general scheme of the lunar diffe-
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rential forces all round the earth, as regards their positions and

directions relatively to each other, is similar to that of the

above-mentioned gravitation forces ; so similar that if the moon
be supposed to be opposite a side of the tidal ellipse, the.

members of the two sets of forces will, with a trifling exception,

mentioned below, respectively agree in direction and act

together. The gravitation forces of the tidally-deformed water,

shown by the inner arrows in Fig. 14, produce, as we have seen,

the motions of the water shown by the outer dotted arrows in

that diagram. It is evident, then, that the lunar tangential

forces, whose scheme is similar, if they could act by themselves,

without calling into being the gravitation forces, would produce,

under the condition of the rotation of the earth beneath the

moon, a similar system of movements of the water, whose direc-

tions would be represented by the said outer arrows in that

diagram, arid whose relations would be very nearly those of the

different parts of a great ocean wave whose length was equal to

a semi-circumference of the earth.

Thus the actual tidal waves move under the influence of a

scheme of lunar forces, acting along with a generally similar

scheme of gravitation forces, which they themselves have

occasioned. (In the present chapter we are quite unconcerned

with -the trifling differences of detail which exist between the

lunar and the gravitation forces. The only one worthy of

mention is that whilst the very slightly operative lunar radial

(or vertical) force vanishes at 54 44' from the moon, the

gravitational radial disturbing force vanishes at the mean level

of the water, which, without friction, would be 45 from the

moon, very nearly, and, with friction, differently situated, as

will be seen from pages 8 1 and 82 below.)

One considerable difficulty in understanding the production of

the dynamical tides arises from the coexistence and cooperation

or antagonism, as it may be, of these two systems of forces.

Let us note now that if v be the velocity with which a

free, frictionless undulation of the water, reaching to the bottom
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and of very great length relatively to the depth of the water,

would travel, of its own accord, v= \l dg ;
d being the depth of

the water and g gravity. In order that such undulation should

so travel with the mean velocity necessary for its keeping up

with the moon, at the equator, viz. : 1003-5 miles per hour, the

depth of the water (=v*/y} should be 12'76 miles. As there are

two complete tides in every lunar day of about 24 hours

50 minutes the mean period of a single tide is 12 hours

25 minutes, very nearly. If the depth of the water were less

than that just mentioned, a free tidal wave could not keep up,

of itself, with the moon
; and its period of oscillation would be

greater than 12 hours 25 minutes ; if it keeps up with the moon,

as it would have to do, it must be as a " forced wave," forced by
lunar tidal action. But if the depth were greater than the

depth just mentioned, the period of a free tidal oscillation would

be less than that of the forced lunar tidal wave
;

if it keeps pace

with the moon, as it would have to do, it must be again as a

forced wave, but one whose velocity is restrained by the lunar

tidal action. The depth now in question we shall call the

enticed depth. (That is for the equatorial canal. If the canal

ran along the parallel of latitude A, the velocity necessary for

keeping up with the rnoon would be 1003-5 cos A miles per hour ;

and the critical depth would be 12-76 cos
2
A miles.)

What then will be the position of the lunar dynamical high

tide, relatively to the moon ?

This is really a manifold question, which requires four diffe-

rent answers, according as the water is supposed to be with, or

without, viscosity, or friction; and as the depth of the water

(always uniform) is supposed to be less, or greater, than the

critical magnitude just mentioned. We shall consider after-

wards the case when it is of that magnitude.

First, then, let us suppose that there is no friction, or viscosity,

in the undulating water.

A 1. Let the depth of the frictiouless water be less than 12'76
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miles, the critical depth, so that a free tidal wave would oscil-

late more slowly, that is, with a greater period, than the forced

tidal wave. In this case low water of the dynamical tide will

be under the moon
;
that is, high water (which for the statical

tide would be under the moon) will be 90 behind, or east of,

the moon.

A 2. But let the depth of the frictionless water be greater

than 12'76 miles, the critical depth, so that the free tidal wave

would oscillate more rapidly, that is with a shorter period, than

the forced lunar tidal wave, then high water of the dynamical
tide will be under the moon ; that is, it will occupy the same

position, relatively to the moon, as high water of the statical

tide.

Both these cases are comprehended in Airy's general mathe-

matical expression for the height of the water of the frictionless

dynamical tide in an equatorial canal, at a given angular distance

from the moon. (See NOTE A.)

Airy proposes the following interesting illustration of this :

If there were two equatorial canals, such as the above, side by

side, to all appearance similar, one, however, being less and the

other more, deep than the critical depth, then, with frictionless

dynamical tides, high water in one canal and low water in the

other would run abreast. (See NOTE B.)

We can, for ourselves, put the explanation of this into the

following simple form, which will be found to be quite sufficient;

although it does not go into any details of the movements of the

water.

[N.B. We shall sometimes, for brevity, speak of water which is

of less than the critical depth as " shallow
"
water, and of that

which is of greater, as "
deep

"
water.]

Let us begin with considering a simple example which illus-

trates the general principles involved.

A pendulum is hanging at rest
;

it would have its own proper

period of vibration under the influence of gravity. Now suppose
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it to be acted upon by a system of small reciprocating impulses

which have a different period, and whose magnitude is inde-

pendent of the amplitude of the vibrations and constant, the

forces of the impulses varying between zero and maximum accor-

ding to their own law, and symmetrically on each side of the

point of rest of the pendulum. The amplitude of the vibrations

will increase by accumulation, and the tangential gravitation

forces called into being by the excursions of the pendulum from

the position of rest, and proportional thereto, will also increase.

They will soon become great enough to be able, by the baffling

effect due to their efforts to establish their own vibration period,

to prevent any further increase in the amplitude of the vibrations

under the small external reciprocating impulses, which, as we have

said, remain of constant magnitude. It is evident that the smaller

the difference between the period of the pendulum, if free, and

that of the impulses, the less will be the said baffling effect, and

the greater the final amplitude of vibration. When the amplitude

has arrived at the maximum (equal on both sides of the point

of rest) for the given pendulum and for the given reciprocating

impulses, the final, settled state of things is reached
;
the period

of vibration being that of the impulses. The two systems of

forces will be both symmetrical on each side of the position of

rest of the pendulum, and therefore so with each other.

So must it be with the scheme of gravitation forces created by
the tidal deformation of the surface of the water of the equatorial

canal and the scheme of the lunar tidal forces. They must get

into such a final relative position that their respective axes of

symmetry will coincide ;
and this, of course, involves the coinci-

dence of the axes of the tidal ellipse and those of the scheme of

disturbing lunar forces ; leaving the question still to be settled

in which of the two possible ways the coincidence will occur in

the particular case; whether as in Fig. 15, or in Fig. 16, the

moon being away to the right. Either the longest or the

shortest axis of the tidal ellipse must point directly to the moon.

As before, the shaded circle is the body of the earth, and the
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ellipse the surface of the water, the ellipticity being enormously

exaggerated. The apparent motion of the moon, or that relative

to the surface, is always watch-wise.

Take now the case of a " shallow "-water tide in the equatorial

canal, which would spontaneously oscillate and travel more

slowly than the moon would have it to do. As we have said,

the motive force, causing the spontaneous free oscillations of the

Fig. 15.

water, is the weight of the high-tide prominences and the defici-

ency of weight of the intervening low-tide depressions. Now it

is evident that the tidal wave has to travel at the moon's rate
;

however this be brought about. In order that the " shallow "-

water tide may oscillate and travel quickly enough for this, it

must become so situated relatively to the moon that its own

just-mentioned motive forces shall have the moon's tidal forces

helping them
; and it is evident that this will be so when the

middle of a side of the tidal ellipse is, at least, nearly opposite to

the moon. That is to say, low water must be, at least, nearly

under the moon
; and from what we have seen above, if it be

nearly so, it must be directly so, as in Eig. 15 ;
and this of

course applies equally to all depths of water less than the critical

depth.

Take now the case of a "
deep ''-water tide, which would, if
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free, oscillate and travel more quickly than the moon would have

it to do. It must travel at the moon's rate ; however this be

brought about. In order that it may move slowly enough to

keep pace with the moon, it must get into such a position re-

latively to the moon that its own motive forces shall have the

moon's tidal forces opposing and restraining them
; and of course

this will be so when the end of the tidal ellipse is, at least,

nearly opposite to the moon. In other words, high water must

be, at least, nearly under the moon, and therefore directly so, as

in Fig. 16, and this manifestly applies equally to all depths of

water greater than the critical depth. (See NOTE C.)

Fig. 16.

Thus the summit of a "
deep "-water dynamical tide would

occupy the same position, relatively to the moon, as that of a

statical tide. But the magnitudes of the tides would be

generally different. If the water were not too much deeper than

the critical depth, the dynamical tide would be the greater ;
but

if the water were deep enough, the statical tide would be

greater; and of course for a certain intermediate depth they
would be equal.

"We may here note the following : If two canals of uniform

width and depth ran side by side, along two parallels of latitude

not too close together, each returning into itself, and if they
were both of the critical depth corresponding to the mean lati-

tude A, which depth would be, as we have seen, 12-76 cos
2X
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miles, then high water of one canal and low water of the other

would run abreast; since the more northerly canal would be

deeper, and the more southerly shallower, than its own critical

depth.

Perhaps it might be thought that if the water, as under the

present supposition, were absolutely frictionless, there would be

nothing to prevent the protuberances of a statical tide sweeping

round the earth bodily, in the manner of a solid mass, at the

angular rate of the moon, with their summits always under, and

on the off side from, the moon. It is quite true that such a tide

of the proper magnitude formed and set going by some other

agency to so travel with perfect accuracy, would be kept up by
the moon, and would preserve its position relatively to the moon*

But the moon itself could not so start such a tide
;
because the

varied action of the moon, on the different parts of the hitherto

undisturbed water on the rotating earth, wrould produce therein,

at once, a system of varied movements agreeing very nearly with

that of a free wave-motion (see p. 74); thus creating imme-

diately a dynamical tide.

Now let us recognize the friction, or viscosity, of the undula-

ting water.

B 1. When the depth of the water is less than the critical

depth (so that a free, frictionless, tidal wave would move more

slowly than the moon would have it do), the effect of the

addition of friction, paradoxical as it might seem at first sight,

is to make high water to be before the place, relatively to the

moon, that it would occupy without friction
;
that is to say, high

tide would be somewhat less than 90 behind, or east of, the

moon; and it would occur sooner in time than it would for

frictionless water.

B 2. On the contrary, if the depth of the water were greater

than the critical depth (so that a free, frictionless, tidal wave

would move more quickly than the moon would have it to do),

the effect of added friction would be to make the point of high
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water to be behind the place, relatively to the moon, that it

would occupy without friction ; that is, it would be a little dis-

tance behind the moon, instead of being directly under her, as

it would be without friction, and it would come later in time

than for frictionless water.

The analytical proof of these two statements will be found in

pp. 331* and 332* of Airy's Art. referred to in NOTE A.

Though he omits, in that place, to state B 2 for us, he enables

us to do this for ourselves. We may observe that all four state-

ments Al, A2, Bl, and B2 will be found in Prof. George H.

Darwin's Art. " Tides
"

in the last edition of the Encyclopedia
Britannica.

The geometrical proof of Bl and B2 is quite simple. r For it

we must now turn to the consideration of the movements of the

different parts of the water of the tidal wave
;
for it is on this

that friction depends.

First we take case Bl, availing ourselves of the mode of proof

given by Rev. T. K. Abbott, Fellow of Trinity College, Dublin.

Fig. 17.

*to Moon -

A

Suppose that we are standing on the ground beside the canal at

a, Fig. 17 ;
the body of the earth rotating under the moon

counter-watch-wise ; as we are carried on towards the point

under the moon, the velocity of the tidal current indicated by

the dotted arrow is increasing under the continued action of the

lunar tangential force indicated by the broken-line arrow ; and

therefore the frictional resistance due to the current is increasing

o



82 ON THE POSITION OP THE DYNAMICAL HIGH TIDE

in the opposite direction
;
in addition to this, the tangential

lunar disturbing force, which has been, and is, giving the water

its increasing velocity, is itself diminishing. The friction-resis-

tance will therefore become equal to the oppositely directed lunar

tangential force, somewhat before this force becomes zero
; that

is, at a point short of that under the moon. At that point, then,

the whole tangential force passes through zero, and changes its

direction, and begins to pull the water backwards against that

behind it ;
thus causing it to cease falling sooner than it would

do without friction, and at a point ahead of tbat under the moon.

And, for a similar reason, high water will occur at a point short

of, i.e. ahead of, 90 behind the moon. Thus, as in Fig. 17, the

axis-minor of the tidal ellipse will not point to the moon. This

acceleration of the phases of the tide is evidently at the expense

of some of the magnitude of the tide. The tide ceases to fall

before it has reached what would be its lowest point without

friction.

In case E2, as we can easily see for ourselves, the contrary

takes place ;
because the directions of the tidal currents, both

under the moon and 90 away, are the opposite of what they

are in case Al. Suppose that we are standing on the ground
beside the canal at b, Tig. 18, which has not yet reached the point

Fig. 18.

toMoon

under the moon. As we are carried by the rotation of the

earth near to that point, the lunar tangential force is slowing

the current ; and the friction-resistance, now near its maximum,

conspires with it in so doing. "When we have reached the point
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under the moon the lunar tangential force has vanished ; but

the current, of course, continues, and the friction continues

slowing it, and though the lunar tangential force begins, at that

point, to act in the opposite direction, and against friction, it

will not become equal to it (and then greater than it) until we
have been carried by the rotation of the earth more or less behind

the moon, as in Pig. 18. Therefore the greatest slowing is at a

point behind that under the moon
;
and there high water will

occur. And, for a similar reason, low water will be similarly

retarded
; and, as in Fig. 18, the axis-major of the tidal ellipse

will not point to the moon.

Or thus : Friction, in the case of a " shallow "-water tide,

prevents the full formation of the hinder parts of each tidal

prominence, and of each tidal depression ;
thus making the high-

est and lowest points of the water to be ahead of the places they

would occupy without friction ; but this, as is evident, is at the

sacrifice of some of their height and depression, respectively.

On the other hand, in a "
deep "-water tide, the friction pre-

vents the full formation of ihe front part of the tidal prominence
and of the depression, with, of course, a contrary result ; and

again at the sacrifice of some of the height and depression of the

tidal wave.

It is evident that the forward, or backward, shift of the posi-

tion of low, and of high, water will be greater, cceteris paribus,

for a greater coefficient of friction ; though only up to a certain

limit to be mentioned later on, p. 86. It will also be greater,

cceteris paribus, for a nearer approach to equality between the

periods of free, and of forced, oscillation, or for a nearer approach

of the depth of the water to the critical depth.

But now let us ask, if the frictionless water were just of the

critical depth, what would be the position of high water relatively

to the moon ? The principle appealed to above will help us to

answer this question as well as it can be answered. The moon

would not then be forcing the water to oscillate, and the tidal

G2
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wave to travel, at a rate different from its spontaneous rate

under gravitation ; and therefore the lunar tidal forces would

have to be, on the whole, neither helping nor opposing gravity,

as regards affecting the oscillation-rate of the water. It might,

then, seem that if there were a tidal ellipse, the four points of

half tide, where the water is at the mean level, should be at the

points under and opposite to the moon and 90 before her and

behind her ; that is to say, the high tide, which statically would

be under the moon, -should be at the point of 45 behind, or east

of, the moon. But the case would be a peculiar one. If the

depth of the water were ever so little less than the critical depth,

high water would be 45 behind this said point ;
and if the

depth were ever so little greater than the critical depth high

water would be 45 before that point. Thus, even though it

were mathematically possible, so to speak, that the point of high

tide should remain at 45 behind the moon, it would not be

practically possible ;
because the condition would be one of

instability. But, moreover, even if a tidal wave in water of the

critical depth could be, by some means, formed with its crest 45

behind the moon and started so as to keep up with her, the lunar

tangential force (vastly more important than the radial) would

be, as is evident, continually helping gravity in the front part of

the wave and opposing it equally in the hinder part. The result

would be such confusion as would destroy the wave before long.

We have just seen that it would be impossible for the crest of

the wave to remain at any other point within the first quadrant
behind the moon

;
it must be either 90 away from the moon or

under the moon, with an equal right to both positions. Since

the period of the alternating lunar disturbing forces would be

the same as that of the free oscillation of the water, it is evident

that those oscillations, if they existed, would become infinite, but

for certain conditions of the case which would prevent this.

The above conclusion, drawn from simple geometrical consi-

derations, is in accordance with that which Airy derives from his

equation given in NOTE A, which see. He observes that if i and
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n become equal, that is if d and c, in our simplified form of the

equation, be equal, that is if the water be of the critical depth,

the tide would be theoretically infinite, and the equation fails.

His interpretation of this failure is that the motion of the water

would not be oscillatory in the manner of a wave ;
but that it

would be that of a torrent of unequal depth passing round the

earth so as to follow the apparent motion of the moon.

The introduction of friction would, however, of itself, keep the

height of the tide finite, even though the water were of the

critical depth. Since friction always increases with the velocity

of the oscillating water, which velocity would obviously increase

with the magnitude of the tide always going at the moon's rate,

friction would increase with the latter (see same NOTE) ;
and

therefore the magnitude of the tide with friction could not

increase beyond the reasonable limit at which the general result

of the increasing friction in keeping down the magnitude of the

tide became equal to that of the lunar forces in accumulating, or

piling it up.

It is generally considered that in the actual, relatively very

small, tides of the ocean (away from shores), because of the

smallness of the velocity of the particles of water, the friction is

nearly proportional to the simple velocity of those particles. But

in the present supposed case, in which the tides would be very

much larger, and in which the velocity of the water would be

correspondingly great, the friction would be probably nearly pro-

portional to the square of the velocity ; and as the forces of free

oscillation would be very nearly proportional to the distance of

the summit of the tide from the position of rest, the oscillations,

in this case, would be still very nearly isochronous, for different

amplitudes, and moreover their period very slightly altered (in

accordance with a well-known dynamical principle illustrated by

a pendulum with small amplitude of oscillation, whose period is

sensibly unchanged by the resistance of the air, if this varied as

the square of the velocity). Thus, while the friction would keep

down the magnitude of the tide within reasonable limits, it
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would alter very little the period of the free undulation of the

water
;
and consequently the critical depth of the water with

such friction would be nearly the same as that for water without

friction.

Suppose the depth of the " shallow " water to increase gradu-

ally, the magnitude of the tide will increase faster than the

depth ;
and therefore the velocity of the water will increase, and

so will the friction (see NOTE A) ; and therefore the shift of the

point of high water will increase. But as the friction prevents

the height of the tide, and therefore the velocity of the particles

of water, from becoming indefinitely great, it indirectly prevents

its own self from becoming so ; and therefore the summit of the

tide could never get within a certain distance of the point of 45,
even though the water attained to the critical depth ;

said dis-

tance depending, as we know, on the magnitude of the coefficient

of friction. Similarly, if a "
deep "-water canal shallowed gradu-

ally to the critical depth, the summit of the tide could never get

within the same distance of the point of 45
;
and the limits

between which it would be impossible for the high tide to remain

would be much closer than before.

"We have seen that, in the " shallow "-water tide, acceleration

of the various phases of the tide is, cceteris paribus, greater as

the coefficient of friction is greater. But it will be easily seen,

on consideration, that no amount of friction in a " shallow "-

water tide would be able to make the angular displacement of

high water produced thereby as much as 45. As long as the

water is of less than the critical depth, the moon must be forcing

the tidal wave to travel faster than it would do of itself ; she

must be, oil the whole, working with the gravitation forces to

accelerate the oscillations of the water ; and, as is evident, she

will not be doing this unless the end of the tidal ellipse is more

than 45 behind her. To this we may add that the confusion

mentioned in p. 84 would become important if the crest of the

tide were sufficiently near the point of 45, and would help in

preventing its reaching that point.
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A corresponding statement, mutatis mutandis, is, of course, to

be made respecting a "
deep "-water tide. No amount of friction

would be able to make its high water fall back to 45 behind the

moon. (See NOTE D.)

It is important, for certain reasons which need not now be

mentioned, to note particularly the conclusion from the above

what indeed has been already stated by Prof. G. H. Darwin, ubi

supra, page 375 , viz., that whatever be the depth of the water,

and whether there be, or be not, friction, the crest of that dyna-

mical tide whose position, if it were a statical tide, would be

under the moon, can never be outside the first quadrant behind

the moon ; and that, if there be friction, it must always be within

that quadrant.

It is, perhaps, more important, for reasons which need not be

mentioned, to note particularly that, as we have seen, whatever

the depth of the water, and whether there be or be not friction,

the crest of the dynamical tide can never be at the point of 45

behind the moon.

All the above, of course, applies equally to the solar dynamical

tide in an equatorial canal ; except that for this tide, whose

period is 12 hours, and whose rate of progress would be about

I037'4 miles per hour, the critical depth (=v*/g) would be

greater, viz., about 13'67 miles, and also that a.8,cceteris paribus,

the friction of the smaller solar tide would be evidently less than

that of the lunar in a higher ratio than that of the respective

tidal forces (as well as for another less important reason), the

shift of the points of high and of low water, on account of friction,

would be less than that for the lunar tide.

Airy points out the interesting conclusion that if the depth of

the equatorial canal were between the lunar and the solar critical

depths, that is between 12'76 and 13' 67 miles, and there were

no friction, since high water of the lunar tide would be under

the moon, and low water of the solar tide under the sun, spring

tides would concur with the quadratures, and neap tides with the

syzygies, of moon and sun
;
the reverse of what now obtains.
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To this we may add, for ourselves, the following respecting
the position of high water of spring and of neap tide, when the

actual depth of the Motionless water is between the two critical

depths. High water of spring tides would be always under the

moon, and therefore 90 away from the sun. But the position

of high water of neap tide would depend on circumstances. As

long as the lunar tide was greater than the solar, high water of

neap tide would be under the moon and sun. But if the actual

depth were sufficiently nearer to the solar than to the lunar

critical depth to make the solar tide greater than the lunar, then

high water of neap tide would be 90 behind sun and moon.

NOTE A, from p. 76. Airy's equation for K, the distance from

the mean level of the surface of the frictionless dynamical tide

in a uniformly deep and wide equatorial canal returning into

itself, may be found in his Art. on Tides and Waves in Encycl.

Metrop. vol. v. p. 322 *. It is, after setting aside a certain

term which is relatively quite insignificant,

K=-^
'

^T^cos(^-m^), . . . (A)

H being the moon's tangential tidal force at its maximum (or

<//ll,660,000), which it attains at 45 away from the moon; m
being 2?r divided by the length of the wave, which length, at

the equator, is the semicircumference of the earth; making
2

m = ^ at the equator (B, being the earth's equatorial radius) ;

i is to n inversely as the period of the forced wave (or 12h 25m-5)
to that of the free wave, for the actual depth of the water ; that

is directly as Vc to */d (c being the critical and d the actual

depth) ; and itmx is 20; 6 being the angular distance of the

point in question from the moon. Therefore the above equation

can be written thus, in a form more convenient for our present

purpose, giving the value of K in feet :

K=-0 :

90-^,cos20 (B)
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This expression, like (A), from which it follows, is only ap-

proximate ;
and therefore for certain purposes it would not

be right to give it too great a range of application. But the

following can be derived from it.

Selecting the point under the moon where cos 26 is 1 and a

maximum, which makes K a maximum, whether positive or

negative, if the depth of the water be less than the critical

depth, the denominator is positive, and K is negative; i.e. low

water is under the moon
;
but if the depth be greater than the

critical depth, K will be positive, and high water will be under

the moon. We see also that if the depth be small relatively to the

critical depth (but only on that condition), the height of the tide

varies nearly as the depth ;
that is, in a slightly higher ratio

than the depth. .We see also that, if the water be of the critical

depth, K is theoretically infinite, and the expression fails.

We may note also the following : It is easily seen that if the

depth of the water were to increase gradually, and if the

magnitude of the tidal wave increased in the same proportion,

the velocity of the particles of water would be constant, and the

friction constant. But the above equations show that if the

depth of the water increased, the magnitude of the tide would

increase in a higher ratio, and therefore friction would increase.

We see also from equation (J5) that if the actual and the

critical depths be not very different, the height of the tide will

vary nearly as the inverse of the difference. Hence, if the

actual depth were between the lunar and the (greater) solar

critical depths, or if it were greater than both those depths, the

solar tide, which is now about % of the lunar, would be the

greater of the two, if the actual depth were sufficiently nearer

to the solar than to the lunar critical depth. This, however,

may be called self-evident after some of the considerations

adduced in the text.

NOTE B, from p. 76. In Airy's well-known geometrical proof

of the position, relatively to the moon, of the frictionless
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dynamical high tide (M. Nots., R. A. S., vol. xxvi. p. 229), the

writer had his attention fixed exclusively on the case in which

the moon must be forcing the reluctant water to oscillate fast

enough for the tidal wave to keep up with herself, and thus the

demonstration applies only to " shallow-"water tides. Conse-

quently in that place the reader has only one side of the question

set before him, and if he is unacquainted with the author's

analytical treatment of the subject in the preceding part of the

very paper now cited, or in the Art. referred to in our last Note,

he may be (and apparently sometimes is) left under the im-

pression that low water of the frictionless dynamical tide is

necessarily always under the moon. But this geometrical proof

can be easily applied, mutatis mutandis, to "
deep-" water tides,

if we remember that in them the moon must be forcing the

water to oscillate slowly enough that the tidal wave, when

produced, may keep back with herself.

Mem. It is easily seen that the equation for K, the height

of the frictionless dynamical tide, given by Airy in p. 226 of the

paper referred to in this NOTE, and in Enc. Metr. vol. v. p. 323 *,

mHfcK= = 7 5 cos (it mx}.
tf akm

is the same as that (marked A) which we have copied in our

last NOTE, although they look so different.

NOTE C, from p. 79. It might, perhaps, seem at first sight

that if the former relations of direction between the various

movements of the water and the scheme of lunar forces were

consistent with the moon's keeping up the tide, the reversal of

these relations should be inconsistent therewith. But let us

remember that in the former case the lunar forces were acting

for only half their time concurrently with, and for the other

half against, the movements of the water, just as with all

ordinary oscillations or vibrations. We are no worse off now

as regards this than we were before ;
the only difference is that



RELATIVELY TO THE CELESTIAL TIDE-PRODUCING BODY. 91

the concurrences and oppositions have exchanged their situations

relatively to the moon.

Though it involves a little repetition, we may take this oppor-

tunity of putting together the answer to the following point,

which some might possibly feel, at first sight, to be a difficulty.

The spontaneous movement (if permitted) of the tide, when

created, would be due to g ; how then can the lunar tidal forces

control that movement, if they be, as we have seen in p. 70, so

excessively small in proportion to g ? Because the lunar tidal

forces act on and move all the water throughout its whole depth,

and are, sensibly independent of the existence of the tidal de-

formations ; while the gravitation forces, though acting on all

the water, are self-balanced as regards their pull on that below

the level of low water
;
the forces which would produce the

spontaneous movement of the tide, if free, consist only of the

gravitation forces acting on the relatively very small superficial

tidal protuberances, and are proportional thereto. Suppose that

a wave like the tidal wave, and even of great magnitude,

whether in " shallow
"

or in "
deep

"
water, were created and

started to move from E. to W. by some other agency, and then

left to the moon alone
;
the confusion due to the continued

baffling action between the independent lunar forces and the

others, at first very much larger, would reduce the magnitude

of the tidal deformation until the gravitation forces, dependent

on, and proportional to, that deformation, became diminished

enough to be under the control of the independent and constant

lunar forces.

NOTE D, from p. 87. This follows also from Airy's equation

for the height K, above mean level, of the surface of the tidal

wave with friction, at the angular eastward distance 6 from the

moon. See Enc. Metr. vol. v. pp. 331 * and 332 *. If the

water be of less than the critical depth, the equation at the

very bottom of p. 331 * may be written thus :
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C being a constant, and D an angle whose tangent is proportional

to the coefficient of friction, which would be the same at every

part of the tidal wave for any given friction, but would vary
in the same direction as the friction (were this to alter) ; the

upper limit of the magnitude of this angle being 90.
It is high water when K is greatest, or cos (20+ D) is at its

minimum, that is when 20-hD=180, or 0=90- |D. If,

now, the friction be so exceedingly great that D is nearly up to its

maximum 90, then 6 (which without friction would be 90) is

slightly more than 45. That is to say, the forward shift of

the point of high water, due to exceedingly great friction, must

be less than 45.

If the water were of more than the critical depth, the equation

would be

from which it follows similarly that the backward shift of the

point of high water, from exceedingly great friction, must be

less than 45.

These equations show also (what indeed is self-evident) that

if the friction were very great, so that D was not far from 90,

making tan D very large, the magnitude of the tide would be

exceedingly small.

N.B. We omitted to explain that in Pigs. 15 and 16 the

arrows outside the ellipses represent the lunar tidal forces,

the moon being to the right ; those within the ellipses represent

the gravitation forces of the disturbed water.



CHAPTER VI.

THE ''HORIZONTAL" PENDULUM.

ALTHOUGH the moon's differential tidal force is quite easily

calculable, and its magnitude perfectly well known, various

attempts have been made to detect it by direct observation.

The most important, but not the earliest, of these was carried

out by a Committee, appointed for the purpose by the British

Association, consisting of Professor George H. Darwin and

others. The description of the apparatus used and of the

experiments made therewith is given in the Brit. Assoc. Report
for 1881. The attainment of the same object had been before

sought by means of what is called the " Horizontal" Pendulum *.

This is a simple contrivance intended for the measurement of

very small horizontal attractions, and also for the detection of

exceedingly small changes of level in the platform on which it

stands. It is capable of very much greater sensibility, as

regards the latter, than the most delicate spirit-level ; moreover,

its sensibility can be quite easily regulated in accordance with

requirement.

Apparently the first to set up such an instrument was

Hengeller, a pupil of Gruithuisen's at Munich, who, not later

than 1832, did so in the manner shown in fig. 19. (See paper

by Prof. Safarik in Phil. Mag. vol. xlvi., 1873, p. 412.) de is

a rigid rod carrying at its end a ball of metal. The wire ca is

* This name is useful as a designation only, not as a description. The
Pendulum's rod need not be horizontal, and its plane of oscillation must

not be so, if it is to be a gravitation pendulum.
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attached at one end to the rod, and at the other end to a point

of support a the wire db is attached at one end to the rod,

and at the other end to a point of resistance b. The imaginary
line joining a and b is nearly vertical, but leaning slightly

Fig. 19.

towards the pendulum. Of course the smallness of the distance

cd does not contribute in the least to the sensibility of the in-

strument
;

it would do so only if the wires ac and bd were both

always kept vertical. The sensibility depends only on the

nearness of the axis db to verticality. The horizontality of the

pendulum-rod is of no importance, except for convenience. It-

might slope upwards or downwards from d at an angle of 45, if

desirable, without affecting the working of the Pendulum.

It has been stated that Gauss set up such an instrument. It

is very likely that this is correct
;
but in the absence of de-

scription and of corroborative evidence, it is possible that the

statement may be founded on a confusion between the bifilar

pendulum now in question and Gauss's bifilar magnetometer,

which, however, acts in a quite different manner.

About 1851, Mr. Alexander Gerard, of Gordon's Hospital (now

College), Aberdeen, suspended such a pendulum in the manner

represented in fig. 20. His account of it will be found in

Edinb. New Phil. Journ. for April 1853. de is a rigid rod
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pointed at the end d, the point being of steel resting against an

agate cup in ad, the side of a stiff standard. The thread ac is

attached at one end to the rod at its centre of gravity and at the

other end to the standard ; ad should, of course, lean very slightly

towards the pendulum.

Fig. 20.

e

In 1862, M. Perrot did the same, and exhibited his instrument

to the French Academy. His mode of suspension, shown in

fig. 21, was the same as Hengeller's, with, however, this dif-

ference, that the supporting threads ac and Id were acting very
much less nearly against each other, the advantage of which is

Fig. 21.

obvious. We shall return to this subject. Of course cd is less

than ce. Perrot's description is in Comptes Rendus, vol. liv.,

March 21, 1862, p. 728.
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In the early part of the year 1869, Rev. M. H. Close, of

Dublin, suspended such an instrument in the manner shown in

Fig. 22. dc is the pendulum-rod, and ac and bd the supporting

threads attached at a and b to a stiff standard leaning very

slightly towards the pendulum. (See Practical Physics, by
Prof. W. F. Barrett and Mr. W. Brown, London, 1892, p. 241.)

Of course the threads, as also those of Gerard and Perrot, had

better not be twisted threads, which are liable to be affected by

Fig. 22.

d

the hygrometrical state of the air. In this Fig. ab is an accu-

rately straight and smooth edge projecting from the supporting

standard towards the spectator, across which edge the separated

silk fibres of the threads (which cannot be shown individually

in the diagram, on account of the smallness of its scale) are bent

at a and 6, so as to be practically attached thereto. The fibres

are made to cross the edge separately, and close together, so

that each one is resting directly against the edge, in order that

we may have simply the sum of what we may call (in analogy

with " tension ") the " flections
"
of the several fibres, without

the tensions of the outer ones which would exist if they crossed

the edge in a single cord. In this case there is no torsion of

the supporting threads from the movement of the pendulum.

In the same year 1869, and, to judge from his own words, in

the middle part of the year, Zollner set up his well-known

"Horizontal" Pendulum; his mode of suspension being the
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same as Hengeller's, with, however, the difference that the heavy
bob of the pendulum was placed quite near the axis of oscil-

lation. See Fig. 23. His description of it will be found in a

paper
" On a new method for the Measurements of Attractive

and Repulsive Forces," in the Proceedings of the Royal Saxon

Soc. of Sciences, Nov. 27, 1869. He describes it also in Phil.

Mag. vol. xliii. 1872, p. 491, giving a drawing of it in plate 3 of

that volume*. The wires of Hengeller and the threads of

Perrot are now thin watch-springs, each about 11 inches long

and attached above and below, respectively, to an upright

column, or standard, nearly two inches in diameter, supported

on three feet and furnished with delicate levelling screws The

Fig. 23.

ft

whole height of the stand being about 32 inches. The cylin-

drical bob, made of lead, and of about sjx pounds weight, carried

in front a mirror by which readings were made on a reflected

scale, according to a general modern practice. This pendulum

is superior to Hengeller's, in that, for a given weight of the

whole pendulum, the stress on the supporting bands, or wires, and

therefore their necessary thickness and unavoidable stiffness, is

* It is somewhat unfortunate that " Horizontal Pendulum "
does not

occur in the Index of that volume.
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much less ; and also in that the weight of the bob has, for a

given angular departure of the pendulum from the position of

rest, so much less sideward moment against the supporting

structure, which is calculated to cause lateral yielding therein.

Lord Kelvin's device for attaining the same object as above is

described in the Brit. Assoc. Report for 1881, p. 93, and better

in the Report for 1893, p. 291 ; it is in reality a Horizontal

Pendulum in disguise.

Dr. von Rebeur-Paschwitz's Horizontal Pendulum may be

described as similar to Zollner's; except that instead of working

by the torsion of elastic bands it turns on pivots at a and 6,

Pig. 23, consisting of steel points in agate cups. It is described

and figured in the Report just quoted for 1893, p. 305. This

instrument has the great advantage of being free from the

modifications arising from the elasticity of the supporting threads

&c., but it has, like others, its own special disadvantages which

need to be guarded against.

The Gray-Milne seismograph, suspended in 1891 by Prof.

Gray, of Terre Haute, Indiana, U.S.A., and Prof. Milne, of Tokio,

Japan, is a Horizontal Pendulum on the general plan of that

represented in Pig. 20. See description and diagram of it in

Brit. Assoc. Report, 1892, pp. 107-8.

Mr. Horace Darwin's .Bifilar Pendulum, described and figured

in the Report for 1893, p. 291, is a Horizontal Pendulum on the

general plan of that in Pig. 22, above.

Of course such instruments are read, whenever practicable,

by means of a scale reflected in a mirror attached to the pen-

dulum. The stand should be supported on three points, say r, s,

and , Fig. 24, forming a right angle at t there being levelling

screws with graduated heads at r and s. If the pendulum be

in the position pp, r would be the regulating-screw for deter-

mining the lean of the axis of vibration towards the pendulum,

and so adjusting the sensibility of the instrument
;
and s would

be the setting-screw for setting the pendulum to zero, when

necessary, or for testing the sensibility.
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It is very easy to see that, neglecting provisionally the force

of torsion of the supporting threads, wires, &c., if the inclina-

tion, 0, of the axis ab to the vertical be very small, and the

angular tilt to be measured be also very small (and the instru-

ment has no special superiority without this), the delicacy of

the instrument is proportional to y/g sin 0, or inversely pro-

portional to sin 0, or to itself. For a given very small angular

Fig. 24.

change e of the surface of the ground, transverse to the vertica

plane of rest of the pendulum, the angular movement of the

pendulum would be magnified to e/sin 0.

But the force of torsion of the supporting threads, or wires, &c.,

diminishes the magnification of the tilt to be measured and the

sensibility of the instrument. For small departures of the

pendulum from its position of rest, this force of torsion and the

tangential component of mg sin (m the pendulum's mass)

vary sensibly according to the same law, viz., directly as the

distance from the point of rest. Therefore the pendulum is

oscillating, not merely under my sin acting at the centre of

mass, but under m(/sin0+ r; r being the magnitude of the

force of torsion of the supporting threads, or bands, as acting at

the centre of mass of the pendulum, or the moment of torsion.

n2
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divided by the distance of the centre of mass from the axis of

oscillation. Consequently if the stand be tilted at right angles

to the vertical plane of rest of the pendulum by the (small)

angle e, the angular movement of the pendulum would be to e,

not as mg to m^sinfl, but as mg to mgsmd+r; that is, the

angular movement of the pendulum would be multiplied by-
r-4;
-

; which fraction now represents the sensibility of
mg sin r

the instrument. This cannot be increased above unless by
r

making mg sin negative, that is, by very slightly inverting the

pendulum, so to speak, as far as regards the action of gravitation

upon it ;
that is, by making the axis of oscillation lean slightly

backwards or away from the pendulum, so that it will oscillate

under r w#sin0 (of course r must be greater than mgsm 0),

mg
and its sensibility will be

T^ mQS[nti
- ^ f could be absolutely

unaffected by viscosity and constant, this would afford a means

of increasing the sensibility indefinitely. But the force of torsion

or of flection is interfered with by viscosity, and the present

behaviour of a spring depends on its recent history as to tempe-

rature and strain. Consequently, when T mgBind is exceed-

ingly small and the sensibility of the pendulum correspondingly

great, the imperfection of the elasticity will become important,

and the condition of the pendulum might be, only for a com-

paratively short time, that of stable equilibrium.

If we may surmise from the behaviour of Zollner's Pendulum

on the occasion described in p. 494 of the vol. of Phil. Mag.
above referred to, the pendulum was thus inverted ; though we
cannot be quite sure of this, without knowing the moment of

torsion of the watch-springs and the moment of inertia of the

pendulum.

Therefore, since it is obviously desirable that the " Horizontal

Pendulum " should be, as nearly as possible, a pure gravitation

pendulum, and that its action should depend as little as possible

on the force of torsion or of flection, of the supporting threads,
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wires, or bands, these should be as thin as may be practicable ;

and, to allow of this, they should be made to support the pen-

dulum in such a way as to have as little stress on them as

possible. Now, judging from the drawing of Zollner's Pendulum,

supposing it to be drawn to scale, the mean stress on each of

the watch-springs is at least 3'5 times the weight of the pen-

dulum; they must be strong enough and thick enough to

withstand such a stress, and therefore they must have an

undesirably great force of torsion, to interfere, in the way we

have noted, with the performance of the Pendulum (this ob-

jection is much stronger against Hengeller's Pendulum). To

this we may add that for certain reasons it is desirable that the

gravitation zero and the torsion zero should coincide as nearly

as may be ;
but when the force of torsion is greater than may

be avoided, the disadvantage of the non-coincidence of the zeroes

is so likewise. (See NOTE A.)

It would seem, then, that the mode of suspension illustrated in

.Fig. 22 is preferable to some of the others now described. The

stress on each thread is less than three fourths of the weight of

the pendulum; each thread, therefore, need only be strong

enough and thick enough to endure that stress with safety.

If the edge were cylindrical like the side of a very fine

needle, the magnitude of the flection, during an angular movement

of the pendulum, would evidently be constant, and not, as above,

proportional to the pendulum's angular distance from any

particular point. In this case the flection would not diminish

the sensibility of the instrument ; but merely alter very slightly

its zero point, or position of rest.

In order to guard against sagging in the support of the

pendulum this should be not only as short as is consistent with

other requirements, but solid and strong; and the weight of

the pendulum should be kept down as much as may be, and

stops should be provided to prevent too great departure from

the position of rest. It should of course be contained in a case

or box, proof against movements of the air, and with sufficient

non-conductivity of heat ; the inside of the box being lined with
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tin-foil, with sufficient metallic connection with the ground, to

guard against unequal distribution of electricity ; and the pen-
dulum itself should be made of the least magnetic or (so-called)

diamagnetic substance.

The sensibility of the instrument, or the ratio of the angular

movement of the pendulum to the angular tilt to be measured,

might, perhaps, be obtained approximately by an exceedingly

delicate levelling screw, or by a screw working with a differ-

ential action, which could be depended upon to produce a known

very small lateral tilt in the stand of the pendulum, to be com-

pared with the consequent angular movement of the pendulum.
But the following would doubtless be a much better way of

obtaining the sensibility, if the effect of the resistance of the

air were quite negligible. The sensibility is, as we have said,

r
-

, or the ratio of the forces acting at the centre of
mg sin -\- r

mass when the pendulum is hanging freely and when suspended

in the manner now in view ; both forces being proportional to

the angular distance of the pendulum from its position of rest.

But these are inversely proportional to the squares of the corre-

sponding times ^ and t
2

of oscillation. Let the shape of the

pendulum be such that its radius of oscillation can be easily

obtained from measurements of its parts ;
this will give the

time
Jj.

The time t
2

is known from direct observation ; thus

tf/t* 9
the sensibility of the pendulum, is known. If the re-

sistance of the air be proportional to the velocity of the pendulum
in its swing, which it is very approximately for very small

velocities, its interference with the isochronism will be exceed-

ingly small ; but it will very slightly increase the period of

oscillation, and so make the sensibility calculated in this manner

very slightly greater than the truth.

There seems to be very little likelihood that the moon's tidal

force will ever be measured by the Horizontal Pendulum, or

by any instrument working as a level does. The experimenter

must first make, with Archimedes, the rather important request :
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"Give me whereon I may stand." Not to dwell on move-

ments in the earth's crust, disturbances of level by changes of

temperature, the moon's own tidal deformation of the body of

the earth, &c., it would appear that in most cases, at least, a

gentle breeze pressing on the side of a house would make the

whole basement floor tilt to leeward through an angle considerably

greater than the greatest change in the vertical by the moon's

tidal force.

NOTE A, from p. 301. Let c and c', Fig. 25, be two centres of

force varying directly as the distance ;
the absolute value of the

forces, or their magnitude at unit distance, being E and E' r

Fig. 25.

F F+F F

respectively. It is easily seen that they are equivalent to a

force having the same law, with absolute magnitude F+ F', and

with centre C whose distances from c and c are inversely as F
and F . (This obtains, of course, not only in the line cc', but

throughout all the space around (7.)

It is evident that if the zeroes in the text do not coincide, and if

the instrument be tilted slightly in the vertical plane of rest of the

pendulum, there will be a horizontal movement of the pendulum,
which might be taken as an indication of a lateral tilt.

Mem. We are indebted to Mr. Charles Davison, Secretary of

the British Association's Committee on Earth Tremors, for some

information en the subject of this Chapter.
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CHAPTER VII.

THE MOON'S VARIATION.

THE space that can be afforded, in ordinary elementary treatises

on astronomy, to the moon's Variation and Parallactie Inequality

is necessarily small
;
so that various important and interesting

matters connected with those lunar inequalities must be left

out of consideration. But as our space is at our own disposal,

we can now give to some of these details more of the attention

which they deserve.

We assume that the reader is acquainted with the nature

and the general cause of the inequality of the moon's motion

called the Variation. It is produced by solar differential forces,

tangential and radial, similar to those which produce the tides.

Pig. 26 is a diagram of the chief particulars of the Variation

scheme of perturbing forces, and of the changes of the moon's

motion : E is the position of the earth
;
ABCD is the moon's

orbit round the earth
;

the moon revolving in the direction

indicated by the order of those letters. The sun is supposed to

be away to the right, over A, at a distance from E representing

388 times EA, the moon's distance from the earth. The

tangential arrows and the radial ones drawn with broken lines

show the reaches or ranges of action, and the directions,

of the solar disturbing forces, tangential and radial. The

contractions will be readily understood : ran, mean
; gst,

"greatest"; 1st, "least"; pi, "place"; vel, "velocity"; g,
"
gaining

"
; Z,

"
losing." The terrestrial tangential forces, to be

mentioned further on, are not represented from want of room
;

but this is of no consequence, if it be remembered that in the
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Variation scheme of forces they always agree with the solar

tangential forces, both as to reach, or range, and direction.

The disturbing forces are calculated, mutatis mutandis, precisely

Fig. 26.

as the tidal ones. If the earth's mean attraction on the moon

be taken as unity, then for a circular lunar orbit, the tangential
OC~D3

sin 2e, or y-i^ sin 2e, and the radialdisturbing force will be

OOT)3

force ^ (cos2e+ 3); S being the sun's mass, E the earth's

mass, D the distance of the sun from the earth, E, the distance

of the moon from the earth, and c the moon's elongation from

the sun reckoned from conjunction, eastwards, right round to

360 *. The maximum value of the solar tangential force,

* These expressions show that the Variation forces are, quam prox.,

inversely proportional to the cube of the sun's distance. It might seem, at
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which occurs at the octants, is l/120th of the earth's mean
attraction on the raoon, that of the radial force outwards at

syzygies is l/90th of the same ; its inwardly directed maximum,
at quadratures, is half this, or l/180th. These forces are, then,

very small relatively to the earth's attraction on the moon
;

which circumstance is of much importance in the mathematical

discussion of the Yariation. Let us note that the tangential

forces vanish when sin2e= ; that is at syzygies and quadratures,

and the radial ones when cos 2e=
-| ;

that is at the four points

distant by 54 44' from syzygies.

The inequalities in the moon's motion, due to these dif-

ferential forces, are important, for two reasons. In the first

place, they present some interesting and instructive problems,

both dynamical and kinematical ; and, in the second place, it is

cf great moment to know approximately enough their magnitude,

for the construction of tables of the moon, by which to be able

to predict the moon's true longitude, or angular distance on the

ecliptic from the first point of Aries.

When the latter object is in view, the equation of the moon's

angular Yariation, or difference between her true and mean

longitude, caused by the said forces, is usually given thus

M'str. long.= her mn. do.+ C sin 2 (M's mn. long. S'sdo.), (1)

M being the moon, IS the sun, and C the coefficient of the

Yariation in longitude. (See NOTE A.)

But our present main object is to consider the matter simply

on its own account ;
and as the disturbing forces are connected

with the moon's elongation, or angular distance from the sun,

it will be simpler and more interesting to consider their effects

on this, rather than on her longitude, to which we are now

first sight, that they are directly proportional to the cube of R, the moon's

distance. But they are proportional only to the first power thereof. The

R3 comes in on account of the earth's mean attraction on the moon being

taken here, for convenience, as unity.
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indifferent. Moreover, we are now concerned with, the Variation

only in the abstract, or in its purity, as we may express it.

We shall therefore take the moon's undisturbed orbit and the

sun's relative, or apparent, annual orbit round the earth as both

circular, and in the same plane, and the angular velocities of

both luminaries in those orbits as constant; so that the sun's

true, and mean, longitude will be the same. Subtracting, then,

the sun's true longitude from the loft side of the above equation,

and his (now) equal mean longitude from the other side, and

adopting what seems the best value of the coefficient C, we have

(from Hanson) the equation

= + 35' 45'' sin 20; ...... (2)

in which e is the moon's true elongation from the sun, and her

mean elongation, for the same instant of time, both reckoned

eastwards from the sun up to 360. Thus, then, the moon's pure

abstract Variation in elongation, or her departure from 0, is

+ 35' 45" sin 20.

Now let r be the moon's actual radius-vector, or distance from

the earth, and H her mean distance, and we shall have (from

Hansen)

T
l

cos20)....... (3)

The Variation in the moon's distance from the earth is, then,

From these equations (2) and (3) in combination may be

easily derived a simple geometrical construction for obtaining

the moon's position in space for any assumed 0, or mean

elongation. First let us note that the coefficient 35' 45" in

equation (2) is, in circular measure, 1/96. Whence the moon's

linear departure, forwards or backwards, from the line of her

mean radius-vector R is + J^Esin 20, q.pr. ;
her departure from

her mean distance being, as we have seen, from equation (3)
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In Fig. 27, E is the place of the earth, ES the direction of the

sun. The construction is as follows : Draw E to represent,

in magnitude and position, the moon's mean radius-vector, at a

given time, whose length is 238,820 miles
;
SEa is 0, and a is

Fig. 27.

the moon's mean place. Draw ab making the angle 20 with Ea

(or with ES), to represent the length iR^+ ^-J-g-),
or 2093

miles, then draw 6M making the angle 40 with ab (or 30 with

ES), to represent the length JR^--.^), or 337 miles ; then M
is the moon's true place for assumed 0. (See NOTE B.) With
the exception of the line Ea, which is necessarily vastly too

short, this Fig. and Figs. 30 and 31 are drawn to scale ; the scale

being the same in all.

Thus we see that the moon's pure Variation orbit*, according

to equations (2) and (3), is a compound epicyclic curve as

referred to ES regarded as fixed. E is the radius of the

deferent circle turning progressively with the moon's mean

angular velocity ; ab is the radius of the first epicycle turning

retrogressively with the same angular velocity ; 6M is the

radius of the second epicycle turning progressively with thrice

the said angular velocity.

* By "Variation orbit" we mean the moon's orbit as deformed by the

Var. disturbing forces alone ; the undisturbed orbit being supposed
circular.
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The curve described by the moon about her mean position is,

of course, a simple epicyclic, relatively to ES regarded as fixed,

whose deferent is the first epicycle above mentioned. It is a

four-lobed curve, like that in Fig. 28. Its greatest diameters

Fig. 28.

being g^-R, and the least y^g-R. This curve, as its centre is

carried round on the end of Ea, or R, always keeps the same

shortest diameter parallel to ES, and so preserves the same

aspect towards the sun. The moon describes this curve about

her mean place once in a synodical month and retrogressively.

When in conjunction she is at p in the curve
; when in first

octant she is at q ;
when in first quadrature at r, &c.*

The movement of the moon in her Variation orbit can be

represented in another manner, which is of considerable interest-

It follows directly from the same equations (2) and (3). (See

NOTE C.)

It is often said simply that the moon's Variation in elon-

* Of course relatively to fixed space this curve itself rotates once in a

year progressively ; but we are not now concerned with that.
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gallon from the sun is proportional to the sine of twice her

elongation, that is to sin 2e. The discrepancy involved is

evidently very small. It can be seen without difficulty that if

in equation (2) we ^substitute
sin 2e for sin 20, it will make a

difference in the angular Variation of only ^35' 45" sin 40.

This vanishes at syzygies, quadratures, and octants. It is at its

maximum value, alternately negative and positive, at the eight

points halfway between those just mentioned; but this maxi-

mum does not amount to- 23". We may, then, take the liberty

of writing equation (2) in the following form, which is more

convenient, while always fully accurate enough for our present

purpose, and quite accurate at the eight points just mentioned
;

viz.

e= + 35' 45" sin 2e....... (4)

According to this the moon is at her undisturbed place in

elongation at syzygies and at quadratures, most before that

place when 45 past syzygies, and most behind it when 45 pafet

quadratures.

If we substitute, in equation (3), cos 2e for cos 20, similarly

to what we have done with equation (2), this will involve a

discrepancy proportional to sin
2

20, which varies from zero, at

syzygies and quadratures, to its maximum, always negative, at

octants
;
but this maximum is only l/48th part of the greatest

value of the Variation in the moon's radius-vector. When
written thus

r=E(l- T^cos2e)=R(l-(7cos2e), . . . (5)

it becomes a polar equation of the moon's Variation orbit
;
which

is quite sufficiently accurate for our present purpose. The pole,

of course, is at the earth, and the curve is referred to the line

ES as its prime axis, or prime vector ;
as this revolves once in a

year the Variation oval does so likewise, along with it.

According to this equation the moon's orbit, if subject to no

other inequalities than those of the Variation, would be an oval
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with its shortest axis in the line of syzygies, or directed towards

the sun, and its longest axis in the line of quadratures ; these

axes being to each other as 1 T^ to 1 + y^-g-,
or as 67 to 68.

The proportion given by Newton was very close to this, viz.,

69 to 70.

Owing to the smallness of the coefficient yl^, equation (5)

differs practically but little from that of an ellipse. It gives a.

curve which is slightly flatter at syzygies and quadratures

(where it coincides with (3)) than an ellipse with the same

principal axes. The radii of curvature at those points can be

easily obtained by the geometrical method ; they are, for

syzygies, E
-j- _^Q ,

and for quadratures, E ^ ^ ; being

the coefficient
yi-g-. (See NOTE D.)

The moon's velocity is greatest at syzygies, least at quad-

ratures, and at its mean at octants. But we shall return to

this.

There are some very interesting particulars, both kinematical

and kinetical, connected with the Variation, which, being

contrary to what many persons would expect beforehand,

present to them, at first sight, the appearance of paradox.

One of these is that, as we have just seen, the Variation orbit

should have its shortest axis directed towards the sun. The

dynamical reason for this is given geometrically in Newton's

Principia, Book III. ; but of course the analytical treatment

of the question is more powerful and complete. It is most

respectfully submitted that the ordinary short popular "proof"
of this is quite inadequate, for more than one reason. May
we venture, while deprecating the imputation of rashness, to

propose another proof, as we hope it to be. In excuse for its

length we beg to plead that no proof can be sufficient unless it

takes into account all the principal elements of the problem ;

that is to say, not only the tangential, but the radial,

disturbing forces, as well, and also the condition under which
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they act, viz., the law of the earth's gravitation attraction on
the moon.

Elementary Proof of the character of the Variation inequalities

in Elongation and Radius- Vector. It is probably impossible to

give an entirely a priori proof of this which shall be both simple
and quite complete. Some of the following sketch-argument

depends for its ready applicability on the fact of the smallness of

the perturbing forces and of the perturbations with which we
are now engaged. We know, d priori (see p. 106), that, relatively

to the earth's attraction on the moon, the Variation perturbing
forces are very small

;
and we know from observation that the

resulting perturbations are so likewise. We can, then, consider

the actions of the tangential and of the radial forces sepa-

rately, and can combine, by simple superposition, their several

effects
;

these being comparable to different sets of " small

oscillations." Supposing still, for simplicity, the moon's undis-

turbed orbit and the sun's relative orbit round the earth to be

both circular, since we know, d priori, that the scheme of the

Variation disturbing forces is symmetrical on each side of the

line of syzygies and also on each side of that of quadratures,

and, by experience, that the deformed orbit is stable, we are

justified in concluding that that orbit must be itself symmetrical
on both sides of each of those lines, as principal axes.

In Fig. 29 the circle represents the moon's undisturbed orbit

supposed circular ; the sun being over A, and the moon revolving

in the direction ABCD.
We shall neglect, for the present, the sun's relative annual

revolution round the earth ; the result of which, as we shall see,

is merely to increase the effects now to be considered.

We shall take first the solar tangential disturbing forces

considered by themselves, and as acting on an originally circular

orbit of the moon round the earth. We shall first suppose the

sun's disturbing power to begin to exist when the moon is

passing D. We are, however, in a little difficulty here. The
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sun never began to act at any particular point on a previously
undisturbed lunar orbit. If we begin at D with force

,
as we

shall call it, we must compound its effect with that of its succes-

sor, which we have marked b but we have no more right to do

this than to compound its effect with that of its predecessor d.

Fig. 29.

In order to approximate to the right thing, we must take

different starting-points in succession, and then combine the

results. It will be simplest to take the four points of syzygy
and of quadrature, in succession, as starting-points. We shall

begin then at D, with tangential force a. It is, of course, the

impulse of
,
or the integral of its product with its time of acting,

with which we have to do. Now the force a is a maximum at

the octant, which is the middle of its reach, or range, DA, and

its magnitude, which is, as we know, very small even at the

maximum, is always, as we see from its formula, p. 105, equal at

equal distances on each side of its maximum, and zero at both

ends of its reach DA
;

so that the force is exceedingly small for

some length towards each end of its reach. It will, therefore,

involve a very small inaccuracy, as relates to our present subject,

if we regard the whole impulse as condensed into a very short-

lived impulse of the same magnitude, like an impact, acting

tangentially at the octant. We can treat similarly the opposing

i



114 THE MOON'S VARIATION.

tangential impulse 6. Now, in consequence of the law of the

earth's attraction, which would make the moon move in a focal

ellipse round the earth, the impulse a, by itself, would produce

an elliptical lunar orbit with an apogee J 80 distant, at the

octant under the letter c. But the opposing tangential impulse

6, which is equal to a, would, if it acted by itself on the still

undisturbed moon, cause her to describe an ellipse with its

apogee very near to the octant under the letter b. These two

ellipses would have a very small proportional difference as to

magnitude ; although the former would be entirely outside, and

the latter entirely inside, the original circular orbit. The eccen-

tricities of the two ellipses would be very nearly the same. Now
these two apogees under b and c, only 90C

apart, would combine

or coalesce, as is evident, into an apogee very nearly halfway

between, close to the quadrature B. It is easily seen that this

apogee would be above the circle in the figure ;
as the former

ellipse would cross the line of EB at a height above the circle

due, inter alia, to the distance of three octants from the apse

under the letter a ;
while the other ellipse would cross EB below

at a depth due to the distance of only one octant from its apse under

b. The composition of the greater rise with the smaller fall

would give a crossing of the line of EB above the circle. Thus

the impulses a and b acting together, apart from the others,

would produce an apogee very near B above the circle. Now let

us start at A with impulse b. We shall find, in a corresponding

manner, that impulses b and c, acting together apart from any

others, would produce a perigee very close to C, and below the

circle ; and that c and c, similarly, would produce an apogee

near D above the circle
;
and d and a together a perigee near A

below the circle. But we must not use each tangential impulse

twice over
; therefore, to avoid this, we must take only half of each

in our successive stages round the lunar orbit. Thus the tan-

gential disturbing forces alone would deform the moon's originally

circular orbit into an oval with its longest axis in quadratures *.

* We see here that though the tendency of the immediate local action of

the tangential force in the quadrant DA would be to make the moon rise
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This deformation of the orbit by the tangential disturbing

forces gives rise, of course, to tangential components of the

earth's attraction on the moon, or, as we shall call them, terres-

trial tangential forces, whose positions and directions are, in the

case of the Variation, the same as the solar ones. These, there-

fore, are auxiliary and increase the inequalities of the moon's

rate of revolution round the earth. Thus the solar tangential

forces are the means of causing considerably greater inequalities

in the moon's velocity, both linear and angular, than they could

produce by their immediate local action.

Therefore, if the tangential disturbing forces were to act by
themselves, apart from the radial ones, the moon's linear velocity

would be greatest at syzygies and least at quadratures ;
and this

would be so, a fortiori, as regards her angular velocity. But we
cannot assume, at once, that these things must be actually so ;

for these forces do not act by themselves. If it should so happen
that the radial forces by themselves would produce a sufficiently

greater elongation of the orbit in syzygies, the terrestrial tan-

gential forces created thereby, which would then be oppositely

directed to the solar ones, might be the greater of the two ;
so

that the moon's velocity might be least at syzygies, and greatest

afc quadratures.

We therefore turn now to the radial disturbing forces
;

first

taking by themselves the outwardly directed ones, whose action

extends for 54 44' on each side of both syzygies. It will te

seen, on a very little consideration, that these by themselves

would produce a lengthening of the radius-vector at some angular

distance after syzygy ; because their effect in increasing the

moon's distance from the earth must evidently continue for some

time after they have ceased to act with their greatest efficiency,

which happens at syzygy. We shall see in NOTE E that in

from the earth, yet in consequence of the whole general action even of the

tangential disturbing forces, alone, the moon is really falling earthward all

through that quadrant. This illustrates a principle to which we shall

refer again.

i2
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consequence of the law of the earth's attraction, the greatest

lengthening, or apogee, will be exceedingly near to quadrature.

Similarly, of course, with the (outward) radial forces about

opposition.

Now the inwardly directed radial forces, extending for 35 16'

on each side of both quadratures, would, by themselves, tend to

produce perigees very near to both syzygies. But the latter

forces, or, we should say, the impulses of which they are a factor,

are roughly of only one third the value of the outward impulses ;

since the average magnitude of the forces is only about one half,

and their time of acting only about two thirds, those of the

former (see NOTE F) ; and therefore the result of their action is

much smaller than that of the outwardly directed forces ; but it

is auxiliary as regards the general effect now in question. This

effect, as with that of the tangential forces, although dependent
for its existence on the law of the earth's attraction, is controlled

thereby, so that it cannot exceed a certain magnitude. Thus the

radial disturbing forces, by themselves, would produce a deforma-

tion of the moon's orbit similar in general character to that due

to the tangential ones
;
and therefore would by themselves give

rise to tangential components of the earth's attraction on the*

moon, resulting in inequalities in the moon's velocity, both linear

and angular, similar to those produced by the tangential forces

(but much smaller) *.

We now know that we actually have maximum linear

velocities of the moon at the ends of the (shorter) syzygy axis,

and minimum velocities at the ends of the (longer) quadrature

axis
;
and that this is true a fortiori of the angular velocities.

* We see that we must not institute too close a comparison between the

formation of the oval of the dynamical tides and that of the Variation orbit.

Though the system of the lunar differential forces producing the tides and

that of the solar ones producing the Variation are precisely similar, yet

they are acting under very different conditions. Though the Variation oval

is necessarily placed with its side towards the disturbing celestial body, the

tidal one is so placed only under the special- circumstance that the water is

of less than a certain depth.
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There are, therefore, two reasons for expecting that the

Variation orbit must be flatter at syzygies, and more curved at

quadratures, than elsewhere. But probably this cannot be

proved by any simple considerations such as those to which we

are now confining ourselves
;
and as there are various particulars

connected with the Variation which turn out to be contrary to

what a large proportion of reasonable persons would anticipate,

this might be one of them ; and it is, relatively to what we know

so far, quite possible that this natural expectation might prove

erroneous. Since the moon is nearest to the earth at syzygies, it

might very well happen that the consequent increase of the

earth's attraction there might be greater than the sun's outward

disturbing force at those points (we shall see indeed further on

that this is actually so), and therefore the possibly greater earth-

ward force at syzygies might overcome the effect of the moon's

greater velocity at those points, as regards the curvature of the

orbit there ;
and correspondingly at quadratures. This much,

however, is quite clear, viz., that the Var. orbit is less curved at

syzygies than the equidistant circle there, and more curved at

quadratures than the greater equidistant circle there. But this

will not prove the matter in question ; because, for all we could

yet say to the contrary, the orbit might be four-lobed.

We have already alluded to the fact that the relative annual

revolution of the sun round the earth increases the lunar

inequalities now in question ;
this it does by giving to the

system of alternating disturbing forces a longer period, viz., half

a synodical month, than what they would have without it, viz.,

half a sidereal month.

The disturbing forces, then, have the effects now mentioned in

consequence of the condition that the earth's attraction on the

moon is inversely proportional to the square of the distance ;
so

that that attraction is always endeavouring to make the dis-

turbed lunar orbit an ellipse with the earth in one focus. But

this same condition, which determines the character of those
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effects, determines also the limit of their magnitude under the

action of those disturbing forces. The earth's attraction, because

of the law of its action, keeps down the height of the apogee at

each quadrature by endeavouring to make there a perigee

answering to the apogee of the preceding quadrature. The

incompatibility between the central oval, due to the disturbing

forces, and the focal ellipse, that the earth's attraction is always

trying to produce in the moon's disturbed orbit, affords the earth

an opportunity and power of reluctation against the deformation,

which would be greater than it is if the deformation were so.

The sensibly constant disturbing forces are able to produce, by

accumulation, only that amount of deformation at which further

increase would become intolerable, and at which the earth

acquires sufficient power of reluctation and control to balance

the action of those forces.

The opposition, in this respect, between the solar and the

terrestrial forces is due to the fact that the scheme of disturbing

forces and the consequent Yar. orbit are symmetrical on each

side of two rectangular axes passing through the earth ; while

the elliptical lunar orbit, which the earth's attraction is always

endeavouring to produce, would have only one axis of symmetry

passing through the earth. There is, in this respect, an

important and interesting difference between the Variation and

the Parallactic Inequality, to which we shall return in the next

chapter. (See NOTE G.)

"We come now to another apparent paradox, already alluded

to, connected with the Variation, which it is particularly

necessary to notice as it is so generally overlooked, sometimes

with inconvenient results. It is this, that the effect of the

terrestrial tangential forces in producing the moon's Variation

in longitude is considerably greater than the direct effect of the

solar ones. This can be seen as follows

We know already that, the earth's mean attraction on the

moon being taken as unity, the solar tangential force is y^ sin 2e
;
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but, accepting equation (4) as the polar equation of the Var.

orbit, which it is, quam prox., it is not difficult to find that the

terrestrial tangential force is ^L- sin 2e (1+ ^V cos 2e), quam
proof. (See NOTE H.) Therefore the two forces, practically

speaking, vary very nearly according to the same law, viz., as

sin 2e ; and the terrestrial tangential force is to the solar, at any

given point of the Variation orbit, in a ratio never less than 120

to 68 ;
or say 7 to 4, very nearly. But the shares of the moon's

whole displacement in elongation produced by these two forces

at any given point are very approximately proportional to the

respective magnitudes of the forces *. Those shares are, therefore,

to each other very nearly in the said proportion of 7 to 4.

Thus we see that the solar disturbing forces produce the

inequalities in the moon's velocity in various places much more

by means of their deformation of the lunar orbit than by their

direct immediate influence on the moon's velocity near those

places.

If the general action of the solar disturbing forces had, by
accumulation of effects, changed the assumed originally circular

orbit into its present shape, but with the longest axis directed to

the sun, as it might have done, for all that we could tell before-

hand to the contrary, and as most people would expect it to do,

the solar tangential forces, while still very nearly indeed of their

present magnitude, would retain, of course, their present

directions ; but the terrestrial tangential forces, while still

almost precisely of their present magnitude, would be reversed

in direction. The terrestrial would actually overpower the

solar tangential forces, as regards their immediate effect on the

moon's velocity ;
and the result would be that notwithstanding

the acceleration due to the solar tangential forces, the moon

would go gradually slower in the quadrant DA, and, for a

* This is so
;
but only because the two forces vary so very nearly

according to the same law, and because the changes of velocity due to each

of the forces are so exceedingly small relatively to the mean velocity of the

moon in her orbit round the earth.
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corresponding reason, gradually faster in the quadrant AB ;
and

so on.

It must not be thought an absurdity to contemplate before-

hand the possibility of such an action ever taking place ;
for we

shall find an instance of it farther on in the Parallactic In-

equality orbit.

Therefore we cannot lay down that the moon must be

necessarily quickening or slackening her pace, according as the

solar tangential forces are acting with or against her motion,

until wejtrst know enough respecting the deformation of the

Variation orbit and the position of its greatest and least axes.

If the attention be fixed too strongly on the immediate, direct

action of the tangential and the radial disturbing forces, it leads

naturally to the over-statement frequently met with, viz., that

the Yar. in longitude is almost entirely due to the tangential

disturbing forces. This would undoubtedly be so if the Yar.

depended principally on the direct action of the two disturbing

forces ;
but we have seen that such is by no means the case.

The Yar. in longitude is, as above stated, due principally to the

deformation of the moon's orbit, in the production of which

deformation the radial disturbing forces have a share rather

greater than that of the tangential forces. The tangential

disturbing forces are, indeed, more important than the radial

ones in causing the Yar. in longitude ; but the share of that

inequality to be assigned to them is not as much as double that

of the radial forces (see Godfray's Lunar Theory, p. 88).

To return to a matter alluded to above : It might be supposed

that since the radial disturbing force, which is directed away
from the earth at syzygies, is at its maximum at those points,

therefore the whole earthward pull on the moon is least at those

points, and, for a corresponding reason, greatest at quadratures.

Airy, in Gravitation, p. 66, shows that he was aware of the

erroneousness of this ; but, interestingly enough, we find that

when giving his admirable lectures on astronomy at Ipswich

(entitled Popular Astronomy), he had forgotten his own know-
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ledge of its incorrectness. We can easily see for ourselves how

the matter stands. The earth's mean attraction on the moon

being taken as unity, the solar radial force at syzygies is, as we
have seen, 1/90, which is to be deducted from the earth's

attraction at syzygy ; but, on the other hand, since the moon's

distance from the earth at syzygy is less than the mean by

l/136th, the earth's attraction on the moon, which varies

inversely as the square of the distance, is at those points greater

than the mean by 2/136ths, or l/68th. Therefore the whole

earthward pull on the moon at syzygies is 1 -^ 4- ^V? which

is greater than unity, the mean, and (as we can easily see) a

maximum. Similarly the whole earthward pull on the moon

at quadratures is 1 + T-LQ $, which is less than unity, the

mean, and (as can be easily seen) a minimum.

The Var. forces being proportional to the inverse cube of the

sun's distance, it might seem reasonable to believe that the

moon's Var. in elongation must be proportional to the same.

But in reality this lunar inequality is a very complex function

of that distance, which would vary, not indeed very differently

from the inverse cube thereof, but at a higher rate.

We may here refer to what some might regard, at first sight,

as a kinematical paradox ; though it does not belong specially to

the Variation. Since the moon is being retarded, both by the

solar and the terrestrial tangential forces, while passing from A
to B, it might be thought that she must be behind her mean

place in that quadrant. But it must be remembered that while

she enters on that quadrant at her mean place, she is then

moving with her greatest velocity ;
and as long as her velocity

is above the mean, she is gaining on her mean place which she

had at A
; though her velocity be in the act of diminishing down

to the mean under both the opposing tangential forces. Similarly

in the next quadrant, though she is being accelerated there by
both the tangential forces, she is losing on her mean place ;

because, while entering on that quadrant at her mean place, she
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is moving with her least velocity ;
and she must continue to lose

on her mean place until her velocity has been increased by the

tangential forces up to the mean. When at her mean place, as

at syzygies and quadratures, she is moving with greatest or least

velocity, respectively ; because she has then been, for the longest

time, undergoing acceleration or retardation, respectively. When
most before or behind her mean place, as at the octants, she is

moving with mean velocity ; because she has then just ceased to

gain or to lose, respectively, on her mean place.

Taking these considerations in connection with the results of

an inspection of equation (4), we see that we can fill in, for

ourselves, all the writing in Fig. 26, the diagram of the Variation.

A, from p. 106. It is evident that equation (1), by itself,

cannot give the accurate value of the effects of the Yar. forces

whose magnitudes always depend on the moon's true elongation

from the san, or the difference between the moon's and the sun's

true longitudes. But it is intended only as a first step towards

obtaining the moon's Variation in longitude, which must be

supplemented by other much smaller equations of the moon's

motions connected with this inequality. The angular distance

described between the brackets in equation (1) has been given

in several other ways ; e. g. as the moon's equated long, minus

the sun's true long., as the moon's mean long, minus the sun's

true long., &c. ; Laplace's form of it and Hanson's differ, not

only from these, but (very slightly) from each other. All the

differences are small and more or less completely made up for by

subsidiary equations. It is only very approximately correct to

say, as is often said, speaking roughly, that the Variation

vanishes at syzygies and quadratures ;
this would be true only

if the angular distance within the brackets were the moon's true,

minus the sun's true, longitude.

NOTE B, from p. 108. This can be seen as follows. (In

Fig. 30, the points marked #, b, M, are the same as those

similarly marked in Fig. 27 ;
and neglecting the line Ea, the
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scale is the same in both Figs.) Ea being the moon's mean

radius-vector, necessarily drawn vastly too short relatively to the

other lines, draw ac making the angle 20 with Ea, and of length

to represent -J^R ;
then draw cd parallel to Ea and sensibly

pointing backwards to the earth, draw ad at right angles

to E# and crZ; then ad=J
6-Rsin20. Take e so that ae may

Fig. 30.

A

-XA? S.

represent l J-g-R,
draw eM. parallel to ad

;
then cZM=TJ-6

R cos 20,

and M is the moon's true place. Now ec = (fa y^-)R. Bisect

it in 6, and draw 6M. Then be and 6M are both !(^ T-J-tf)R,

and a& is ^R+i^-^R, or i(^+ T^)R. The angle

~M.be= 2dca=21ac=4(j) whence the statement in text follows.

NOTE C, from p. 109. The other manner is as follows. (In

Fig. 31 the points marked a, e, M are the same as those similarly

marked in Fig. 30, the scale being still the same..) E is the

place of the earth, and ES points to the sun. Let E be R, the

moon's mean radius-vector rotating uniformly with the moon's

mean angular motion in elongation ;
a is then the moon's mean

position in space. With centre a and radius
-j-J-^-R,

describe a

circle, as shown in the diagram. Draw the radius ae, making
the angle 'Eae equal to 20 ; from e draw ef perpendicular to Ea ;

then fe is yj^Rsin20, Now produce fe and let/M be to/<? in

the proportion of the two Tar. coefficients, ^ and T^g- (very
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Fig. 31.
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nearly as 7 to 5) ;
then M is the position of the moon, for her

assumed mean elongation ;
and of is T^R cos 20, or (since E/

differs only insensibly from EM) the change in length of the

moon's radius-vector, for assumed 0. The point M describes

round a, as centre, an ellipse which is as though it were rigidly

attached to the line E&, and therefore rotates about its centre

once in a month progressively, relatively to ES regarded as fixed,

or in the same direction as that of the moon's revolution round

the earth ; its semi-axes major and minor ag and ah being -J^R

and T3flR, respectively, and to each other in the proportion of

the two ,Var. coefficients. As ae rotates round a, relatively to ah,

with twice the moon's mean angular velocity in elongation, M
describes the whole ellipse in half a synodical month

;
its motion

therein being retrograde, or in the direction contrary to that of

the moon's revolution round the earth. At the times of both

syzygies the moon is at h in the ellipse, and nearest the earth ;

and at the times of both quadratures she is at i, and farthest

from the earth ; and when in octants she is at <?, or at Tc, and at

her mean distance. This is very approximately so
;

but only

because the semi-axis-major of the ellipse is so small relatively

to the moon's mean distance from the earth. The ellipse has

necessarily been drawn in the diagram vastly too large in

proportion to E, the moon's mean distance.

It will be observed that the components of M's motion parallel

to hi, and to gk, are simple harmonic motions, and that the

moon describes the ellipse, relatively to its (rotating) principal

axes, as she would a stationary ellipse under the action of a

central force varying directly as the distance; she therefore

describes the rotating ellipse with a constant areal velocity.

The very approximate correctness of this is due to the fact

that the dimensions of the ellipse are so small relatively to the

moon's mean radius-vector Ea.

To obtain a graphical representation of the solar disturbing

forces, let us return to the expression for the radial force,

viz<> f , a (cos2e+ g), and to that for the tangential force,
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OQT>3

viz., 3 sin 2e ; the earth's attraction on the moon being unity.

Let us substitute in these for e, which will involve an exceedingly

small inaccuracy. Then, to use Fig. 31 for a different purpose,

if we take the radius of the circle therein to represent the

common coefficient in these expressions, and if am be one third

of said radius, fm will represent, on the same scale, the radial

disturbing force for assumed 0, and ef the tangential disturbing

force, and em will represent, quam prox., both in magnitude,

direction, and sense (but of course not in position), the whole

disturbing force acting on M. Its magnitude is said radius of

the circle X^ V 10+ 6 cos 20; and its inclination to EC is

, sin 20
tan" 1 -

cos

D, from p. 111. This can be seen as follows from

equation (5). E and being as in text, let p be the radius of

curvature at the points in question, and e an indefinitely small

elongation of the moon, for which equations (5) and (3) coincide.

Now /o=arc
2

/2 (fall from tangent). But, for syzygies,

arc
2=R2

(l-(7)
2
sin

2

e,

and

2 fall =2 {
R(1~ a)

-K(l - C cos 2e) }
\ cos e

}
\

By the addition and subtraction of Ccose within the large

parentheses this becomes

((l-<7)(l-cos0)-2<?(l-cos
2

e)cos<4.
ICOs >

Rcoscose f_ -)(l-cos
'

P -2 \ (l-C'Xl-costfj 26\1 cos'^

Dividing above and below by 1 cos e, and then making e=0,
we obtain the result in text.
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In an ellipse whose semi-axes major and minor are a and >,

respectively, the radius of curvature at the apses is ,
and that

a*
a

at the ends of the axis-minor -7- Therefore if the Yar. orbifc
o

'

were an ellipse with the same principal axes, p would be at

syzygies R ^-,
and at quadratures RX- L. Taking R as

1 6 1 -j- C

unity, and C as 00738, we find the following values for p :
-

At syz. At quadr.

In Var. orbit 1-0230, 0-9787.

In ellipse 1-0224, 0-9781.

which verifies the anticipation in text that the Yar. orbit is very

slightly flatter than an ellipse, with the same principal axes,

both at syzygies and at quadratures.

NOTE E, from p. 115. This will be sufficiently seen from the

following. It is a well-known principle (confining our attention

now to the ellipse) that if a body be projected from a given

point in presence of a given centre of attractive force having the

law of gravitation, with a given velocity not too great for the

description of an ellipse about that centre, the ellipse described

by the body will have the same axis-major, whatever be the

direction of discharge.

Now let the body be at first describing a circular orbit aid,

Fig. 32, with radius r about the centre of force c, in the direction

of the arrow. At the point a the direction of the body's motion

is changed outwards, say by the angle ; and it proceeds

to describe an ellipse gae, of which a focus is at c, and

whose semi-axis-major is equal to r, the radius of the circle.

Since ca, drawn from the focus, is equal to the semi-axis-major

of the ellipse, a is at the end of the axis-minor thereof. Conse-

quently a line drawn through c parallel to the new direction of

motion at a gives the direction of the axis-major containing the

apogee of which we are in quest. The geocentric angular

distance of the apogee from a is 90 0; and /being the centre
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of the ellipse the height of the apogee above the circle is equal to

c/, or r sin ft. The same Pig. can be used (by supposing the body
to be describing the circle in the opposite direction) to show that

if the change of the direction of the body's motion at a had been

Fig. 32.

downwards, and of magnitude 0, the resulting perigee at g
would be 90 + from a, and fall below the circle at that point,

r sin 6.

Therefore, whether the deflection at a be upwards or down-

wards, the new orbit will be an ellipse whose axis-major is 2r,

and axis- minor 2r cos
;
and if be very small, the apses are

distant from a by 90 very nearly.

We need not pursue this any further, because the actual

conditions are slightly different from what we have just con-

sidered. The moon is not simply deflected outwards without

change of velocity by the radial forces near syzygies ; though the

condition nearly approaches this, as the radial disturbing forces

are so very small. But the difference of conditions is evidently

in favour of an apogee both higher and nearer to quadrature

than what we have been contemplating. The deflection does
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not indeed occur at a single point ; but it may be regarded as

the result of a large number of exceedingly small, outwardly

directed, radial impulses, whose magnitudes are very nearly

equal at equal distances on each side of syzygy. The whole

effect is, therefore, different from that of a single impulse at

syzygy equal to the sum of the others; but, as regards our

present purpose, the difference is quite unimportant.

NOTE F, from p. 116. We have seen, p. 106, that the radial

disturbing force vanishes at the four points of the moon's orbit

distant 54 44' from syzygies, marked 0000 in Pig. 33. The

arc BO is slightly less than two thirds of AO ; and, the changes
of the moon's velocity being small, her times of describing OB

Fig. 33.

O

and AO are still more nearly in the same ratio. Again, we have

seen above that the inward radial force at B is half the

outward radial force at A ; and therefore, as it is easy to see, the

average inward force on each side of quadrature is somewhat

less than half that on each side of syzygy.

In consequence of the outwardly exceeding so much the

inwardly directed radial impulses, the earthward pull on the

moon is, on the whole, diminished
;

and therefore the mean
distance of the moon from the earth is by them increased.
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,
from p. 118. It will be found from simple considera-

tions similar to the above, mutatis mutandis, that if the gravita-

tion attraction varied, not according to its actual law, but

according to that other law of force so frequent in nature, viz.,

directly as the distance, the solar disturbing forces, if turned on

to act on an originally circular lunar orbit, would make that

orbit into what might be called an "
ellipse," with the earth at

its centre, whose axis-major, in the line of the second and fourth

octants, would be continually increasing, whilst its axis-minor

would be continually decreasing (more rapidly), until the moon

came into collision with the earth. The instantaneous ellipse

would be always writhing ; especially towards the conclusion of

its history. In this case there would be no baffling action

between the solar and the terrestrial forces. The solar tangential

forces would have the same positions, relatively to the sun, as

they have now ; though, of course, their directions would be

reversed. The earth's attraction, owing to its now supposed

law, would make the lunar orbit, when disturbed, a central

ellipse, if free to do so
; and, as is evident, the solar tangential

disturbing forces would fall in with this and go on increasing

the ellij_,ticity. The radial disturbing forces, always directed

inwards, would be proportional to the moon's radius-vector, like

the earth's attraction, and would therefore conspire therewith.

There would be, moreover, this seemingly curious result, that,

supposing the sun's distance to be always very large in com-

parison with that of the moon, the Var. forces would not sensibly

alter with the sun's distance
;
instead of being, as they actually

are, inversely proportional to the cube of that distance.

NOTE H, from p. 119. This will be seen thus. In Pig. 34, E
is the earth's place, r the moon's radius-vector for the point a, in

question, in the Yar. orbit, of which the curve ac represents a

portion, and de an indefinitely small alteration of e, the moon's

elongation. Let be the angle between the radius-vector and

the curve at a, or the tangent thereto. Then, R, the moon's
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mean radius-vector, being taken as unity, we have

r=l-Crcos2e (p. 110) and

dr=+2Csin2 de.

The earth's attraction at the point in question is
;
the mean

attraction being unity. But

-= 1 + 2C cos 2e, quam procc.

This multiplied by cos is the terrestrial tangential force.

Fig. 34.

to S

Now cos = cot 0, q. pr. ; as 6 differs so very slightly from a

right angle. Draw cb perpendicular to Ea. Then cot 0=
^-=1^1

2Cr

sin2ec?

Therefore the terrestrial tangential force is

(1 + 2(7 cos 2e)2(7sin 2e(l + C cos 2e)

=
-gV

sin 2e(l+^ cos 2e). Q. E. D.

This is never less than -^ sin 2e ; while the solar tangential

force is y^sin2e (p. 105). Therefore the proportion of the

terrestrial to the solar tangential force, at any point in the lunar

Variation orbit, is always at least as high as 1 20 to 68, or as 7 to

4, very nearly.
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CHAPTER VIII.

THE MOON'S PAEALLACTIC INEQUALITY.

WE now turn to the moon's Parallactic Inequality, whose scheme

of solar disturbing forces and of changes of velocity, &c., are

indicated in Fig 35.

In the Variation scheme the disturbing forces, both tangential

and radial, on the sunward side of the moon's orbit and those on

the opposite side are regarded as equal, which, however, they

evidently are not
; the former being slightly greater, and the

latter slightly less, than the mean. To remedy this we must

now add to those on the sunward side the necessary differential

forces having the same direction ; and we must subtract from

the Yar. forces, both radial and tangential, on the off side of the

orbit, the same differential forces ; or, in other words, join with

them the said differential forces having the contrary direction.

These constitute the P.I. forces, with which we now have to do.

The inwardly directed radial disturbing forces at B and D, in

the Variation orbit, Fig. 26, are not affected by the difference

between the sunward and the other side of the Var. orbit, and

we have put no arrows at those places in Fig. 35. The sun

being over A, the disturbing forces, with which we now have to

do, are represented by the arrows drawn with broken lines. The

terrestrial tangential forces, to be mentioned presently, are

omitted to avoid confusion. They are directed oppositely to the

solar ones
; they are, however, at their maximum at both quad-

ratures, while the solar ones vanish at those points. All vanish

at syzygies.
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The P.I. forces, being second differences, or differences between

what were themselves only differential forces, are exceedingly

small. It is easy to find that, taking the earth's mean attraction

OT>4

on the moon as unity, the solar P.I. tangential force =6 -
4

CT>4 J^-U

x (sin c sin
3

e), and that the radial force =
6^rra(cos

3
e | cos e) ;

all the letters here having the same meaning as they have in the

expressions for the Variation forces in p. 105. (See NOTE A.) The

Fig. 35.

greatest P.I. forces are the radial ones at syzygies ; and these

are only l/23,300th of the earth's mean attraction on the moon.

They are about l/259th of the Var. radial forces at the same

points ; these being also at their maximum at those points.

The P.I. perturbations, like the Var. ones, can be calculated

and considered by themselves. Since these two sets of disturb-'

ances are both very small, they can be combined like two sets
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of " small oscillations
"

by simple superposition. "We shall,

therefore, as we did with the Yar., neglect now all other

deformations of the moon's orbit and inequalities in her motion,

and suppose the moon's undisturbed orbit and the sun's relative

annual orbit round the earth to be both circular, and the angular

velocities therein uniform, and the P.I. forces to be the only

disturbing forces acting on the moon. The lunar orbit round

the earth resulting from this we shall call the P.I. orbit.

Let e be the moon's actual elongation, as above, in the pure

P.I. orbit, and <j>
her mean elongation, or that in the undisturbed

circular orbit, both reckoned eastwards up to 360 ; the sun's

angular motion of apparent revolution round the earth being sup-

posed, as in Chapt. VII., constant, for simplicity. Then we have

e=0 2' 5" sin ....... (1)

The moon's Parallactic Inequality in elongation is, then,

2' 5" sin 0. We have adopted the coefficient 2' 5" from the

latest investigations of the American astronomers
;
Hansen gives

a smaller value for it, viz., 2' 1".

Observations might be made on this equation (1) corresponding

to those in NOTE A of the preceding chapter on the Variation
;

but they are probably unnecessary.

Let r be the moon's actual, and H her mean, radius-vector, or

distance from the earth. Then we have

(2)

T>

The Moon's P.I. in radius-vector is, then, +3520

Prom these two equations, in combination, may be derived a

simple geometrical construction for obtaining the moon's position

in space, for any assumed 0, or mean elongation. First let us

note that the coefficient 2' 5", in equation (1), is, in circular

measure, j^. Whence the moon's linear departure, back-

wards or forwards, from the line of her mean radius-vector is
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T>

sin0, q. pr. ;
her departure from her mean distance

T>

from the earth being, as we have seen, + 3530
COS ^'

In Fig. 36, E is the place of the earth, and ES the direction of

the sun. The construction is as follows : Draw E to represent,

in magnitude and position, the mean radius-vector, at some

given time, whose length is 238,820 miles ; SEa is 0, and a is

the moon's mean, position. Draw ab sunward, making the angle

with the production of Ea (that is parallel to ES), and of

magnitude to represent 2(1650+3520)^, or 106 miles; then

draw 6M making the angle 2<f>
with ab (and with ES), and of

length to represent ^(1^3^)^ or 38 miles ; then M
is the moon's true place for assumed 0. (See NOTE B.)

Fig. 36.

Thus we see that the moon's P.I. orbit, considered as described

about E, and relatively to ES regarded as stationary, is a

peculiar epicyclic curve ;
Ea is the radius of the deferent circle

turning progressively with its constant angular velocity. It

carries, as in Fig. 36, the line ab, which remains parallel to ES
and itself, which also carries at its end the radius 6M of the
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epicycle, which radius rotates progressively with twice the

angular velocity of E#.

If we take the step EF, from E sunwards, equal to ctb, then

the P.I. orhit will be, relatively to F, a simple epicyclic with the

same deferent and epicycle having the same simple proportion of

their angular velocities.

The movement of the moon in her P.I. orbit can be represented

in another manner, which, of course, is the same at bottom, but

has its own interest. It follows quite easily from equations (1)

and (2). (See NOTE C.)

It is often said simply that the moon's P.I. in elongation from

the sun is proportional to the sine of her elongation. The differ-

ence involved between this and equation (1) is exceedingly small

and, as regards our present purpose, insensible. Let us then

take leave to write equation (1) thus

e= 2' 5" sine (3)

According to this, the moon is at her mean place in elongation

at both syzygies, most behind it at first quadrature, and most

before it at last quadrature.

If in equation (2) we substitute cos e for cos 0, the inaccuracy
is again insensible. When, then, we write the equation thus

r=K(l+ 3520
cos e)

= B(l + c cose), ... (4)

it becomes a convenient polar equation of the P.I. orbit referred

to the (annually rotating) line of conjunction, as prime vector.

This equation is always, quam prox., correct, and at syzygies

and at quadratures quite so.

According to this, the moon is at her mean distance from the

earth at both quadratures, at her greatest distance at conjunction,

and at her least at opposition. These differ from the mean by

only about 67*8 miles.

The P.I. orbit, as given by equation (4), differs very little

indeed from a circle which has been first shifted bodily sunwards
-p

by the distance QKOI or 67'8 miles, retaining quite unaltered
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its syzygy diameter, and then drawn out at right angles to that

diameter until it becomes wider by lie
2

,
or only 102 feet. (See

NOTE D.) The greatest width is very near, and on the sunward

side of, the line of quadratures. In the drawing out, the circle

becomes flattened a little at both syzygies ; but very slightly

more at opposition than at conjunction.

It is easy to obtain geometrically the radius of curvature at

conjunction, viz., R ~TTT> an(^ ^na^ at opposition, viz., R^j

c being the coefficient ^5. The former is less than the latter

(though by only about 1-4 inch} ; but both exceed R, the mean

radius-vector and radius of curvature. (See NOTE E.)

As with the Var. diagram, so now, we can fill in all the

writing in the P.I. diagram, Fig. 35, p. 133, when we know

simply from equation (3) that the moon is most behind her

mean place at first quadrature and most before it at last quad-
rature

;
she being of course at her mean place at both syzygies.

Among these conclusions let us note particularly that the moon's

velocity is least at conjunction, greatest at opposition, and at its

mean at both quadratures. We must return to this hereafter.

The reader will perceive better the differences between the

P.I. and the Var. diagrams by comparing them for himself, than

by reading our description of them. We may, however, draw

his attention to the following point. If we start from C in both

diagrams, we shall find that, as regards the writing only, the four

reaches, or divisions (constituting one half) of the Var. orbit

from C to A, correspond, respectively, to the four reaches (con-

stituting the whole) of the P.I. orbit.

An elegant explanation of the production of the Parallactic

Inequality by the disturbing forces now in question will be found

in Airy's Gravitation, p. 68, which we shall not reproduce here.

(See NOTE P.)

The existence of this lunar inequality was pointed out by
Newton. It is very interesting to find that he had determined
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dynamically its amount with a wonderful closeness of approxi-

mation
; though it had not been, in his time, detected by

observation. The value that he gave to the coefficient was 2' 20" ;

this is too large ; the reason being that he went on the supposi-

tion that the sun's parallax was 10", which we now know to be

greater than the true magnitude.

This brings us to the connection between the sun's parallax

and this lunar inequality, which was named by Newton from

its dependence on the ratio between the sun's and the moon's

parallax. Newton could only derive the magnitude of the P.I.

longitude coefficient from the then supposed magnitude of the

sun's parallax. But now that the said coefficiont is obtainable

by observation, it can be used for solving the inverse problem,

viz., obtaining the parallax of the sun. Different formulae have

been given for the connection of the two quantities, which

formulas are, of course, very approximately the same at bottom.

They come to this, that under the actual conditions of magnitude
of the quantities concerned the sun's parallax is almost exactly

one fourteenth of the P.I. longitude coefficient.

But besides this, the interest of this lunar inequality is greatly

increased by its having several apparent paradoxes connected

with it. This circumstance has not attracted the attention it

deserves
;
and the neglect of it has given rise to certain errone-

ous statements. Of the seeming paradoxes we shall mention

five, to be dealt with by eqns. (3) and (4) and NOTE E.

1. Since the Var. forces produce the inequalities indicated in

Fig. 26, p. 105, the reader might naturally expect that the

increase of those forces in the sunward half of the moon's orbit,

by the addition of the similarly directed P.I. forces, should

increase the inequalities in the moon's motion there ; and, cor-

respondingly, that the diminution of those forces on the off side

of the orbit, by applying to them the oppositely directed P.I.

forces, should diminish the inequalities there. But these are

both the reverse of the truth.
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2. Since the Yar. orbit is compressed at A and C by the influ-

ence of the Var. forces, the reader would naturally expect that

the just mentioned increase of the forces on the sunward side of

the orbit, by the addition of the P.I. forces, should increase the

compression there ; and, correspondingly, that the diminution of

the forces on the off side of the orbit, by the subtraction of the

P.I. forces, should diminish the compression there. But these

are both the reverse of the truth.

3. When the reader has teachably accepted, from equation (4),

the position that the effect of the P.I. forces is to elongate the

originally undisturbed orbit towards the sun and to compress it

on the opposite side, he will loyally endeavour to carry out his

newly acquired knowledge, and will conclude that the orbit is

more flattened on the off side from the sun, and less flattened on

the side next the sun, than elsewhere. But as respects the

sunward side this is the reverse of the truth. (See again

NOTE E.)

4. The reader will most naturally, and even commendably,
think that the moon would be gaining, or losing, velocity, in the

P.I. orbit, according as the P.I. tangential disturbing forces are

directed with, or against, her motion, respectively ; and there-

fore that her velocity is greatest at conjunction. He will be

confirmed in this expectation by seeing that such happens to be

the case in the Var. orbit ; see Fig. 26. He will think also that

the moon's velocity must be least at opposition, since she has

been opposed by the solar tangential force all the time of her

passing from conjunction to opposition. But all this is the

reverse of the truth. The moon always quickens or slackens

her pace in apparent defiance of the solar P.I. tangential forces.

(See NOTE G.)

5. It would be reasonable enough to expect that since the

P.I. forces are proportional to the inverse fourth power of the

sun's distance, the P.I. in longitude should also be proportional

to the same, or at least pretty nearly so. Such, however, is by
no means the case. The P.I. in longitude is inversely propor-
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tional to a complicated function of the sun's distance
; which

function is much nearer to the cube than to the fourth power
thereof. So that if there were an alteration of the sun's mean

distance, the P.I. and the Yar. in longitude would change at

not very different rates.

We shall mention further on what some might regard, at first

sight, as another apparent paradox ; but it is only kinematical in

character.

The reader, if he accepts our statements, will probably begin
in despair to imagine that the name which has been given to

this scheme of lunar inequalities is a mistake for " Paradoxical

Inequality."

The general explanation of the above apparent paradoxes is

two-fold. In the first place, as we have noted already, the

solar disturbing forces, whether of the Var. or the P.I., produce

their respective inequalities of the moon's motion in elongation

in two quite different ways, viz., by their direct local influence

on the moon's velocity in the various parts of her orbit, and also

by what we may call their indirect general influence in deforming

the orbit, and thus creating tangential components of the earth's

attraction on the moon, which are actually greater than the solar

tangential forces. In the second place, unlike the case of the

Variation (see p. 118, above), the P.I. system of solar disturbing

forces has but one axis of symmetry passing through the earth,

that of the line of syzygies. This involves a most important

difference as to the dynamics of these two schemes of lunar

inequalities, as considered in NOTE F.

It so happens, as we have seen, that, in the case of the Var.

orbit, the created terrestrial tangential forces always act along

with the solar tangential forces
;
and thus, in the usual elemen-

tary treatment of the Variation, they are not prominently noticed,

or are even disregarded altogether ; although they are, even in

that orbit, more important than are the solar ones themselves,

as to their direct local action.
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But in the case of the P.I. orbit, the relative importance of

the terrestrial tangential forces is much more striking, for two

reasons. The small solar P.I. forces have, by accumulation of

effects, deformed the orbit to such an extent (very small,

however, absolutely) that the terrestrial tangential forces created

thereby are much greater, proportionally, than the solar tan-

gential forces. The former are always equal to the latter

multiplied by 3'31 sec
2
e. They are, therefore, never less than

3*31 times as great as the latter
;
and when the moon is not far

from quadratures, very much more, proportionally, than this.

(See NOTE H.) And as the greater terrestrial, act always against

the smaller solar, ones, the singular result follows that the

inequalities in the moon's velocity and in her elongation, now
under consideration, are the opposite of what the solar tangential

forces, with which we are now engaged, are endeavouring to

effect by their direct local action. So that, paradoxical as it

sounds, it is strictly true that the terrestrial tangential forces are

the immediate cause of the moon's P.I. in elongation, and that

this lunar perturbation would be greater, but for the hindrance

of the direct local action of the solar tangential forces. Thus

the moon's Parallactic Inequality presents a peculiarly interesting

dynamical problem.

NOTE A, from p. 133. The verification of these expressions for

the disturbing forces, though of a simple character, is a little

troublesome. If the reader should undertake it, let him beware

not to stop at the first approximation, which would give the

numerical factor 7 instead of 6
;
which latter is sensibly accurate.

SR4

The value of the coefficient 6^ is 0-0000858.

These expressions show that the P.I. forces are, quam prose.,

inversely proportional to the fourth power of the sun's distance

from the earth. It might seem just at first sight that they are

also directly proportional to the fourth power of the moon's

distance from the earth. But they are proportional only to the



142 THE MOON'S PAEALLACTIC INEQUALITY.

second power thereof. The E4 comes in on account of the earth's

mean attraction on the moon being here taken as unity.

The trigonometrical factor in the expression for the tangential

force can be written | sin 2e cos e
;
that for the radial force can

be written J cos 2e cos e. This gives the interesting result that,

at the elongation e, the tangential force divided by the radial

force = tan 2e.

NOTE B, from p. 135. In Fig. 37 the points marked a, 6, M,
are the same as those similarly marked in Fig. 36. Ea being
the moon's mean radius-vector, necessarily drawn vastly too

Fig. 37.

to 3.

short relatively to the other lines, and a the moon's mean place,

draw ac making the angle with the production of Ea (and

parallel with ES) to represent ^-E ;
then draw cd parallel to

Ea, and sensibly pointing backwards to the earth
;
draw ad at

right angles to Ea and cd ;
then ad is j^E sin $. Take e so

that ae may represent g^E ;
draw eM. parallel to ad

;
then cZM

is g^E cos 0,
and M is the moon's true place. Now ec is

^(r50~35lo)'
^igect ^ in &> and draw 6M. Then be and 6M

are both iB/r^-sk). and 6 is ^i^-f^(tSR-sns). <
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JLj-fg-Lg).
The angle Mfo==2Mc&, or 20; whence the

statement in text follows.

NOTE C, from p. 136. (See Fig. 38.) As before, E is the place

of the earth, and ES the direction of the sun, and the points

marked a, e, M are the same as those similarly marked in

Fig. 37. Let Ea be the moon's mean (both as to position

and magnitude) radius-vector ;
so that a is the moon's mean

position. With centre a and radius g^B, describe the circle

Fig. 38.

toS

shown in the Fig. Draw the radius ae parallel to ES, making
the angle hae equal to aES, or

0. Through e draw/M perpen-

dicular to Ea ; then of is ~-
Q
~R cos

0, or (since E/ is not sensibly

different from Ee) the change in the length of the moon's radius-

vector, for assumed ; and fe is ~R sin 0. Now if /M be to

fe in the proportion of the two P.I. coefficients 2' 5", or, in.

circular measure, ~, to ^- , which is 15 to 7, very nearly, then

M is the position of the moon for her assumed mean elongation 0.
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The point M describes, round a as centre, an ellipse which is as

though it were rigidly attached to Ea, and therefore rotates

about its centre once a month progressively ; its semi-axes major

and minor, ay and a/*, being jggyR
and g^R, respectively ; and

as ae rotates, relatively to ah, with the moon's mean angular

velocity in elongation (not in longitude), the ellipse is described

retrogressively in a synodical month. At the time of conjunction

the moon is at the point h of the ellipse, and farthest from the

earth
;
at the time of opposition she is at i in the ellipse, and

nearest to the earth ; and she describes the ellipse with a simple

harmonic motion relatively to each of the principal axes of the

(rotating) ellipse.

We have been considering the matter from the standpoint of

an observer on the earth. But it is only as seen from the earth

that the moon makes a complete circuit round a. Since the

above ellipse, which is described once in a synodical month

retrogressively, rotates progressively once in the same time, or

otherwise more simply, since ab is greater than 6M, the moon

never makes any circuit round a relatively to fixed space, or as

viewed by a spectator looking at right angles to the plane of her

orbit. She is always more or less nearly on the sunward side of a.

Here, then, is the seeming kinematical paradox, as some might

regard it at first sight (only), to which we have already alluded
;

viz., that in describing the P.I. orbit the moon is always nearly

on the same side, speaking roughly, of her mean place ! The

explanation of this is that a is the moon's mean place relatively

only to the earth about which she is revolving.

The P.I. has, moreover, its own seeming kinematical paradox

precisely similar to that of the Yar. considered at p. 121.

In this we have contemplated the P.I. as existing by itself;

but if we consider it as superposed on the Yar., a must be

regarded as the moon's position in the Yar. orbit. The inaccuracy

involved in doing this is quite insensible.

The P.I. disturbing forces are too complicated to be introduced

with advantage into Fig. 38.
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NOTE D, from p. 137. This will appear thus: Adopting

equation (4), we have r=R(l-f ccose) ;
c being the coefficient

gJjjQ.
The ordinate y at any point of the lunar P.I. orbit is

r sin e, or R (sin e+ c cos e sin e), which is R (sin e+ |c sin 2e).

Therefore cZ?/
=R (cos e+ c cos 2e)de. For y a maximum,

cos e= ccos 2e= c(2 cos
2
e 1). This quadratic equation

gives

which is

and this is c, quam prox. ; and

sin e= N/l c
2
,

which is 1- |c
2
, q. pr., on account of the exceeding smallness

of c. Hence y (or r sin e), at its maximum, is E(l -f c
2

)(l ^c
2

),

and this is E(l -f |c
2

), q. pr.

Therefore, taking R as 238,820 miles, that maximum diameter

is longer than the syzygy diameter, or 2R, by Re2
,
or 102 feet

(Q.E.D.). Said maximum diameter passes very nearly indeed

through the middle point of the syzygy diameter, and conse-

quently between the centre of the earth and the sun, and thu

does not coincide with the line of quadratures.

NOTE E, from p. 137. The radius of curvature p at conjunction

may be obtained thus : Let be an indefinitely small e or

elongation ;
then we have by equation (4), for the radius-vector

at conjunction, R (1+ c); c being the coefficient^ ;
as in last

NOTE. The radius of curvature p= arc
2

/2 (fall from tangent).
But

arc
2=R2

(l+c)
2
sin

2

*, and

2R
(1+c cos e ccos2

e).cose
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Therefore

E(l + c)
2

(1 + cos e) cos e

When e vanishes this becomes E. ^
.

Similarly, the radius
JL -7" ^j(?

Q_ c\2

of curvature at opposition p becomes E^--L9
as in text.

1 ^(5

These evidently differ very slightly indeed from E, and from

each other. Taking E as 238,820 miles, and c as 0-000284,

we find p p= l*39 inch.

NOTE P, from p. 137. If we gave the proof here we should

have to do it ab initio, which would require much space. But we

may make the following observations on the subject. The mode
of production of the P.I. orbit is exceedingly different from that

of the Yar. orbit. The scheme of Yar. forces is symmetrical

relatively to the line of syzygies and to that of quadratures ;

consequently they go through their period of change in half a

synodical lunation. But the scheme of P.I. forces is symmetrical

relatively to the line of syzygies only ; and consequently their

period is a whole lunation. Now a focal ellipse and the scheme of

changing of the gravitation forces therein are symmetrical about

one axis only, viz. the apsidal, and the period of the changing

forces is that of one revolution of the body about the centre of

force. It is evident, therefore, that if there were nothing in the

conditions of the case to prevent it, the P.I. forces, when turned

on to act on an originally circular lunar orbit, would go on

increasing indefinitely the deformation of the orbit, whatever

the character thereof might be. A moment's consideration will

show the nature of the deformation. Since tbe tangential forces

are proportional to sin e sin
3
e, the magnitudes of those belong-

ing to the lower two arrows in Fig. 39 vary symmetrically on

each side of the quadrature D ; they are equal at equal distances
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on both sides of that point. Therefore, since they are so ex-

ceedingly small, their impulses are very nearly equivalent, for

our present purpose, to a short sufficiently strong tangential

impulse acting at D. Therefore, as they are acting with the

moon's motion, they tend to produce an apogee at the opposite

side of the orbit very near B. Similarly, as the forces belonging
to the two upper arrows in the same Fig. are acting against the

moon's motion, their impulses would produce a perigee very near

D. The outwardly-directed radial forces on the sunward side

of the orbit tend to produce an apogee near B, and the inwardly-

Fig. 39.

directed ones on the other side a perigee near D. The conditions

of the focal elliptical orbit lend themselves compliantly to this ;

and if the disturbing forces cease to act, the deformation of the

orbit would continue (with a very slight alteration). The

consequence is that if the P.I. forces could continue to act,

without the sun's relative revolution round the earth, the

eccentricity of the orbit would go on increasing to a result which

could not easily be followed out ; but probably until the moon

fell upon the earth
;
the line of apses remaining in quadratures

and fixed in space. But this latter is prevented by the sun's

relative annual revolution round the earth, which would diminish

the eccentricity, and thereby give to the line of apses a pro-
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gressive angular movement, relatively to space, which would, at

first, be slower than the sun's
;
so that the sun would be over-

taking it. By the time that the sun had overtaken it, the

angular movement of the axis, which had been increasing, though
all the while less than that of the sun, would be brought up to

equality with that of the sun
;
and it would thenceforth continue

pointing to the sun. Thus, owing to the baffling conditions of

the sun's relative revolution round the earth, the result of the

action of the disturbing forces is exceedingly different from what

it- would otherwise be. Nevertheless these forces are always

tending to produce their own proper effect, which is to make an

apogee very near B, and a perigee near D. But the very small

effect that they can produce in one lunation, when compounded
with that at conjunction, is only sufficient to cause the latter to

be always ahead of its position in the preceding lunation, and to

keep it moving progressively with the sun.

The P.I. orbit has been, for convenience, and indeed in accord-

ance with precedent, roughly spoken of as an ellipse ;
it being

intended that the earth is at the focus, and that the apsidal

diameter (in syzygies) is the axis-major, with the apogee in

conjunction. The velocity of the moon in the P.I. orbit would

accord very nearly indeed with this
;
but the actual "

ellipse
"

is

one of a rather peculiar kind, in that its axis-major is slightly less

than its width.
t

NOTE G, from p. 139. This follows from the scheme of P.I.

forces in Fig. 35, p. 133, and from what is told us by equation

(3), as mentioned in p. 137, taken in connection with the prin-

ciples of the apparent kinematical paradox in Chapt. VII., p. 121.

But as some persons may feel a difficulty in accepting this, it

may be well to put the argument together here, though it be a

little repetition. By equation (3), the moon is at her mean place

at conjunction ; therefore she is there moving either with greatest

or least velocity which ? At the preceding quadrature D she

is, by said equation, most before her mean place, and therefore
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moving with mean velocity ; but, since she is back at her mean

place at conjunction, she has been losing velocity in the quadrant

preceding conjunction. Therefore she is going with least velocity

at conjunction. Similarly, on comparing first quadrature with

opposition, we find that the moon is going with greatest velocity

at opposition. Thus her velocity is at the maximum at opposition,

at the mean at last quadrature, and at the minimum at con-

junction ;
that is, she has been losing velocity all through that

semi-orbit
; though the solar tangential force has been all the

while acting in consequentia , or along with her motion.

Similarly she gains velocity all through the other semi-orbit
;

though the solar tangential force has been acting in antecedently

or against her motion.

We have, so far, been content with the general law of the

change of the moon's angular velocity in the P.I. orbit
;
but the

exact law can be obtained by differentiating equation (3). The

coefficient, in that equation, as expressed in circular measure,

oeing ^, the actual vel.=the mean do. X (1 j^ cos e). This

equation shows, at a glance, that the velocity is least at con-

junction, greatest at opposition, and at its mean at quadratures ;

the opposite of what the solar tangential forces would cause by
their immediate local action.

NOTE H, from p. 141. In Fig. 40, E is the earth's place, the

curve ac a portion of the moon's P.I. orbit, and de an indefinitely

small increase of
,
the moon's elongation. Let 6 be the angle

between the moon's radius-vector and the curve at a, or the

tangent thereto.

Then E, the moon's mean radius-vector, being taken as unity

we have, for the actual radius-vector at a, by equation (4),

T 1 -h c cos e
;
whence

dr csin e de.

The earth's mean attraction on the moon being, as well as R,

taken for unity, the earth's attraction at a is -3, or 1 2c cos e,
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quam prooc., or sensibly 1. This multiplied by cos 6 is th

earth's tangential force at a.

Now cos 0=cot0, q. pr., as 6 differs so very slightly from a

db dr csinede
nght angle. But cot 6 =5=^' and this -

(rj: eeo, t)<fe

-

or csin e, q. pr., or 0-000284 sine
; while the sun's tan-

Fig. 40.

gential force at a is + 0'0000858(sin e sin
3

e) (see NOTE A).

Therefore the terrestrial is to the solar tangential force, at the

same point with the elongation ,
as 3'31 sec

2
e to 1 (Q. E. D.).

At quadratures, then, the terrestrial is infinitely greater, pro-

portionally, than the solar tangential force
;

but this it can

easily be, since at those points it is at its maximum, while the

solar force is there zero.
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