HAMS GO DIGITAL

Flip-Flop Tutorial
Packet BBS Basics
RS-232 Explained
Much, much more!

PROJECTS
LED X-Y Scope
PSK Data System
A/D Conversions

REVIEWS
IC-375A Transceiver
LMW 2304 MHz Transverter
Ramsey Multimeter
ICOM HAS ALL YOUR BASES COVERED

ICOM has your winning line-up for fixed, portable, and mobile operations on today's hottest amateur bands. Slide into the winner's circle with ICOM's deluxe "75" series transceivers, with a team committed to excellence from VHF to UHF communications. Each compact all-mode unit delivers maximum performance, reliability, and ease of operation. It's a championship line-up!

All "75" series transceivers are an FMer's dream rig with 99 tunable memories, four scan modes, odd offsets, packet compatibility, scanning mic and DDS system for data input. SSB/OSCAR delights include dual VFOs, PBT, crystal-resonant IF notch, noise blanker, and semi/full CW break-in. The glamorous "75" units provide ultimate mobiling flexibility.

SUPER SCANNING
Monitor all of today's action with four scanning modes: spectrum, programmable, mode, and memory. Scans 99 memories in five seconds!

2 METERS. ICOM's 25-watt IC-275A VHF leader receives 138.0-174.0MHz including the public service, marine, and weather bands, and transmits 140.1-150.0MHz. Includes AC supply. The IC-275H is 12-volt DC-powered, produces 100 watts output, and will operate with external AC supply. Two of ICOM's heavy hitters!

220MHz. The 25-watt output IC-375A receives 216.0-236.0MHz, transmits 220.0-255.0MHz, and includes AC supply. A genuine masterpiece!

440MHz. Enjoy top-notch 430.0-450.0MHz operation with the 25-watt IC-475A featuring AC supply, or go high power using the 75-watt, AC/DC-powered IC-475H "super rig."

6 METERS/10 METERS. Join the fun of sunspot cycle 22 openings with the superb 10-watt IC-575A. It receives 26-56MHz, transmits 28-29.7MHz, and includes AC supply. The IC-575A, a true superstar!

ICOM CANADA, A Division of ICOM America, Inc.
3971 - 85 Road, Unit 9, Richmond, B.C. V6X 2T4

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. BA1/187
THE ALL NEW PRIVATE PATCH IV BY CSI HAS MORE
COMMUNICATIONS POWER THAN EVER BEFORE

- Initiate phone calls from your HT or mobile
- Receive incoming phone calls

NEW! • Telephone initiated control . . .

- Operate your base station with complete control from any telephone
- Change frequencies from the controlling telephone
- Selectively call mobiles using regenerated DTMF from any telephone
- Eavesdrop the channel from any telephone
- Use as a wire remote using ordinary dial up lines and a
speaker phone as a control head.

The new telephone initiated control
capabilities are awesome. Imagine
having full use and full control of
your base station radio operating
straight simplex or through any re­
peter from any telephone! From
your desk at the office, from a pay
phone, from a hotel room, etc. You
can even change the operating
channel from the touchpad!

Our digital VOX processor flips your
conversation back and forth fully
automatically. There are no buttons
to press as in phone remote
devices. And you are in full control
100% of the time!

The new digital dialtone detector
will automatically disconnect Pri­
vate Patch IV if you forget to send #
to remotely disconnect) before
hanging up. This powerful feature
will prevent embarrassing lock-ups.

The importance of telephone ini­
tiated control for emergency or
disaster communications cannot
be overstated. Private Patch IV gives
you full use of the radio system from
any telephone. And of course you
have full use of the telephone
system from any mobile or HT!

To get the complete story on the
powerful new Private Patch IV con­
tact your dealer or CSI to receive
your free four page brochure.

Private Patch IV will be your most
important investment in communi­
cations.

The new dialtone initiated control
features are awesome. Imagine
having full use and full control of
your base station radio operating
straight simplex or through any re­peater from any phone! From
your desk at the office, from a pay phone, from a hotel room, etc. You can even change the operating channel from the touchpad.

Our digital VOX processor flips your conversation back and forth fully automatically. There are no buttons to press as in phone remote devices. And you are in full control 100% of the time!

The new digital dialtone detector will automatically disconnect Private Patch IV if you forget to send #(to remotely disconnect) before hanging up. This powerful feature will prevent embarrassing lock-ups.

The importance of telephone initiated control for emergency or disaster communications cannot be overstated. Private Patch IV gives you full use of the radio system from any telephone. And of course you have full use of the telephone system from any mobile or HT!

To get the complete story on the powerful new Private Patch IV contact your dealer or CSI to receive your free four page brochure.

Private Patch IV will be your most important investment in communications.
Tired of paying higher and higher prices for V.H.F. magnetic mount antennas? Hustler has the solution. Two new series of antennas at surprisingly affordable prices. Built with the same quality and performance you expect from a Hustler product. Designed to offer you years of trouble-free operation. Priced to save you money.

FX SERIES (pictured mounted)
- 3.4 db gain | 5/8 wave
- 200 watt rating
- 15 foot coax
- PL-259 connector installed
- Magnetic mount holds to 100 mph

Model FX-2 — 2 Meter, black & chrome
Model FX-220 — 220 MHz, black and chrome

$24.95 ea.

Also Available in Black
Model FX-2B, 2 Meter
Model FX-220B, 220 MHz $29.95 ea.

RX SERIES (pictured lying down)
- 3.4 db gain | 5/8 wave
- 100 watt rating
- 15 foot coax
- PL-259 connector installed
- Magnetic mount holds to 75 mph

Model RX-2, 2 meter black and chrome
Model RX-220, 220 MHz, black & chrome

$19.95 ea.

Also Available in Black
Model RX-2B, 2 meter
Model RX-220B, 220 MHz $24.95 ea.
MFJ multi-mode data controller

MFJ shatters the mode barrier and the price barrier with the MFJ-1278 and gives you ... Packet, RTTY, ASCII, CW, WEFAX, SSTV and Contest Memory Keyer ... 7 digital modes ... for an affordable $249.95

Amateur radio's newest multi-mode data controller -- the MFJ-1278 -- lets you join the fun on Packet, RTTY, ASCII, CW. Weather FAX, SSTV and gives you a full featured Contest Memory Keyer mode ... you get 7 modes ... for an affordable $249.95.

Plus you get high performance HF/VHF/CW modem, software selectable dual radio ports, precision tuning indicator, 32K RAM, AC power supply and more.

You'll find it the most user-friendly of all multi-modes. It's menu driven for ease of use and command driven for speed.

A high resolution 20 LED tuning indicator lets you tune in signals fast in any mode. All you have to do is to center a LED and you're precisely tuned into within 10 Hz -- and it shows you which way to tune!

All you need to join the fun is an MFJ-1278, your rig and any computer with a serial port and terminal program.

You can use the MFJ Starter Pack to get on the air instantly. It includes computer interfacing cable, terminal software and instructions ... everything you need to get on the air fast.

Order MFJ-1282 (disk)/MFJ-1283 (tape) for the C-64/128 and VIC-20 or MFJ-1284 for the IBM or compatible. $19.95 each.

Packet gives you the fastest and most reliable error-free communications of any amateur digital mode.

With MFJ's super clone of the industry standard -- the TAPR TNC-2 -- you get genuine TAPR software/hardware plus more -- not a "work-a-like" imitation.

Extensive tests published in Packet Radio Magazine ("HF Modern Performance Comparisons") prove the TAPR designed modem used in the MFJ-1278 gives better copy with proper DCD operation under all tested conditions than the other modems tested.

Hardware DCD gives you more QSOs because you get reliable carrier detection under busy, noisy or weak conditions.

A hardware DCD gives you full duplex operation for satellite work or for use as a full duplex digipeater. And, it makes possible speeds in excess of 56K baud with a suitable external modem.

Good news for SYSSYS! New software lets the MFJ-1278 perform flawlessly as a WORL/WA7AMBL bulletin board TNC.

Basic RTTY

You can copy all shifts and all standard speeds including 170, 425 and 800 Hz shifts and speeds from 45 to 300 baud. You can copy not only RTTY but also press, weather and other exciting things.

A high performance modem lets you copy both mark and space for greatly improved copy under adverse conditions. It even tracks slightly drifting signals.

You can transmit both narrow and wide shifts. The wide shift is a standard 850 Hz shift with mark/space tones of 2125/2975 Hz. This lets you operate with both AM and standard VHF FM RTTY.

You get both the American Western Union and the International CCITT character sets. Autostart for unattended reception and selectable "Diddle".

A receive Normal/Reverse software switch eliminates busyness and Unshift-On-Space reduces errors under poor receiving conditions.

ASCII

You can transmit and receive 7 bit ASCII using the same shifts and speeds as in the RTTY moding and using the same high performance modem. You also get Autostart and selectable "Diddle".

You get a Super Morse Keyboard mode that lets you send perfect CW effortlessly from 3 to 99 WPM, including all prognosis -- it's tailor-made for traffic handlers.

A huge typeahead buffer lets you send smooth CW even if you "hunt and peck".

You can store entire QSOs in the message memories, if you want to! You can link and repeat any messages for automatic CQs and beaconing. Memories also work in RTTY and ASCII modes.

A tone Modulated CW mode turns your VHF FM rig into a CW transceiver for a new fun mode. It's perfect for transmitting code practice over VHF FM.

An AFSK CW mode lets you ID in CW.

The CW receive mode lets you copy from 1 to 99 WPM. Even with sloppy lists you'll be surprised at the copy you'll get with its powerful built-in software.

You also get a random code generator that'll help you copy CW faster.

Weather FAX

You'll be fascinated as you watch WEFAX signals blossom into full fledged weather maps on your printer. Other interesting FAX pictures can also be printed -- such as storm photos from wire services.

Any Epson graphics compatible printer will print a wealth of interesting pictures and maps.

Automatic sync and stop lets you set it and leave it for no hassle printing.

You can save FAX pictures and WEFAX maps to disk if your terminal program lets you save ASCII files to disk.

Pictures and maps can be printed to screen in real time or from disk on IBM and compatibles with the MFJ-1284 Starter Pack.

You can transmit FAX pictures right off disk and have fun exchanging and collecting them.

Slow Scan TV

The MFJ-1278 introduces you to the exciting world of slow scan TV.

You'll not only enjoy receiving pictures from thousands of SSTVers all over-the-world but you can send your own pictures to them, too.

You can print slow scan TV pictures on any Epson graphics compatible printer. If you have an IBM PC you can print to screen in near real time or from disk with the MFJ-1284 Starter Pack.

You can transmit slow scan pictures right off disk -- there's no need to set up lights and a camera for a casual contact.

You can save slow scan pictures on disk from over-the-air QSOs if your terminal program lets you save ASCII files.

The MFJ-1278 transmits and receives 8.5, 12, 24, and 36 second black and white format SSTV pictures using two levels.

Contest Memory Keyer

Nothing beats the quick response of a memory keyer during a heated contest.

You'll score valuable contest points by completing QSOs so fast you'll leave your competition behind. And you can snare rare DX by slipping in so quickly you'll catch everyone by surprise.

You get tambour operation with dot-dash memories, self-clearing dots and dashes and jamproof spacing.

Message memories let you store contest RST, QTH, call, rig info ... everything you used to repeat over and over. You'll save precious time and win more points.

You get automatic increasing serial numbering. In a contest it can make the difference between winning and losing.

A weight control lets you penetrate QRM with a distinctive signal or lets your transmitter send perfect sounding CW.

More Features

Turn on your MFJ-1278 and it sets itself to match your computer baud rate. Select your operating mode and the correct modem is automatically selected.

Plus ... printing in all modes, threshold control for varying band conditions, tone-up command, lithium battery backup, RS-232 and TTL level serial ports, watch dog timer, FSK and AFSK outputs, output level control, speaker jack for both radio ports, test and calibration software, Z-80 at 4.9 MHz, 32K EPROM, and socketed ICs. FCC approved. 9x15x9 inches, 12 lbs. 3600.$

Get yours today and join the fun crowd!
Digital communications—what could be easier? Just think about it.

The simplest thing to do with an electronic device is to turn it on and off, or to change a voltage from high to low or low to high. It’s easy for a man or machine to differentiate between these two conditions or logic states. A light turned on, for example, may mean yes, while off means no; true and false; stop and go; and so on. A simple communications system like this is called binary, meaning to have two parts.

In digital communications, all information is expressed in terms of ones and zeros or bits (binary digits). A device may interpret a high voltage as a one, and a low voltage as a zero. With two choices, the information passed in such a simple system is obviously very limited. Therefore, we need to expand the system’s “vocabulary.” We do this by creating digital words, or bytes, made up of a convenient number of bits, usually 8, 16, or 32.

Let’s take a look at a system that uses two bits for a digital word. The possible choices for words are 00, 01, 10, and 11. The choice of meaning for each digital word is ours alone. We can assign, say, “yes” and “no” to 11 and 00, respectively, and “probably” and “unlikely” to 10 and 01, respectively. Or suppose we wanted to express a voltage with our new vocabulary. This gives us four choices: perhaps 0, 1, 2, and 3 volts, or even 0, 15, 30, and 45 volts. Again, the choice is ours!

Now, let’s get really adventurous and try to express the alphabet and numbers 0–9 with digital words. Thus, we need enough choices for all upper and lower case letters (52) and the numbers 0–9. That makes a total of 62 choices required. How large will our digital words have to be?

Every time we add a bit onto a digital word, the possible combinations increase by a factor of two. In the last example, we went from two to four choices by adding one bit. Three-bit words give us eight choices, and so on. To accommodate 62 choices, we need digital words six bits long, which actually produces 64 choices (2^6 = 64) in our digital vocabulary. Thus, we can have a fairly complete alphanumeric digital vocabulary with six-bit words, and even have enough room for a couple of punctuation characters.

There are many digital coding schemes for alphabets and special computer characters. The five-unit Baudot code is used in ordinary radioteletype (RTTY) transmissions. The seven-bit ASCII code provides 128 choices for characters, and includes many characters peculiar to computer operations.

How do we turn voice and other analog signals into bytes? Special integrated circuits known as analog-to-digital (A/D) converters sample a signal periodically, measure its voltage, and convert the voltage to digital words. At the receiver, a D/A converter carries out the reverse process.

Once we have data into bits, the next step is to send it over a radio link. Again, we normally only have to worry about two choices—ones and zeros. The simplest method would turn a carrier on for a one and off for a zero, much like Morse code transmission. This method is called on-off keying (OOK). A more reliable method of data transmission uses frequency shift keying (FSK) in which two different tones are used to represent ones and zeros. Phase-shift keying (PSK) is not as common on the ham bands as in the commercial world. This method takes a constant frequency signal and alters its phase (position in degrees) to send a bit or digital word. A shift of 180 degrees is known as biphase shift keying (BPSK).

Electronic communications links are subject to noise, and to errors or eliminate errors, many systems use some form of error correction. Some error correction methods simply identify that an error has occurred. Parity schemes add a bit onto the end of a byte. With even parity, the total number of ones in a word will be an even number. For example, if 11101100 is our data byte, the parity bit added to the end would be a one: 11101101. A parity error indicates there are an odd number of one bits in the word. If an odd parity scheme had been selected, the parity bit would be zero: 11101110.

If the parity does not match upon receipt, the operator or system may request a retransmission of the suspect word.

Mode A of AMTOR uses an automatic repeat request (ARQ) error correction scheme, while Mode B uses a forward error correction (FEC) method. With FEC, additional bits are added to each byte to more closely identify where in a word an error has occurred. FEC schemes can be very complex.

The beauty of digital communications lies in its fundamental simplicity and the ability to interface the outside world to electronic devices, computers, and transmission systems. Using these methods, we can exchange, store, and retrieve information in ways only dreamed about a decade ago. Amateur radio has entered a new age, and it’s exciting to be a part of it. Come join us! —Larry Ledlow, Jr. NASE

Welcome, Newcomers!

Glossary for Newcomers

A/D converters—Special ICs that sample incoming waveforms (voice, video, etc.) and create digital words (bytes) proportional to the voltage. D/A converters reverse the process and recreate the original waveform from the bytes.

AMTOR—Amateur Teleprinting Over Radio; a radio teletype system developed by Peter Martinez G3PLX based on the SITOR maritime system. Modes A and B of AMTOR use ARQ and FEC error correction, respectively.

Analog—A signal that varies its amplitude continuously over a given voltage range.

ASCII—American Standard Code for Information Interchange; a seven-unit teleprinter code designed primarily for computer applications.

Asynchronous—A method of signal transmission that does not use any reference to a time scale; i.e., data transmissions can occur at any time. Manual morse, voice, and manually operated teletype transmissions are asynchronous. Synchronous data is sent according to a strict time sequence so the transmitter and receiver are synchronized.

Baud rate—Measure of transmission speed. One baud is one element or pulse, which may correspond to one or several bits each. Baud rate is NOT always equivalent to bit rate.

Baudot—A five-unit radio teletype code commonly used on the amateur bands. It does not provide for error correction.

bit—A binary digit expressed as one or zero; fundamental element of digital communications.

byte—A digital word, often made up of eight bits.

Error correction—A coding scheme that allows detection and correction of errors in a data transmission. A system may initiate an automatic repeat request, or ARQ, which tells the transmitter to repeat a block of data in which an error was detected. FEC, or forward error correction, actually builds a correction scheme into a data stream, either by adding bits to each word or by repeating each word several times to increase the chances of proper reception.

FSK—Frequency shift keying; the use of separate tones to send data bits.

Interface—The point at which data is transferred from one component to another.

modem—Modulator/demodulator; a device used to send and receive digital data.

Parity—An expression that indicates whether the number of bits in a code word is even or odd.

PSK—Phase shift keying; the use of phase changes of a constant frequency signal to send data bits. 180-degree phase shifts generate bi-phase shift keying, BPSK.
TABLE OF CONTENTS

FEATURES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Flip-Flop/Latch Circuit</td>
<td>W4RNKL</td>
</tr>
<tr>
<td>14</td>
<td>New York City School Program</td>
<td>WB2MGP</td>
</tr>
<tr>
<td>20</td>
<td>Digital X-Y Oscilloscope</td>
<td>WA9TYU</td>
</tr>
<tr>
<td>22</td>
<td>Care and Feeding of PBBS</td>
<td>WA1FHB</td>
</tr>
<tr>
<td>29</td>
<td>uoSATs Part II</td>
<td>N5AHD</td>
</tr>
<tr>
<td>32</td>
<td>Buyer Beware</td>
<td>WD8RCL</td>
</tr>
<tr>
<td>34</td>
<td>A Pulsed Bi-Phase Communications System</td>
<td>WA1FHB</td>
</tr>
<tr>
<td>38</td>
<td>Telegraph Trail Part IV</td>
<td>W6CK</td>
</tr>
<tr>
<td>40</td>
<td>Briefly Speaking: RS-232</td>
<td>W5PGF</td>
</tr>
<tr>
<td>42</td>
<td>Bicycle Mobile R & D Lab</td>
<td>N4RVE</td>
</tr>
<tr>
<td>51</td>
<td>Digital Voice Compression</td>
<td>WA3YQY</td>
</tr>
<tr>
<td>54</td>
<td>Voltage Sampling with a Computer</td>
<td>Magee</td>
</tr>
</tbody>
</table>

REVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Ramsey D-5100 Digital Auto-ranging Multimeter</td>
<td>WB9RRT</td>
</tr>
<tr>
<td>26</td>
<td>ICOM IC-375A 220 MHz Multimode Transceiver</td>
<td>KT2B</td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Above and Beyond</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Ad Index</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Barter and Buy</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Circuits</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Dealer Directory</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>DX</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Ham Help</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Index: 6/88</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Letters</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Never Say Die</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>New Products</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Op Ed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Packet Talk</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Propagation</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>QRP</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>QRX</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>QTH DX</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>RTTY Loop</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>73 International</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Special Events</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Tech Tips</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Weathershirts</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Welcome, Newcomers</td>
<td></td>
</tr>
</tbody>
</table>

*Cover by Deborah Smith
Photography by Suzanne Torsheya*
A Small World

An interesting article on cosmology in a recent Discover magazine mentioned a Chandra Wickramasinghe as the author of several books. Hmm. How many Wickramasinghes can there be in the world? Could it be as common in Sri Lanka as Jones in America?

This took me back to 1959 and my flight around the world on Operation World-Wide. Lordy, that was almost 30 years ago! There I met Soma Wickramasinghe 437ES and her beautiful daughter Chitra during a two-day visit to Colombo, Ceylon. Soma was by far the most active ham on Ceylon. Indeed, I’d even worked her from my W2NSD home station several times.

Operation World-Wide was the brainstorm of W8PJL, the PR director at the Pure-Pak division of Ex-Cell-O Corporation. Pure-Pak—you’ll see their trade mark on almost any milk carton—was interested in doing a film of their milk container operations around the world. Since the cost of sending a film crew on such a jaunt was prohibitive, some way to cut this cost had to be found. The obvious answer was to get the government to foot the bill.

The Military Air Transport Service (MATS) provided an old C-54 left over from the Berlin Airlift operation and a crew. Pure-Pak provided the film crew. In addition to filming the milk-carton operations, the crew also would do a film on MATS for the government, thereby justifying the expense of the plane and crew. How about a ham station on the plane as it flies around the world? Great idea!

As the then-editor of CO, I heard about the trip, and also found out that one of the two hams selected to go along to operate had suddenly developed a heart problem. I quickly volunteered, and the next thing I knew I was aboard the plane, leaving from McGuire Air Force Base, New Jersey, for a trip around the world.

The ham gear was the newest of new: two of five prototype Hallicrafters FPM-200 sideband solid-state transceivers, with a backup of the older Hallicrafters HT-32 and SX101 tube gear. Aboard with me were Bill Leonard W25KE for CBS News, Hallicrafters’ Bud Drobish W9QVA, Pure-Pak’s W8OJJ, the film crew, the Air Force flight crew and an Air Force PR chap.

Unsuspecting Start

The first stop was Newfoundland (which was still a separate country then). The two prototype rigs blew up a few hours out of New Jersey. No problem, I thought, let’s fix ‘em. No, said Bud, we have to ship them back to the factory to be fixed. We had no spares, no schematic or service information and all of the transistors had been soldered into the circuit boards, so repairs were out.

We didn’t get that solid-state rig back until late in the trip, despite heroic efforts by Hallicrafters. The older HT-32 tube emergency rig worked fine, so Bill and I were able to talk with hams all around the world as we flew. All contacts were taped and excerpts were used on NBC’s “Monitor” program.

(I even heard a contact between me and a Romanian ham and Hallicrafters 45 rpm record a couple years later. I remember driving along Coney Island Avenue in Brooklyn in my Porsche Speedster in which I had a Philips record player. I was listening to the Hallicrafters “Listen To The World” promotion record—and there I was! And nobody around to tell.)

The Operation World-Wide route took us in short, low altitude hops to Newfoundland, Bermuda, The Azores, Scotland, Paris, Berlin, Haderslev (Denmark), Rome, Athens, Izmir (Turkey), Alexandria (Egypt), Aden (South Yemen), Karachi, Colombo, Bangkok, Saigon (where an air raid was in progress when we arrived), Philippines, Taiwan, Okinawa, Seoul, Tokyo, Guam, Wake Island...
Here’s One for You!

TM-221A/321A/421A

2 m and 70 cm FM compact mobile transceivers

The all-new TM-221A, TM-321A and TM-421A FM transceivers represent the "New Generation" in Amateur radio equipment. The superior Kenwood GaAs FET front end receiver; reliable and clean RF amplifier circuits, and new features all add up to an outstanding value for mobile FM stations! The optional RC-10 handset/control unit is an exciting new accessory that will increase your mobile operating enjoyment!

- **TM-221A** provides 45 W, TM-321A, 25 W. The TM-421A is the first 35 W 70 cm mobile! All three models have adjustable 5 W low power.
- **Selectable frequency steps** for quick and easy QSY.
- **TM-221A** receives from 138-173.995 MHz. This includes the weather channels! Transmit range is 144-148 MHz. Modifiable for MARS and CAP operation. (MARS or CAP permit required.) (Specifications guaranteed for Amateur band use only.)
- **Built-in front panel selection of 38 CTCSS tones.** TSU-5 programmable decoder optional.
- **Simplified front panel controls** - makes operating a snap!
- **16 key DTMF hand mic., mic. hook, mounting bracket, and DC power cable included.**
- **Kenwood non-volatile operating system.** All functions remain intact even when lithium battery back-up fails. (Lithium cell memory back-up - est. life 5 yrs.)
- **Packet radio compatible!**
- **14 full-function memory channels** store frequency, repeater offset, sub-tone frequencies, and repeater reverse information. Repeater offset on 2 m is automatically selected. There are two channels for "odd split" operation.
- **Programmable band scanning.**
- **Memory scan with memory channel lock-out.**
- **Super compact:** approx. 1-1/2"Hx5-1/2"Wx7"D.
- **New amber LCD display.**
- **Microphone test function on low power.**
- **High quality, top-mounted speaker.**
- **Rugged die-cast chassis and heat sink.**

RC-10 Remote Controller

For TM-221A/321A/421A. Optional telephone-style handset remote controller RC-10 is specially designed for mobile convenience and safety. All front panel controls (except DC power and RF output selection) are controllable from the RC-10. One RC-10 can be attached to two transceivers with the optional PG-4G cable. When both transceivers are connected to the RC-10, **cross band, full duplex repeater operation is possible.** (A control operator is needed for repeater operation.)

Optional Accessories:
- **RC-10** Multi-function handset remote controller
- **PG-4G** Extra control cable, allows TM-221W, TM-421A full duplex operation • **PS-50/PS-430** DC power supplies • **TSU-5** Programmable CTCSS decoder • **SW-100A** Compact SWR/power/volt meter (18-150 MHz) • **SW-100B** Compact SWR/power/volt meter (140-450 MHz) • **SW-200A** SWR/power meter (18-150 MHz) • **SW-200B** SWR/power meter (140-450 MHz) • **SWT-1** Compact 2 m antenna tuner (200 W PEP) • **SWT-2** Compact 70 cm antenna tuner (200 W PEP) • **SP-40** Compact mobile speaker • **SP-50B** Mobile speaker • **PG-2N** Extra DC cable • **PG-3B** DC line noise filter • **MC-55** (8-pin) Mobile mic. with gooseneck and time-out timer • **MA-4000** Dual band antenna with duplexer (mount not supplied) • **MB-201** Extra mobile mount

Specifications and prices subject to change without notice or obligation. Complete service manuals are available for all Kenwood transceivers and most accessories.

KENWOOD

KENWOOD U.S.A. CORPORATION

2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
Kenwood brings you the greatest hand-held transceiver ever! More than just “big rig performance,” the new TH-215A for 2 m, TH-315A for 220 MHz, and TH-415A for 70 cm pack the most features and the best performance in a handy size. And our full line of accessories will let you go from ham shack to portable to mobile with the greatest of ease!

- **Wide receiver frequency range.** Receives from 141-163 MHz. Includes the weather channels! Transmit from 144-148 MHz. Modifiable to cover 141-151 MHz (MARS or CAP permit required).
- **TH-315A covers 220-225 MHz, TH-415A covers 440-449.995 MHz.**
- **5, 2.5, or 1.5 W output, depending on the power source.** Supplied battery pack (PB-2) provides 2.5 W output. Optional NiCd packs for extended operation or higher RF output available.
- **CTCSS encoder built-in. TSU-4 CTCSS decoder optional.**
- **10 memory channels store any offset, in 100-kHz steps.**
- **Odd split, any frequency TX or RX, in memory channel "0."**
- **Nine types of scanning! Including new “seek scan” and priority alert. Also memory channel lock-out.**
- **Intelligent 2-way battery saver circuit extends battery life.** Two battery-saver modes to choose, with power saver ratio selection.
- **Easy memory recall.** Simply press the channel number!
- **12 VDC input terminal for direct mobile or base station supply operation.** When 12 volts applied, RF output is 5 W! (Cable supplied!)
- **New Twist-Lok Positive-Clicking battery case.**
- **Priority alert function.**
- **Monitor switch to defeat squelch.** Used to check the frequency when CTCSS encode/decode is used or when squelch is on.

Optional Accessories:
- **PB-1: 12 V, 800 mAh NiCd pack for 5 W output + PB-2: 8.4 V, 500 mAh NiCd pack (2.5 W output) + PB-3: 7.2 V, 800 mAh NiCd pack (15 W output) + PB-4: 7.2 V, 1600 mAh NiCd pack (15 W output) + PB-5 AA cell manganese/alkaline battery case + BC-7 rapid charger for PB-1, 2, 3, or 4 + BC-8 compact battery charger + SMC-30 speaker microphone + SC-12, 13 soft cases + RA-3, 5 telescoping antennas + RA-88 StubbyDuk antenna + TSU-4 CTCSS decode unit + VB-2530: 2m, 25 W amplifier (1-W input) + LH-4, 5 leather cases + MB-4 mobile bracket + BH-5 swivel mount + PG-2V extra DC cable + PG-3D cigarette lighter cord with filter
AMSAT Phase 3C

OSCAR 13 may well be a reality by the time you read this. Prospects for an on-schedule launch of the latest Phase 3 hamsat looked great at press time. A successful launch of Ariane mission V-21 on March 11 set the stage for missions V-22 and V-23 in May. If V-22 is launched according to plan, V-23 will carry Phase 3C, METEOSAT, and PANAMSAT aloft on May 26.

AMSAT will release Phase 3C for general use after a three or four week checkout period.

Part 97 Rewrite

The FCC has proposed to reorganize Part 97, the rules governing the Amateur Radio Service. Part 97 has not been rewritten since 1951, and the Commission wishes to clarify and update the "patchwork quilt" of rules. Many technology and operational changes have occurred since the last reorganization of the rules, and the FCC proposal would clarify and modernize the regulations. The actual text of this Notice of Proposed Rule Making is nearly 90 pages long. The deadline for comments on PR Docket 88-139 is August 31.

No Changes to Access Charges

The FCC has quietly scrapped its plan to increase telephone rates for computer users. According to the Wall Street Journal, the Commission notified members of Congress that it would no longer pursue its plan to increase the "computer network access charges" by as much as $5.50 per hour. Computer users across the nation had opposed the proposed move, which represented a potential increase in connect charges of 100 percent or more. Information service companies like Compuserve, GEnie, Delphi, and BIX also opposed the proposal, claiming the steep access charges would have put them out of business. The decision to drop the rate increase proposal came shortly after Rep. Edward Markey (D-Mass.), chairman of the House Telecommunications Subcommittee, said he would introduce legislation to kill the access charges. The FCC also received about 10,000 letters from computer users opposing the move, a record number of comments for a telephone issue.

The FCC will continue a separate effort to assess charges of $4.50 per hour per user to hook up private telephone networks to local systems.

Data Convention

The Radio Society of Great Britain invites participants and lecturers to the RSGB Data Convention on July 22-23. As part of their 75th anniversary celebration, the Society has organized this two day event for all hams interested in various aspects of digital data transmission and reception. The convention will be held at the Harrow School, Harrow-on-the-Hill, Middlesex. Speakers from Europe and North America will make this a truly interesting meeting, perfect for beginners to experts. For more information, contact Smudge Lunde-gard, Saxby, Botsom Lane, West Kingsdown, Sevenoaks, Kent TN15 6BL England, or call his office at 011-44-322-613121.

Silver Anniversary

This year is the 25th anniversary of the International Mission Radio Association, Inc. (IMRA). IMRA was founded in 1963 by 50 amateur radio operators—all of them brothers and priests in a Capuchin seminary in Hudson, New Hampshire. It has grown to include not only Catholic missionaries on overseas assignements, but laity and missionaries of all denominations. IMRA hams have offered emergency help and consolation to people whose lives have been ravaged by natural disasters. The ecumenical association's 800 ham operators regularly pass traffic to and for people in remote parts of the world.

FT-727 Dual Band HT

There has been an enthusiastic response to the December 1987 73 Magazine product review on the Yaesu FT-727R. Those wishing more information on the 727 should call Bryan Hastings, the author of the review, at the 73 Editorial Offices, as he is often not able to answer correspondence as quickly as he would like! The phone number is (603) 525-4201, Ext. 554.

Senior Ham Recruitment

The ARRL has targeted non-hams aged 50 and over for recruitment into the hobby of amateur radio. A pilot program in the Tampa/ St. Petersburg, Florida, area will commence this summer. In an effort to interest more retirees in ham radio, the program will primarily recruit new hams from senior citizens' organizations. If the pilot program proves successful, a nationwide effort will follow.

Muchas Gracias

73 Magazine welcomes any and all news items and photos of interest to hams. Please send them to the magazine at WGE Center, Peterborough NH 03458-1194. Attn: QRX.

37 Amateur Radio • June, 1988
We've got the greatest design/performance "Know-how"—14 years in the business—with constant improvements in our Repeaters & Link Units!

For that new 220 MHz Machine—Spectrum now makes 3 lines of VHF Repeaters—the world famous Deluxe SCR1000A, the Low Cost line of SCR77s, and the State of the Art Microprocessor Controlled SCR2000X Line of Repeaters!

The SCR77 Repeaters maintain the quality of design, components and construction which have made Spectrum gear famous throughout the world for years. However, all of the "bells & whistles" have been eliminated—at a large cost savings to you! The SCR77 is a real "workhorse" basic machine designed for those who want excellent, super-reliable performance year after year—but no frills!

Of course, if you do want a Full Featured/Super Deluxe Repeater with full panel metering and controls, and a complete list of 'built-in' options, then you want our SCR1000A or the SCR2000X.

All three available with: Autopatch/Reverse Patch/Landline Control; TouchTone Control of various repeater functions; 'PL'; "Emergency Pwr./ID"; Tone & Timer Units; Sharp RX Filters; Power Amps; etc. (2M & 440 MHz Rptrs. and RF Link Units also available.)

Complete Line of VHF/UHF Rcvr. & Xmr. Boards & Assys. also available. Plus ID, COR, DTMF Control Bds., Antennas, Duplexers, Cabinets, etc. Inquire.

Basic SCR77

Basic SCR77

SCR1000A 2M or 220 REPEATER W/150 WT. 2M Amp & 30A POWER SUPPLY. (All items available separately)

Shown in optional cabinet.

Call or write today for details and prices!
Get your order in A.S.A.P.!

Sold Factory Direct or through Export Sales Reps. only.

1055 W. Germantown Pk, S10 • Norristown, PA 19403 • (215) 631-1710 • TELEX: 846-211
Flip-Flops and Latch Circuits

Practical Flip-Flop and Latch circuits to build, test, and use.

by L.B. Cebik W4RNL

Why Know Flip-Flops and Latches?
The flip-flop is one of the most versatile chips in the entire digital IC family. “Flip-flop” is actually the name of a circuit configured in many different ways; for example, with transistors or gate chips. A more formal name for the circuit is the bi-stable multivibrator. The more informal name reflects the fact that modern ICs add special features to the basic circuit to make it even more flexible. It’s possible to clock in data, preset the outputs, clear the outputs, and feed the output back to the input. These features allow the creation of many useful circuits.

There are many good sources of information on the basic theory of the flip-flop in its many forms. Lancaster’s Cookbooks devote entire chapters to fundamental flip-flop operation. Times have changed since the publication of this information. Digital families now have hundreds of members, many of which perform special functions that, at one time, had to be configured with several gate and flip-flop chips. In today’s world, it’s necessary to know what functions basic flip-flops perform best and how to use that knowledge in selecting more complex chips tailored to special needs. Therefore, there will be little theory here.

This discussion will mainly look at practical circuits and see how hams can apply them to their designs. Some of the jobs basic flip-flops still do best are switching, dividing by two, making controllable shift registers, and controlling circuit functions. This is not all the work fit for flip-flops, but it provides an appreciation of their versatility.

Related to the flip-flop in most data-book listings is the latch. Although somewhat different in internal circuitry and function, the latch also holds a piece of data and controls circuit functions. This presentation will com-
pare and contrast latches and flip-flops, and show which differences will make ham circuits work better.

Materials

First is an experimenter's board or IC breadboard for the tests. Second is a power supply. The simple 5-volt supply in Figure 1 will handle all the experiments. Be sure to use a heat sink on the 7805 regulator. Also, do not forget the fuse. The power supply and experimenter board make up a useful package both for this exercise and for future experiments.

Third, a small collection of parts. Four or five 74HC74 D-type flip-flops, a couple of 74HCOO NAND gates, a pair of 74C02 NOR gates, a 74HC75 latch, a few LEDs, a handful of 330Ω, 10kΩ, and 47kΩ resistors, plus some specific parts for some handy test modules will fill the bill. No soldering will go on here, since these parts will later go into real projects.

The Basic Flip-flop

Figure 2 shows a pair of basic flip-flop circuits made from gates. As the two diagrams show, either a pair of NANDs or a pair of NORs will work fine. Because the output of one gate feeds back to an input of the other, briefly changing the rest state of one of the control lines can switch and latch the output state. Not only does the output change when the input changes, it stays that way after releasing the switch or whatever pulse system used to affect the control inputs.

This fact is useful, because it gives a debounced switch, one that does not show any of the make-break problems of mechanical switches. Figure 2 shows how to use the flip-flop with mechanical switches at the input. The rotary or toggle switch switch should be a break-before-make type, since during the brief period that the switch is disconnected between positions, the flip-flop output will remain as it was left. It changes to its new state with the first touch of the switch contacts, and it stays that way, no matter how many times the switch contacts make and break before settling into their final position. The resistors on the control input lines hold the control inputs HI or LO (as needed) when the switch is not reversing them.

The Xs in the input lines show the points where it's possible to remove the mechanical switch and resistors in order to feed control signals directly to the inputs. This mode of operation requires signals always present at the inputs as either HIs or L0s. If a no-signal condition is desired (e.g., following a tri-state buffer) then one should keep the pull-up or hold-down resistors on the control input lines.

The two basic flip-flops in Figure 2 use 74HCOO and 74C02 gates. It's possible to substitute regular CMOS NAND and NOR gates (with changes of pin numbers) and use the same value resistors. If using 7400-series TTL ICs or 74LS00-series low-power TTL ICs, check the manuals for proper pull-up and hold-down resistors. However, since the 74HCOO-series combines the best features of both the 4000-series CMOS ICs (except for the wide range of operating voltages) and the 74LS00-series, I will use them throughout these experiments.

Versatility

Notice that the flip-flop has two outputs. They are conventionally called Q and −Q, since one is always the reverse of the other.

"In today's world, it's necessary to know what functions basic flip-flops perform best and how to use that knowledge in selecting more complex chips tailored to special needs."

When changing a control input, both outputs change together. This feature is very useful, because some complex circuits may require a HI in one place and a LO in another, with both conditions reversed for the off, inactive, or opposite condition. Figure 3 shows an example, using gates as passing/blocking elements for pulses. When gate 1 passes, gate 2 blocks, and vice versa. The output from the flip-flop tells the gates whether to pass or block. Note that it's possible to use a single gate IC with four gates per chip to create this entire circuit. When there are unused gates and the builder needs only a control switch, the simple flip-flop is often the best way to go.

In Figures 2 and 3, LEDs with series 330Ω resistors are indicators. Figure 4 shows how the remaining diagrams will represent the LED indicator. By using the simplified symbol, the reader can keep his attention focused on the important aspects of the test circuit. As a convention, the LED will indicate a HI condition. When the LED is off, a LO is present. As I proceed, I shall represent some other useful test circuits in the same way.

One can do the same basic switching job of Figure 4 by using one of the designated flip-flop ICs, such as the 74HC74 D-type flip-flop shown in Figure 5. For the moment, ignore the Data and Clock inputs by tying them to the positive supply voltage line. For this chip, the Preset and Clear inputs are the control lines that correspond to those in the gate flip-flop circuit. Then take the Preset input LO to make Q HI and −Q LO, and take the Clear

Figure 7. Basic divide-by-2 flip-flop circuit.

Figure 8. A handy manual pulser (pulse duration 1/2 second).

Figure 9. A flip-flop binary counter-controller-indicator.

12 73 Amateur Radio • June, 1988
line LO to make Q LO and \(-Q\) HI. Since the 74HC74 has two flip-flops per chip, only half a chip is used, just as the gate version of the switch.

There are other kinds of flip-flop chips, such as the J-K models, and there are multiple flip-flop chips with many individual circuits, but restricted control features. Rather than entering the confusion of trying to track many different kinds of ICs, I'll stick with the 74HC74 so the reader can try to master most of its capabilities. Then the reader can apply the lessons learned to almost any of the other variations.

Flip-flops as Dividers

The D-type flip-flop provides additional circuitry for clocking data into the chip. A pulse source will help make use of this circuitry in these experiments. The astable circuit in Figure 6 uses a 7555 to produce pulses with about a 1 second on-time and a 1 second off-time. The 74HC00-series chips here can handle frequencies well above 10 MHz, but this slow pulse rate allows the reader to see the circuit operation more clearly.

To use the Data and Clock inputs of the 74HC74, hold the Preset and Clear lines HI. Next, we must place the data (a HI or a LO) at the Data input. Finally, place a LO-to-HI transition on the Clock input line. The first step is normally done when wiring the circuit, as in Figure 7. Then, whatever the state of the Data line, when the clock goes from LO to HI, the D-state will appear at the Q output and its opposite will appear at the \(-Q\) output.

However, Figure 7 shows the \(-Q\) output wired back to the D input. The circuit also shows the 7555 astable circuit feeding pulses to the Clock input. Take a close look.

Assume that Q is LO and \(-Q\) is HI. This means that D is also HI. When the Clock pulse goes from LO to HI, the HI on D appears at Q. Then \(-Q\) goes LO, which means that D also goes LO. But nothing will happen to D’s LO until the next Clock pulse changes from LO to HI. With this second pulse, Q goes LO and \(-Q\) goes HI, feeding D a HI. This cycle continues. Note that the Q and \(-Q\) outputs make one complete pulse for every two pulses from the 7555. The circuit divides the frequency of the astable by 2.

The divide-by-two circuit is very useful. Sometimes an experimenter needs both the original frequency and another frequency half as fast. In many applications, the tester can start the astable at twice the desired frequency, and use the divider circuit to bring it to just the desired value. Remember that in the 7555 circuit, the HI and LO durations are not exactly equal. If equal on and off times are important (e.g., in coded systems), the divider circuit guarantees equality.

Simple Counter

A builder can make a simple binary counter and controller by stringing together divider circuits. To operate this circuit, let’s make a debounced manual pulse. Figure 8 shows a good circuit, again using the 7555. The input resistors and capacitors to the trigger pin simply guarantee that there is one pulse per flip-flop on the switch. I use some extra keyboard switches pulled from a defunct project for this work. Keyboard switches are among the best press-release switches available. Incidentally, I keep two or three prewired perfboard versions of both the pulse circuit and the astable circuit close at hand just in case a connecting wire into the brainboard. In the long run, that saves a lot of time.

Figure 9 shows an example of a simple binary counter using two flip-flops in series. This starts with a debounced pulse. Note that there are four LEDs connected to some gates as a substitute for a controlled circuit. There are up to four pass/block gates or any other type of circuits among which to switch. When pressing the button, the next LED lights—or the next circuit becomes operative—with all the others off.

At the same time, a binary number between 0 and 3 is created, using the Q outputs of the two flip-flops. The experimenter can place these two outputs on the 1 and 2 inputs of a BCD driver chip that feeds a 7-segment display.

Now, wire the 4 and 8 inputs low. The result is a display that reads 0-1-2-3 when pressing the button, indicating the number of the activated circuit. Figure 9 also shows some optional additional circuitry to allow the 7-segment display to read from 1 through 4. The NOR gate simply converts the flip-flop LO-LO = 0 into a HI to trigger the 4 digit.

This basic circuit is useful to about one more place for counting up to eight and controlling one of eight circuits manually. However, beyond eight, there are many more flexible binary and BCD counters, as well as programmable divide-by-N counters. There are decade counters (74HC160), dual decade counters (74HC390), 4-bit binary counters (74HC161), dual 4-bit binary counters (74HC393), divide-by-10 counters (74HC4017), up/down counters (74HC191), and 14-bit counters with a built in oscillator (74HC4060). They are all based on flip-flops, but that circuitry is buried inside the chip. One needs only to master the input and output connections and any special rules of operation to use them.

For example, some counters count on a LO-to-HI transition of the Clock input, others on the HI-to-LO transition. Most use Reset lines that instantly return the count to zero, but some need a HI to do the job, and others need a LO. When checking out these counters in data books, be sure to read all the rules.

Controlled Dividers

So far, the divide function of D-type flip-flops have been used in an uncontrolled manner, dividing all the time. However, by adding a gate, it’s possible to control just when the circuit divides. Figure 10 shows two controlled dividers, using NAND and NOR gates. Which one the experimenter uses depends upon the gates available in his circuit and whether he wants to control the process with a HI or a LO. Since the gate will reverse the level of the feedback signal, he feeds the Q output to the gate (instead of the \(-Q\) output).

Figure 11 shows an application of the controlled divider circuit to make Morse code dashes from dot pulses. When the NAND gate input is LO, its output to the D terminal is HI. The clock pulse will make Q HI and \(-Q\) LO. Since Q goes to the NOR gate, the LO permits the gate to pass (inverted) whatever comes in the other input line. In this case, what passes are dot pulses.

When the NAND gate input is HI, its output to the D input will be the inverted Q output. If Q is HI, D is LO. The next clock pulse will make Q LO and \(-Q\) HI (with the D input seeing a HI). The \(-Q\) HI hits the NOR input and holds its output LO during both the HI and the LO part of the original clock pulse.

Now, with the start of the next clock pulse, the HI D input transfers to Q, with \(-Q\) going LO. Thus, one gate of the NOR is LO, allowing the dot pulse to pass as a dot. The result is a NOR output LO three times as long as a dot LO, while the space time (HI) is the same length as usual. By summing the dot pulse and the divider pulse, it makes perfect dashes.

Combine Figure 9 and Figure 10 elements to create a divider-controller-counter that operates only under certain conditions fed to a divider-controller gate. The possibilities are endless!

Next time: Shift register circuits.\[25\]
A unique classroom program in NYC

by Carole Perry WB2MGP

Seven years ago when I began “Introduction to Amateur Radio” as a course at Intermediate School 72 in Staten Island, New York, I couldn’t have known the extraordinary success we would have with the children. There was no way of anticipating the tremendous parental and community support this course would inspire.

Since its inception, over 4500 students have come through this unique program. I teach ten classes each term with approximately 35 youngsters per class in sixth, seventh, and eighth grades. A large percentage of them have received licenses; all of them have left with a better feeling about themselves, having learned new skills and having been exposed to an incredible hobby. Most children going through the school system today do not have the opportunities that are available to the children in this program. In fact, when the course is over, a whole new world opens up to the youngsters.

Not a Grind

Instead of “grinding out” Novices and ramming technical jargon and formulas down the children’s throats, I use ham radio to motivate the students in all other areas of the school’s curriculum. Probably no other hobby can offer the multiplicity of facets to use as motivational tools in a classroom. The philosophy is to have fun and to see that having fun can mean using the radio in an intelligent and responsible manner to learn more about the rest of the world.

I always encourage the youngsters to study at home with a parent or with a sibling. Parents love the idea of sharing something new and interesting like ham radio with their children. They are always very supportive of our program.

“My special thanks to Mrs. Carole Perry for creating a program that bought my son and me closer together. Studying and being tested together was fun, and we’re now both in the fantastic hobby of ham radio,” wrote Mrs. Marilyn Aronson KA2SXC, mother of Michael Aronson KA2RNP.

Remarkable Progress

What is the most wonderful thing about a program like this? The course has something for everyone. Non-English speaking children have made remarkable progress in learning to speak English because of the skills involved for the telegraph key. After all, CW is a new language for everyone. So everyone in the class starts out on equal footing.

Bright students need to be challenged with exciting and stimulating material. Most of them are overstimulated by the various media to which they are exposed in conventional classroom studies, and they are under-worked. Most do not want to work hard to be successful in school. Ham radio offers endless possibilities for the good student. In an age where computers are becoming a household item, these kids are delighted to learn about packet radio. I am quick to point out that hams have obvious advantages for career choices in electronics, computers or communications.

Even more “reluctant learners” recognize that they have a chance to be successful at something for the first time in their school careers. They learn to be responsible and careful in handling the equipment. They may discover skills they have in anything from soldering to designing a creative QSL card. It’s my job to keep the motivation high and to make sure that every child succeeds at something.

Even though we have a Novice license pass rate of 75 to 80%, it’s not the main objective of the course. My philosophy is to show the students a new and exciting way to learn things in school and to be aware of this most unusual hobby. Who knows? Some day these youngsters may be married to ham radio operators (heaven knows that requires a lot of understanding) or that they might be voting on antenna ordinances. It’s important that they learn about amateur radio in a positive and responsible manner.

Helping Others

One of the units I teach in the program deals with “Handi-Hams.” This is a great opportunity for a teacher to expose the children to some of the spirit and determination hams are known best for. Joe Schwartz K2VGV is a local operator who has been very supportive of our program. Joe is a double...
amputee who spends a good deal of his time in the hospital. That hasn't stopped him from making a real impact on the kids. He has invited the children from my classes to his home so he can spend time with them, one on one, showing them radio procedures. Parents go along with their children and are exposed to the wonders of ham radio as well. As anyone will agree, the children are learning more than just radio when they sit with Joe. Handi-Hams working with youngsters reflect all that is the true spirit of our hobby.

One thing I enjoy most about what I do is observing what transpires when my retired ham radio friends come to the classroom to work with the youngsters. They enrich us all by sharing their experiences and expertise with us. The children benefit manifold from these contacts, and so do the retired hams. These are human values being reinforced along with radio skills. How do you beat the winning combination of youth and curiosity coupled with the wisdom and experience of age? I've spoken with many chapters of the New York, Long Island, and New Jersey Quarter Century Wireless Association, and they have always expressed a willingness to help out with my kids.

The Next Step

About a year or so ago, I realized we had a real problem of providing a ‘next step’ for the children who had their licenses but were no longer in my program. We lose too many Novices once they get out of ‘my nagging range.’ Ham radio is a hobby that thrives on human contact. There were just too many of these Novices out there for me to handle properly. So we began a night class at our school, taught by volunteers from the local radio clubs. It was available to parents and members of the community as well as to the children for upgrading purposes. Because of the night classes and the devotion of many Staten Island ham friends, we've managed to get about a 7–10% upgrading average.

This past spring we planned a huge reunion at a local college. For one whole day, there were exhibits and demonstrations in amateur radio for all ex-students and anyone else who is interested in learning about our hobby. We also provided services for license renewal in an attempt to get former students back into the fold.

Special Contact

On August 1, 1985, amateur radio gave me a chance to help hundreds of children and community members to participate in a once-in-a-lifetime opportunity: to contact an astronaut. For many months the children learned about space travel, NASA’s objectives with space shuttles, and radio communications in space. Hundreds of hams from Staten Island and New Jersey donated endless hours of their time and expertise to help make the contact a success. The local TV and radio stations were there at our school to root us on and to record the event for the news that night. The highlight of the day came when we received a picture of Tony England’s (W0ORE) picture on our school's TV monitor via slow scan TV. The entire event is still talked about with pride in our school and community.

Another nice project we’ve recently gotten involved in is to check into a Florida/NY net early in the morning on 20 meters. The children love identifying the “regulars” by their voices and then by their call signs. The youngsters have invited the hams from the Carolinas and Florida to visit our school when they come up North. We’re all looking forward to that. We’ve already been fortunate enough to have a ham from Italy come to visit us in our classroom. When Dr. Giorgio Beretta I2VXJ spent the day with us, he provided us with some first-hand insights into ham radio in Italy.

Our ham radio newsletter, The Rag chewer, gives each child a chance to contribute something and to get to see their names in print. The children do all the artwork, articles, interviews, and publishing themselves. The entire school enjoys the publication.

The next edition of The Rag chewer will include an article about Brother Joe AC1U from St. Anthony’s in Elizabeth, New Jersey. He has provided my class with a videocassette about the IMRA (International Missionary Radio Association) and has helped to introduce yet another aspect of amateur radio into our classroom.

New Horizons

By emphasizing the human side of our hobby, I hope to provide the children with the key they will need to open the door into the most exciting and diversified hobby and service that exists today.
Coverage

- Automatically erases memory and rapidly charges NiCad batteries up to 15 Volts.
- Allows batteries a long life with maximum capacity.
- Helps restore a tired battery.
- Full 2 year warranty.
- Cost effective, saves money.
- Ponce de León never had it so good.

Madison Shopper

CALL FOR ORDERS

1 (800) 231-3057

1-713-520-7300 OR 1-713-520-0550

TEXAS ORDERS CALL COLLECT

FAX 1-713-771-7759

ALL ITEMS ARE GUARANTEED OR

SALES PRICE REFUNDED

New Icom IC-761

Icom IC-761

Shure 443D

Heil BM10 Boom Mike

Heil HM5 Desk Mike

Iso-pole 144 MHz

Cushcraft 124-WB (146 MHz)

Butterfly HFOV, 80-10 vertical

Hustler G7-144

KL M K-34A

NEW KL M-124LX

GS-R

Lansen 2-meter on glass

New Lansen LM 490 CO

Antecol 2M, 5/8, Mag. Mount, Comp

Thousands of panel meters.

3.95 up CALL

8560A

Aerovox 1000 29500 V lead-through caps

Transformer 120 V Fm. 1000 VA. [60c. 118 Wv]50

100 mfd/450V Axial cap.

8315P-PL 229 Silverplate

1/8 N Male

GE 6146B

3-500Z

GE 128V7A

6MK

6KD

Cleton 572B

6M6A

9590

AEA PK-232 with new WX FAX

Kentronics KPC II.

AEA Packet Terminal

Kentronics KAMWX

USED EQUIPMENT

All equipment, used, clean with warranty and 30 day trial. Six months full trade against new equipment. Sale price refunded if not satisfied.

For call latest used gear

(900) 231-3057

TS-430S, TS-830S, TS-520S, FT101E, and Collins

Porcelain 502 Guy Insulators (1/4)

3.39

POLICIES

Minimum order $10.00, Mastercard, VISA, or C.O.D. All prices FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call anytime to check inventory of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty.

Bird and Beiden products in stock. Call today.

AR2002

Continuous Coverage

Professional Scanning

Monitor Receiver

25 - 550 MHz/800 - 1300 MHz

Specifications:

- Receiving mode - Narrow band FM, Wide band FM & AM
- Receiver circuit - Microprocessor controlled PLL
- Frequency synthesized superhetreodyne type with high-level doubled balanced mixer
- Receiver IF - 750 MHz, 45.03 MHz, 5.5 MHz (WFM) and 455KHz (NFM & AM)
- Sensitivity - NFM - 0.35 uV (12dB SINAD) WFM - 1.00 uV (12dB SINAD)
- AM - 1.00 uV
- Selectivity - NFM - > 7, 50Hz @ 50B WFM - > 5, 00Hz @ 60B AM - > 5, 40Hz @ 60B
- Number of memory channels - 20 channels
- Scan rate - 5 channels per second
- Search rate - 6 seconds per channel
- Antenna connector - Standard BNC type, 50-ohm
- Audio output level - 1 watt at least 10% THD
- Power requirement - 11 to 15 Watts at 300 to 500Vac
- Size and weight - 5.4" W x 3.5" H x 7.88" D, 2.6 lbs.

OPTIONS:

- Mobile mounting bracket $14.95
- Trunk lid mobile antenna with 12 ft cable $57.49
- Disclose antenna terminals with 30 ft cable $68.95

WARRANTY:

AR2002 (covered by One Year Extended Warranty) Extended warranty service available on the following dates:

- $45.00 - 2 years, $30.00 - 2 years

Please: No Dealer Inquiries

AR2002

Continuous Monitor Receiver

$499.00

(California res. add $29.75 tax)

Visa and MasterCard orders welcome

Prices include shipping & handling

Except UPS, C.O.D. is $5.00 extra

Purchase orders accepted from Government agencies

22511 Aspian Street, Lake Forest, CA 92630-6321

Call/Alaska (714) 681-4990

Facsimile (714) 768-4410 (not a phone)

TOLL FREE 1-800-523-6366

Please: No Dealer Inquiries

AR2002

Continuous Monitor Receiver

$499.00

(California res. add $29.75 tax)

Visa and MasterCard orders welcome

Prices include shipping & handling

Except UPS, C.O.D. is $5.00 extra

Purchase orders accepted from Government agencies

22511 Aspian Street, Lake Forest, CA 92630-6321

Call/Alaska (714) 681-4990

Facsimile (714) 768-4410 (not a phone)

TOLL FREE 1-800-523-6366

ACE communications

CIRCLE 279 ON READER SERVICE CARD
FELLOW RADIO AMATEURS,

You’ve discovered the greatest hobby in the world. And 73 Amateur Radio captures the excitement of amateur radio like no other ham magazine in print today. With 73, you’ll have fun discovering the thrills of this great hobby. And while you’re at it, you’ll also learn more about ham radio.

Don’t take the risk of missing out on all 73 has to offer. You can have your issue of 73 delivered to your home every month for just $19.97 (12 issues)—that’s 43% off the cover price!

And with every paid subscription we’ll send you a FREE GIFT—a great looking 73 baseball cap. A home delivered copy of 73 means you’ll never miss out on these tremendously popular monthly columns:

- Construction projects: The most homebrew projects anywhere.
- Product reviews: Belly-to-belly matchups of new gear.
- Aerial View: Everything you’ll ever want to know about antennas.
- ORP: For low power aficionados.
- WEATHERSATS: Get the latest fax on the weather.
- Never Say Die: And you bet I won’t.
- 73 International: 73 Amateur Radio is the only ham magazine with monthly news from every corner of the world.

YES! I want to receive my copy of 73 Amateur Radio at home every month. Please start my subscription immediately:

1 year (12 issues) for $19.97 and a FREE 73 BASEBALL CAP!

Name ____________________________
Address __________________________
City State Zip _____________________

☐ Bill Me ☐ Check Enclosed ☐ Charge my credit card

Account # _________________________
☐ MC ☐ Visa ☐ Amex Exp. Date ______

Signature _________________________

Offer valid for a limited time only. Canadian and foreign surface orders: 527 per year (12 issues) U.S. funds. Please allow 4–6 weeks for delivery of first issue. *Free gifts are sent to paid subscribers only.

Mail Coupon to: 73 Amateur Radio, P.O. Box 931, Farmingdale, NY 11737-9631
7866BC
73 Review

by Larry Antonuk WB9RRT

Ramsey D-5100 Digital Autoranging Multimeter

The VOM is the one piece of equipment that is absolutely mandatory for anyone wishing to do any type of troubleshooting. In the past, hobbyists on a budget wound up with one of the analog Radio Shack models—usable, not highly accurate, able to survive maybe one or two drops before becoming totally unreliable—and they got by. If they actually made some cash fixing something, they might get all the way to the classic Simpson 260—accurate, tough as nails, impossible to read. Any type of digital meter was completely out of the question.

Things are a little easier these days. For a mere fifty bucks, today’s tech can buy a digital meter with accuracy that makes most analog meters look shabby, with autoranging thrown in! The Ramsey D-5100 comes in a compact package. Measuring 2.5" x 1.0" x 5.0", the meter will easily fit into the messiest toolbox. The case is made of high-impact plastic (able to survive plenty of dropping). A rotary switch selects the function and four pushbuttons determine secondary modes (AC/DC, Range, Hold, Memory). The multimeter comes with those nice rubber-like test leads, with safety banana plugs.

The meter boasts the usual specs: 1000 VDC, 500 VAC, 0–200mA or 0–10A, and 0–2MΩ. A continuity annunciator chirps when reading less than 20 Ohms and is also used to indicate range changes, overrange, etc. The autoranging feature is not lightning fast, but most readings settled down in well under a second. If the autoranging feature is not desired, a tap on the RANGE button locks the current range or allows the user to step up through the ranges. The MEM button allows the operator to subtract the current reading from subsequent readings. The HOLD button simply freezes the display; it doesn’t let the operator hook the meter up, leave the area, and come back to see the highest voltage, etc. displayed. (A use for this feature has yet to come to mind.) The D-5100 will test semiconductor junctions, and has a low power ohms function for in-circuit testing.

The only weak point in this product is the instruction manual. While fairly complete, the broken English is sometimes difficult to understand. Techs new to digital meters will find a series of examples in the back of the manual that will walk them through any possible use of the instrument.

Thanks to Ramsey Electronics, what used to cost as much as a new car now costs as much as dinner for two. Keep the wife home tonight and put one of these in your toolbox. I’m sure she’ll understand.
Quality Test Gear You Can Count On

New COM-3.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>BAND WIDTH</th>
<th># TRACES</th>
<th>CRT SIZE</th>
<th>VERTICAL SENSITIVITY</th>
<th>MAXIMUM TVI FREQUENCY</th>
<th>USEABLE MAXIMUM BANDWIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MHz</td>
<td>20 MHz</td>
<td>2</td>
<td>6x1OCM</td>
<td>5 mV per div</td>
<td>35 MHz</td>
<td>30 mHz</td>
</tr>
<tr>
<td>35 MHz</td>
<td>35 MHz</td>
<td>2</td>
<td>6x1OCM</td>
<td>1 mV per div</td>
<td>50 MHz</td>
<td>60 mHz</td>
</tr>
</tbody>
</table>

All include high quality 1:1 10:1 hook on probes, Instruction/service manual with schematic and component layout. 1 year warranty.

Price: $369.95 (includes 2 Hook-On Probes)

Price: $499.95 (includes 2 Hook-On Probes)

Unsurpassed Quality • Suitable for Hobby, Service & Production

Price: $2495

The communications service monitor that works harder for less. Introducing COM-3... the new service monitor designed by service technicians for service technicians. Works harder for less, giving you advanced testing capabilities at a very affordable price. Features:

- Direct entry keyboard with programmable memory
- Audio & transmitter frequency counter
- LED bar graph frequency/error deviation display
- High-accuracy sensitive (<10 kHz to 250 MHz)
- Continuous frequency coverage
- Transmit power, up to 1000 watts
- CIS tone encoder

Mini-100 Counter

- **Price: $119.95**
- **Price: $139.95 with includes 5 cmz age ADAPTER, INCLUDED**

CT-70 7 DIGIT 525 MHz

- **Price: $169.95**
- **Wireless includes ADAPTER**

CT-508 DIGIT 600 MHz

- **Price: $189.95**

CT-125 DIGIT 1.2 GHz

- **Price: $189.95**

Ramsey Frequency Counters

Ramsey Electronics has manufactured electronic test gear for over 50 years and is recognized for its quality products at breakthrough prices. Our frequency counter features have features and capabilities of counters costing twice as much.

Price: $4995

Price: $6995

Price: $8995

Mini Kits—Easy to Assemble—Fun to Use—For Beginners, Students and Pros

Tone Decoder

A complete tone decoder on a single PC board. Features: 300-600 Hz audio, 250-500 Hz audio selection, 300-600 Hz audio, tone selection, 300-600 Hz audio, tone selection, 300-600 Hz audio, tone selection. Each includes three different tones. 250-500 Hz audio, 250-500 Hz audio, 250-500 Hz audio, 250-500 Hz audio. Complete kit: TP-1 **$5.95**

Color Organ

A complete color organ with 10 different lights and 10 different colors. Each includes three different lights and 10 different colors. Complete kit: TP-7 **$5.95**

Video Modulator

Converts any TV to a video monitor. Super stable, high-quality CRT, very high resolution. Complete kit: TP-10 **$9.95**

LED Blinker Kit

Produces a high-quality, high-quality output. Complete kit: TP-11 **$5.95**

Universal Timer

Produce a high-quality, high-quality output. Complete kit: TP-12 **$5.95**

FM Wireless Mike

Transmit up to 100 to any FM receiver for any type of monitoring. Complete kit: TP-13 **$7.95**

Super Receiver

A super sensitive amplifier which will pick up any radio signal. Complete kit: TP-14 **$4.95**

Telephone Transmitter

Frequently used for reception tests. Complete kit: TP-15 **$4.95**

Ramsey Microwave

Price: $9.95

Ramsey Radiometer

Price: $9.95

Ramsey Electronics

17550 East Rd.
Penfield, N.Y. 14526

ACCESSORIES FOR RAMSEY COUNTERS

- Telescopic whip antenna—BNC plug... **$3.95**
- High impedance probe, light loading... **$3.95**
- Low pass probe, audio... **$3.95**
- Direct probe, general purpose use... **$3.95**
- Tone for CT-70, 90, 125... **$3.95**

PHONE ORDER CALL

716-586-3950

TELEX 466735 RAMSEY CI

FAX 716-586-4754

Ramsey Electronics

17550 East Rd.
Penfield, N.Y. 14526
Digital X-Y Oscilloscope Display

A classy, cost-effective tuning indicator.

by Dean R. Becker WASTYU

X-Y oscilloscopes are very useful as tuning displays for RTTY demodulators and other applications. There have been numerous articles written describing how to make X-Y displays using conventional cathode ray tubes (CRT's). These make excellent tuning indicators, but the size of a CRT and its support circuitry may be larger than the demodulator it complements! The digital scope described here is small, simple, and works great. Power consumption is very low. This unit is powered by a 9V, 100mA plug-in power supply.

The display is created by 100 LEDs arranged in a 10 x 10 square. The LEDs used here have 0.1 inch lead spacing and are mounted 0.1 inches apart from each other. This works very well with standard 0.1 inch spacing circuit board material, such as the Radio Shack 276-158 with soldering ring holes. Any LED may be used, but small LEDs with 0.1 inch lead spacing will work best. The LEDs are wired together in a matrix. The anodes are tied together in each row, and the cathodes are tied together in each column.

The LED display is driven by two LM3914 dot/bar display drivers (Radio Shack 276-1707). These chips normally drive an LED bar graph display. They have everything needed to take in an audio signal and form a linearly proportional output capable of driving LEDs directly. In the X-Y display, one LM3914 is used to drive the LED columns directly. This provides the current sink for the LEDs. The other LM3914 controls ten PNP transistors that source current to the LEDs via the rows. Most any general purpose PNP transistor will do. By using this arrangement only one LED will be on at a time.

The X and Y inputs are referenced to ground, and each has an amplitude adjustment that scales the input signal to match the display boundaries. An input signal of 1.2 volts can drive the display to full scale. The offset adjustment allows the display to have X, Y = 0.0 in the center, thereby providing a four quadrant display. To use the digital X-Y scope as a RTTY tuning indicator, connect the mark and space filter outputs from the demodulator to the X and Y inputs of the scope.

The display provided by the X-Y digital scope is, of course, not as smooth as that provided by a CRT.

Construction

Two 2.2 x 3-inch circuit boards are used in the construction of the scope. The LED display board mounts in front with the second board mounted about two inches behind. The LEDs should have their leads trimmed so the anodes are 1/2 inch long and the cathodes are one inch long. Insert and solder the first row of LEDs at the bottom of the board. (Note: the Radio Shack 277-1008 Audio Amp/Speaker has a grid of holes in front that are spaced 0.2 inches apart. This makes a great holder for the LEDs as they are soldered in.)

Now take a length of bare 26 gauge wire and weave it from one LED anode to the next, near the end of the lead. Solder the wire to each anode of the first row. Next insert and solder the next row of LEDs. Using another length of bare 26 gauge wire, solder it to each anode of the second row. Continue this operation for each row until all LEDs are mounted. Next use another length of bare wire to connect the cathodes of the first column near the end of the lead. Do this for each column. When this step is complete connect a short length of wire to each row and each column to be connected to the other circuit board. There should be ten column wires and ten row wires. The column and row bare wires should not contact each other.

Wiring of the second board can be wire wrap or point-to-point soldering. Mount the LM3914s, transistors, resistors, and pots. Connect all intra-board wiring first. Next connect the display wires to the board. Connect the X and Y signal input to phono jacks. And connect the incoming DC power through an on-off toggle switch to the board.

The circuitry can be tested by connecting two oscillators, radio outputs, or RTTY scope outputs as signal sources. Calibrate the offset so that with no signal input, the LEDs in the center of the display light. Provide an input on the X channel only. This should produce a horizontal line in the middle of the display. A similar input to the Y should produce a vertical line in the middle of the display. Connection to the scope outputs of a RTTY demodulator should produce the familiar cross hair pattern in the presence of a RTTY signal.

This design can be modified to include more LM3914s chained to the existing ones. This would allow a larger number of LEDs to be used in the display if desired. Different color LEDs can also be used to show limits or just to make it more interesting. The LEDs used may be point-source or diffused. This version uses point source LEDs, which provide a sharp display.
ASTRON POWER SUPPLIES

SPECIAL FEATURES
- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continues shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

19" × 5 ¼ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 x 19 x 8</td>
<td>15</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 19 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 x 19 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters
- Switchable volt and Amp meter
- Variable rack mount power supplies

- Built-in speaker

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
The Care and Feeding of a PBBS

Timely tips for packet bulletin board users (Part I)

by David McLanahan WA1FHB

One of the perks of working packet is being able to access one or more of the Packet Bulletin Board Systems (PBBSes) springing up all over the country. These PBBSes are one of the greatest leaps in ham radio operation since voice transmission.

Networking Versatility

The PBBSes offer two exciting features never before available to hams. They are an electronic means of disseminating general information—ARRL and AMSAT bulletins, notices of club meetings and events needing amateur communications help—to the ham community without being tied to a net or bulletin schedule. There is also the capability of leaving personal messages for other hams who are not on the air at that particular moment (and receiving similar messages from other hams). These messages can be forwarded automatically from one PBBS to another, even over transcontinental or transoceanic distances.

How does a ham get involved? Bulletin boards can at first haunt a new packeteer. Many hams have little or no experience with computers and their demand of exactitude from the operator.

Logging On

To log onto a board, a packeteer needs only to connect with it. The board does the rest, greeting him in one of several ways and, perhaps, telling him that he has new mail.

The PBBS software provides for two greetings, long and short. (The short one is sometimes called the “expert” greeting.) Both of these can be personalized for the individual PBBS and, if the operator of the board likes, changed periodically to draw attention to some important event or matter. The selection of the long or the short message for a particular user can be changed either by the user (with the “NE” command) or by the PBBS operator.

The long greeting is friendly: “Welcome, Josephine, to the WA1FHB mailbox in Marlow, NH. You were last on at <time> <date> <last message number>.” These messages are followed by the command choices, ending with a right arrow (>). Practices vary, but most PBBSes use 24-hour Universal Coordinated Time (Greenwich Mean Time to the older of us!), identified by a “z.”

Long greetings, however, can take forever to get through during periods of heavy QRN and/or heavy activity. Even during good conditions, the long version wastes the operator’s (and the channel’s) time. A budding packeteer should move on to the short greeting as soon as possible. Here’s an example of the terse prompt:

COMMANDS

With either prompt, the PBBS commands are exactly the same. The commands are single letters that may be followed by a modifier or an argument or, often, both. Please memorize: A command and its modifier are never separated by a space, but a command and an argument are always separated by a space.

Put together, all this turns into a “command string,” which is terminated by pressing the return key, or its equivalent. (The return is generally required by TNCs to send the packet, anyway.) For brevity, I won’t mention the return with the explanation of each of the commands, but it’s always necessary. Note also that, while I show all commands in capital letters for clarity, the board accepts either upper or lower case.

The command sets the basic operation the operator wants the PBBS to do. The modifier then selects a subcategory of that operation, and the argument designates the subject or victim of the operation.

Instant Help

The three most important commands for the neophyte are the ones for assistance. The first is X, which provides a reference to all the other commands. At the long or the short prompt, X toggles a long command menu:

Note the word “toggle.” A toggle key alternates a command between two states (such as “on” and “off”). The X command, for example, gives the long command explanation at each subsequent command prompt, until the user toggles it off by sending another X.

The H command downloads the system’s Help file. This file may be customized to some extent for each system, but it generally runs about 36 lines of text. Those with a printer can turn it on before issuing the H command, to get a handy command reference to keep beside the keyboard. The Help file shown in Fig. 4 is an example, but those from other boards may be slightly different.

Finally, there’s the I command, which accesses information about that specific PBBS—location, equipment, special interests, etc. Just don’t expect the Info file to be up-to-date. It is generally prepared with great glee when the

Figure 1. Long sign-on.

Figure 1. Long sign-on.

Figure 2. Short sign-on.

Figure 3. Long Menu.
board is first put on the air, then totally forgotten as system antennas, towers, rigs and computers come and go.

The Main Commands

These are the commands that actually make the PBBS function. Most of them require an argument.

The first command the user should issue when he accesses a PBBS for the first time is the "name" command. It takes the form "N Ayleen <return>" (using your own name, handle, or alias, of course) and enters your first name into the user file. This has two purposes. In a later connect, it impresses the uninitiated guest to a PBBS demonstration. It also "introduces" the user to the PBBS operator. With a couple of computers in the middle, packet PBBS operation is probably the most impersonal of all the activities in an otherwise friendly and personal hobby fight the trend!

At the first log-on to a particular PBBS, the board asks the user to specify a home PBBS with the NH command (this concept to be discussed later). If the user isn't sure which board he wants as his home board, he should pick one anyway, since the log-on prompt will keep bugging him for an entry. Simply choose one for the moment, keeping in mind that it's easy to switch.

The user should just be sure that if he checks into more than one board, he should specify the same home PBBS on all.

Information, Please

The L command, in various forms, is used to display messages in the PBBS's Mail Box. Surprisingly, the simple, unadorned L command (with no modifier) tends to confuse people. It lists only the messages entered since last log-on. If the packeteer was on the board several hours ago and there hasn't been much activity in the interim, or if she connected over a poor path, then try again using a different digipeater string, an L will come up blank ("None Found," or similar). He needs to use modifiers to dig down into the messages.

LM gives all traffic to or from the logged-on call. LA produces a list of ARRL bulletins, LB lists non-ARRL bulletins, and LT shows NTS traffic on the board. To check on messages to or from another call, use L->WIXXX (messages to WIXXX) or L-WIXXX (messages sent by WIXXX). L-799 will show all messages with numbers greater than 789, and LL-10 will list the most recent 10 messages, regardless of message number. None of the List commands will show private messages except those to or from the logged-on call.

An operator can save time (his, the board's and the channel's) when using two-letter L commands (LA, LB, LM, and LT) by limiting the search to the highest message number on the board during his last connect (i.e., L-799). This keeps the already-viewed messages from reappearing on the screen. (All of these searches go from most recent back in time, and there's no legitimate way "new" messages could have gotten in to the older part of the listing.)

Here is a display of the result of any of the message listing commands. (The second-to-last line is not part of the message listing.)

The message number comes first. That number to read or kill a message. The next column shows the message type and status. The status will be /Y/ for already read (by the addressee), /N/ for not read yet, or /F/ for already forwarded to another board. (Boards can be set to kill messages that have been forwarded.)

The column after that displays the message size in bytes, to give an idea of how long it would take to transfer. (A common error is misinterpreting the message size figure as the message number.) Next is the call of the addressee, the call of the sender of the message, and then the optional call of the "home PBBS" of the addressee, followed by the title of the message.

Temporary Data Storage

As the packeteer sits before his monitor perusing the messages, he probably comes across information he wants to write down. There is a quaint, old "low-tech" device I recommend for the purpose: the "Magic Slate." This children's novelty is generally available in five-and-dime stores. It consists of a wax-covered cardboard with a translucent plastic overlay. He can write on the overlay with a stylus or even a fingernail. Lifting the overlay erases it, but, of course, it is non-volatile in the event of power failure.

The Magic Slate is a super place to record the numbers of new messages on a PBBS log-on when reading the first message will probably scroll the other numbers off the screen. Similarly, it's handy for recording interesting file names for sequential down-loading from the PBBS. Put the Magic Slate to good use will prevent load the channel unnecessarily with repeated message listings and directories!

Sending a Message

Most packeteers are anxious to try out this function. Sending isn't difficult, but a little homework with the computer documentation before logging on can go a long way; before logging on, one must determine how to send Control Z.

The common control to end and save a message is "Control Z" (2). For a simple-minded system like an old Teletype®, all one needs to do is find the "Control" key, hold it down while hitting the z (lower case is fine) then release both. The more sophisticated termination emulation programs, however, often assume that control characters are commands for them and not to be passed to the TNC. There may be a "lead-in" character to send first. Some boards accept /X/ as an alternate message ending.

To send a message, enter s, one space, and the call of the addressee, at the command prompt. The BBS converts lower-case entries into upper case. (The board accepts S <return>, and then prompts for the addressee, but that's doing it the hard way.) Then a prompt for the "title" of the message appears. The program gives up to 80 characters for the title, but one or two short words will usually suffice. If the title is long, it causes line-wrap (use an extra line) every time somebody lists the messages.

When it gets the <return> at the end of the title, the PBBS prompts for the message text and gives the number that it is assigning to that message. Note that number to check the message after entering it.

Be aware of carriage returns when typing the message. Most users have 40-, 64-, or 80-column screens (that's the number of characters displayed in a full line of text or data). If the typed line length exceeds the number of columns on the reader's screen, most computers insert a "default" carriage return/line-feed at the end of the line, probably splitting a word. Some machines substitute the return/line-feed for a character of text. Of course, if this happens, Murphy's Law says that the replaced character will be the third digit of an essential and unlisted phone number.

73 Amateur Radio • June, 1988 23
When done with the message, send the all-important \$/ and a return, and wait. A following prompt indicates that the message has been closed and saved. If the channel isn’t busy, check the message by sending an r, space, and the message number to read it.

If the prompt didn’t show, assume that the CONTROL-Z didn’t make it and the message hasn’t been saved. There are several things that may have happened. It’s possible that the terminal program went off into the weeds. Recovering it depends on the user’s particular set-up. If only the computer is confused, unplug the cable between computer and TNC (so as not to inadvertently disconnect from the PBBS), then reset the computer and reinitalize the terminal program (and, of course, replace the TNC cable) within the three or four minutes the PBBS gives you before it times out and disconnects. If the CONTROL-Z is successfully sent the second time around, the message is saved.

This isn’t good packet form and should be used only as a last resort, but if all else fails, turn off the set-up: radio, TNC, and computer. Reinitialize everything and let the bulletin board “time out” in three or four minutes and reset itself. Any message left on the bulletin board, however, will be discarded and gone.

There’s one wrinkle to sending personal messages to a recipient on another PBBS. (Message forwarding is discussed in more detail next month.) If possible, provide the call of the recipient’s home PBBS. To do this, after entering the addressee’s call, add a space, then an “at” sign @ , another space, and the PBBS call: \s WAI\M Z @ WAIFIH \O 3D ALL @ WORL.

Message Categories

There are several modifiers for the \s command. (They show up in the “type” column mentioned earlier.)

sr sends a private message. This is not, of course, truly private since the message is sent over a public channel, and the PBBS operator can (and may well) read it. The i command, however, won’t list it, except when the addresssee is logged on. This makes the i listing for others shorter and more useful, and no one else can read the message over the air. If a friend’s call appears in the “Mail for” beacon, but not in the message list, then the message was marked private.

ST is used for formal NTS traffic. The actual contents of the address and “at” fields for NTS messages is presently in a state of flux, with “NTS” plus the ARRL Section abbreviation (e.g., NTSWMA), five-digit zip code, telephone area code, and “NTS” plus the three-digit postal SCF (the first three digits of the zip) all being used in various area. Until this situation settles, determine and follow local practice.

The title of the message should contain the call and message number of the station putting the message into the packet system as well as the destination town and two-letter state abbreviation. The normal NTS message preamble should form the first line in the message body.

SA is reserved for official ARRL Bulletins. SB is for general (non-ARRL) bulletins—AMSAT, local club and so forth.

Bulletins

Bulletins are often addressed to ALL. Take care not to use ALL too readily. The title can often target a specific group: AMSAT, ARES, etc.

If a bulletin announces an event (meeting, hamfest, exam session, or the like) put both the location and the date in the title. This

PBBS—the board is private property and under the control of its owner. Most PBBS operators, however, feel an obligation to allow and encourage discussions or debate on a wide range of subjects of interest to their readers, whether they, personally, agree or not.

Unless the operator of a particular board has said otherwise, feel free to enter bulletins or messages to ALL on any subject as long as they avoid the business and obscenity prohibitions of the FCC and are not direct, personal attacks.

Follow these guidelines when entering opinions on the local PBBS: Keep them tight and to the point—less than, say, 200 characters. Messages longer than that are time-consuming to read, even through just one digipeater, and are difficult to forward. Try also to use an honestly descriptive title. Misleading titles often annoy and alienate people!

Lastly, pay attention to the presentation. If it’s messy, with scattered thoughts, misspellings and poor formatting, its brilliant logic may not shine through and you will do your cause a disservice.

One-liners

Sometimes if a bulletin to ALL or a message is very short, the entire text can be squeezed into the 40 or so characters for the title. You wind up with a message of length 1 (that one is the \$/ that ends the message). "MAPRA Meeting Sunday!" or the like. If you see one of these, don’t bother "reading" it with the \K command. It’s all in the title in the message list. The one-liner is also a way of leaving a short message for someone who may be connecting to the PBBS over a difficult path, because the title is sent prior to the first prompt.

The "message" will show up in every message listing and the addresssee call will remain in the mail beacon until it’s either read by the addresssee (with the \r command) or killed. A one-liner is sent the same as any other message. Send the \$/ and < return> when the board prompts you for the text.

Kill!

K \n will kill message \n. Before executing a \k instruction, the board will check that the operator is either the sender or the addresssee of that message. If not, the command won’t work. Of course k won’t work if the message is misaddressed—K1("eye") \Z1 in place of K1("one") \Z1, for example.

There are several modifiers for the \k command. \k will kill messages, \tk \n will kill NTS traffic and, on some boards, generate a service message back to the sender, giving the "killer’s" call and the date/time the message was taken.

Next month: Disk files and mail forwarding.
Uniden Corporation of America has purchased the consumer products line of Regency Electronics Inc. for about $12,000,000. To celebrate this purchase, we're having our largest scanner sale in history! Use the coupon in this ad for big savings. Hurry...offer ends July 31, 1988.

Uniden CB Radios

The Uniden line of Citizens Band Radio transceivers is styled to compliment other mobile audio equipment. Uniden CB radios are so reliable that they have a two year limited warranty. The PRO1010 is the PRO1010 E to the 310E handheld, there is no better Citizens Band radio on the market.

- **PRO3100-E** Uniden 40 channel, Portable/ Mobile CB... $85.95
- **PRO3330-E** Uniden 40 channel, Remote mount CB... $109.95
- **NINJA PRO** Uniden 40 channel, Remote mount CB... $109.95
- **9-10 D** 12 V AC-NiCad battery for Ninja (set of 2)... $20.95
- **KARAT PRO** Uniden 40 channel, Portable/ Mobile CB... $106.95
- **PRO5010X-L** Uniden 40 channel, Mobile CB... $49.95
- **PRO5030-E** Uniden 40 channel, Portable/ Mobile CB... $119.95
- **PRO5040-E** Uniden 40 channel, CB/SSB CB Base... $158.95
- **PRO6050** Uniden Handheld CB... $179.95

Uniden CB Radios

The new Uniden handheld CB radio, the PRO5010X-L, is a new standard for handheld scanners in performance and dependability. This full featured unit has 200 programmable channels with quick band scan. If you want a very similar model without the 800 MHz, band 100 channels, and order the BC1000 then you will receive a carrying case with belt loop, ni-cad battery pack, AC adapter and earphone. Order your scanner now.

Bearcat® 800XLT-SA

List price $549.95/CE price $299.95

The Bearcat 800XLT is a 16 channel, programmable scanner covering ten bands. The unit features a built-in function that adds three second delay on all channels to prevent missed transmissions.

Regency®

Regency Informant Scanners

Frequencies: 35-54, 136-174, 406-512 MHz.
The new Regency Informant scanners cover virtually all the standard police, fire, emergency and weather frequencies. These special scanners are pre-programmed by state in the units memory. Just plug in the channel you want to listen to and let the unit do the rest. The Informant does the rest. All Informant radios have a feature called TurboScan® that lets you find scanners right from the second. The INF51-3AS is ideal for truckers and is only $179.95. The new INF2-3AS is a deluxe model and has hand radio features. The INF2-3AS features built in for only $199.95. For base station use, the INF5-3AS is only $129.95 and for those with very long range, the INF8-3AS at $209.95 is a state-of-the-art receiver that delivers all the frequencies that you're listening to and allows you to listen to the reception that your listener is hearing. For outdoor enthusiasts, the INF9-3AS at $269.95 includes a loudspeaker and remote control.

Regency® 125XLT-SA

List price $189.95/CE price $99.95
10-Band, 16 Channel, No-crystal scanner.

The Bearcat 125XLT is a 16 channel automatic scan feature to locate new frequency, lock out, delay scan speed are all included.

Bearcat® 145XLT-SA

List price $159.95/CE price $99.95
10-Band, 16 Channel, No-crystal scanner.

The Bearcat 145XLT is a 16 channel programmable scanner covering ten bands. The unit features a built-in function that adds three second delay on all channels to prevent missed transmissions.

Regency®

Regency HMX1500-0

List price $369.95/CE price $179.95
11-Band, 55 Channel, Handheld/ Portable CB Base.

This hand held scanner is designed to be used in a vehicle or on the go. It has a sidekick liquid crystal display, EAROM Memory Direct Channel Access Feature, Scan delay, 800 MHz, and covers 55 channels at the same time. Includes belt clip, flexible antenna and earphone.

Uniden Cordless Phones

A major consumer magazine review on cordless phones. The check points included clarity, efficiency and price. Uniden was rated best buy.

BC760XLT-SA

900 MHz, mobile scanner, Only $299.95.

Extender Warranty Program

If you purchase a scanner, CB, radio detector or cordless phone from a dealer and store the item in your vehicle for 90 days, you can get up to three years of extended warranty coverage for any manufacturing defects on the item. Warrantee will perform all necessary labor and will not charge for return shipping. Warranty will only replace any part or scanner returned to the original manufacturer. The two year extended warranty on a mobile or base scanner is $199.95 and for cordless phones is $99. For handheld scanners, 2 years is $59.99 and 3 years is $79.99. For radio detectors, 2 years is $29.95 for CB radios, 2 years is $39.99. For cordless phones, 3 years is $34.99. Order your warranty for your merchandise today.

NEW! Mobile Radios

- **HR-210-SA** Uniden 25 Watt 10 meter Ham Radio... $239.95
- **BC55XLT-SA** Bearcat 10 channel scanner... $114.95
- **MT1500** Bearcat Mobile 20 channel scanner... $169.95
- **NEW! BC560XLT-SA** Bearcat 16 channel scanner... $98.95
- **NEW! MT2500** Bearcat Mobile 20 channel scanner... $119.95
- **NEW! MT5500 PLUS-SA** Regency marine radio scanner... $159.95
- **R1090-SA** Regency 45 channel scanner... $119.95
- **ZKO-SA** Regency 60 channel scanner... $129.95
- **UC102-SA** Regency VHF 21.1 watt scanner... $117.95
- **MSA510** Handheld charger for HR-200 and HR-150... $129.95
- **M151-SA** Wall charger for HK-1500 scanner... $129.95
- **M552-SA** Carrying case for HK-1500 scanner... $19.95
- **M257-SA** Cigarette lighter cord for HK-1200/1500... $9.95
- **B5-SA** 12 V AC-NiCad battery pack (set of eight)... $17.95
- **FB-SA** Field Service Registry Directory... $24.95
- **FB-WA** Frequency Directory for Western U.S.A.,... $14.95
- **ASA Air Scan Directory... $14.95
- **ASA Mobile Radio Frequency Directory... $12.95
- **TSQ-"Too Secret" Registry of U.S. Gov. Frequencies... $54.95
- **TFC-"Toll Free" Interphone System... $37.95
- **RFF-"Railroad frequency directory... $14.95
- **EEO-"Emery & Espionage Communications... $19.95
- **CIF-"Crimes Intel goodies"... $19.95
- **MFF-SA Midwest Federal Frequency... $14.95
- **AGD Mobile magnet mobile scanner antenna... $35.95
- **AT-SA Bearcat mobile scanner antenna... $35.95
- **USAMM-SA Mag mount VHF ant w/ 1/4" cable... $39.95
- **USK450-SA" VHF mobile mount VHF ant w/ 1/4" cable... $39.95
- **USK450-SA" VHF mobile mount VHF ant w/ 1/4" cable... $39.95
- **Add $5.00 shipping for all accessories ordered at the same time. Add $7.00 shipping per radio ordered.

B U Y W I T H C O N F I D E N C E

To get the fastest delivery from CEI of any scanner, simply check your order into our Communications Distribution Center" Michigan residents please add 6% sales tax or supply your tax I.D. number. Written purchase orders are accepted from business agencies and most well rated firms at a 10% surcharge for net 10 billing. All other orders will be delivered within two days of receipt acceptance and verification. All sales on accessories are final. Terms, prices and specifications are subject to change without notice. Please note: in the interest of time, some of our stock items will be placed on backorder automatically unless we have been notified. Postage and handling fee will be charged for all orders to a merchandise total under $50.00. Shipments are F.O.B. CEI's Michigan warehouse. No COD orders please. All items listed have a manufacturer's warranty. Free copies of warranties on these products are available by writing CEI. Non-confirmed orders will not be processed.

Most orders to: Communications Electronics
Box 1045, Ann Arbor, Michigan 48106 U.S.A. Add $7.00 per scanner for P.R.S. ground shipping and handling in the continental U.S. (for Canada, Puerto Rico, Hawaii, Alaska, or APO/FPO delivery, shipping charges are three times continental U.S. rates. If you have a Dismissal, Veterans, Police, Fire or other unit, you may be able to place a credit card order. Order toll-free in the U.S. Dial 800-USA-SCAN. In Canada, toll-free by calling 800-221-3475. FAX anytime, dial 1-800-XMIT-USA or in Michigan dial 313-973-8888. Order today. Scanner Distribution Center** and CEI logos are trademarks of Communications Electronics Inc.
ICOM IC-375A 220-MHz Multimode Transceiver

It's finally happened. All diehard 220 enthusiasts can now rejoice and revel in ICOM's latest entry into the VHF/UHF multimode market: The IC-375A transceiver. It's made exclusively for the North American amateur market.

Similar in design and operation to the IC-275 and IC-475, this radio offers a wealth of features for everyone, from the casual FM operator to hard-core packeters. Considering this is the first time any company has manufactured such a transceiver, one has to be impressed with the sophistication of the design.

Overview

Figure 1 shows the front panel. Note the virtually identical copy of its sister transceivers for 2m and 70cm. The bright, backlit amber LCD display jumps out, showing frequency, VFO, memory channel, RIT, tone squelch, duplex offset, and mode. The frequency selection dial sits beneath the display, and has silky-smooth operation over a variety of tuning increments.

Modes

The 375 has four modes: FM, LSB, USB and CW. Pushing the CW mode switch again enables the optional CW filter (500 Hz), which the operator can use in conjunction with the Passband Tuning (PBT) and Notch controls for enhanced selectivity. Provision is made to switch a tower-mounted preamplifier from the front panel (maximum power: 100 watts) as well as to enable a built-in speech compressor. There are also two speeds of AGC selection.

The user can select sub-tone frequencies on both receive and transmit, and store any combination of offsets, sub-tones, modes and frequencies in 99 separate memory channels—more than adequate for everyday use. Two priority channels are also available which store similar data.

RIT (Receiver Incremental Tuning) is standard and permits a shift of up to 9.9 kHz either side of the displayed frequency. The RIT can be cleared to zero offset at the touch of a button. This feature works in all modes, including FM.

"... the user can adjust the tone of his transmitted audio and set the degree of compression in the speech processor."

Additional controls set up the microphone gain (not deviation), RF output power, RF gain, CW keying delay, meter display, and AF tone quality from the built-in speaker. The AF gain and squelch controls are located to the right of the display meter, directly below the main power switch, in order not to confuse them with any other controls.

Several scan rates are available. The standard band scan is incorporated, along with programmable range scanning, selectable mode scanning through memories, and general purpose memory scanning. A skip button allows the operator to lock out undesired channels when in scan mode. When using the programmable scan function, transmitting or touching the main tuning dial erases the pre-programmed band limits.

As on all new ICOM multimodes, the 375 has full break-in keying (QSK). Current activity levels are presently too low for QSK to be really useful now. In many cases also, full break-in keying isn’t usable due to sequenced switching of amplifiers and external preamplifiers. The optional AG-30 mast-mounted preamplifier won’t function when full QSK is selected either. Semi-break-in is also available with the drop-out delay set from the front panel. Note that no VOX operation is available—none of the new ’75 series transceivers offer it.

The DATA switch on the 275 and 475 is also available here. ICOM claims a switching time of less than 5 milliseconds, which should be ideal for packet operation. Packeteers will not be able to use an external amplifier or preamplifier, however, due to this rapid switch time. The IC-375 also runs AMTOR, conventional AFSK RTTY, and SSTV.

A small insert with the IC-375A tells of the availability of the ICOM CIS (Communication Interface System), permitting control of these radios through a personal computer and RS-232 port. Such control permits displaying and operating the frequency, mode, memory selection and scanning functions, among others. ICOM doesn’t say, however, what
software is available to do the job, so look for it in the next few months.

The rear panel also has many controls. In addition to the CW keying speed, the user can adjust the tone of his transmitted audio (brilliant) and set the degree of compression in the speech processor. The remote connection for the RS-232 interface is here, as well as two accessory jacks for the ICOM AQS automatic squelch system and ALC control/external keying/receiver output.

The operator can also monitor his SWR via a three-way switch on the rear panel as well as power output. Connections for a CW key and external speaker are found here using 2.5mm miniplugs, and the CW sidetone level is accessible here. The antenna connector of choice is the SO-239 “UHF” socket, which is pretty much standard on 220 equipment. Although the IC-375A comes with a built-in AC supply, the user can also access the 13.8 volt input directly for portable use with the supplied DC power cable.

Observations

I've had the IC-375 in my station for quite a few months now, and gave it a fairly hard run during the September VHF QSO Party. Over 50 stations were worked from this location using the IC-375A, a Mirage C1012 amplifier, and a single Cushcraft 220 Boomer at 60 feet. Most of my operation was on SSB and CW (I use primarily an IC-37 for FM work), and the transceiver performed flawlessly the entire weekend. I had to stop operating and switch feedlines on 220 halfway through the contest due to an extremely high SWR condition that apparently made a difference to the 375A. CW was the main mode that weekend due to the generally terrible conditions and weak signals. I preferred the semi break-in mode and use a special eight-pin DIN to RCA plug cable to switch the C1012. The 375A, by the way, keys an external amplifier by pulling it to ground, which is fairly standard practice. The eight-pin plug is similar to the one used by Kenwood. Since there was no available AG-30 preamplifier, I used the preamplifier in the Mirage with minimal results. The front-end sensitivity of the 375A is such that a preamp isn't needed most of the time. However, the S-meter is just as "dead" as on the 275 and 475, as the reader will soon see in the test data.

In practice, I set the AF Tone control at about 10 o'clock to eliminate a high-frequency hiss present with no signals and the squelch open. The speech compressor didn't seem to make much difference on distant contacts. It took as many tries to work weak stations with compression on as it did with compression off.

The front-end performance of this particular unit... is not on a par with the IC-275A and IC-475A."

The RIT control is a real help on 220, especially with all the older stations that drift out of the passband.

I used the Programmable Scan to set up limits of 220.080-220.150 MHz so that the radio was always seeking out new stations while I was on other bands. Most of the activity on 220 SSB or CW occurs during the activity hours at 0800Z and 2000Z with the band fairly quiet otherwise. Using this scan feature allows the contestor to keep an extra "ear" on the band in case of an opening or a new grid square.

Received signal reports were favorable regarding the crispness of the audio as well as clarity. Based on these reports, I set the mic gain control at 12 o'clock and left it there permanently. The supplied microphone is the ICOM HM-12 scanning type, allowing remote up/down selection of frequency. Serious contesters may wish to go with the optional SM-8 base station microphone and a footswitch, leaving the hands free for logging and tuning. (ICOM also makes the SM-10 microphone with a graphic equalizer and speech compressor.)

Performance

The following measurements were taken with an HP608F generator, Boonton 92 millivoltmeter and Bird 43 Wattmeter. Power source was the internal AC supply. Take note, however, of two points.

- The IC-375A transmits across the entire specified range, but power output falls off significantly outside 220-225 MHz.
- Receiver compression point was significantly lower than on similar IC-275A and IC-475A models. See the sidebar.

Conclusions

The IC-375A represents a significant step forward in 220 MHz technology. There is no other comparable product that exists today. ICOM has built every possible feature into this transceiver to cover the wide range of operations and modes on 220 MHz. Its output power is sufficient to drive both solid-state and ground-grid tube amplifiers, such as the 8877 and 3CX600, to near the legal limit.

The front-end performance of this particular unit, however, is not on a par with the IC-275A and IC-475A. It took considerably less signal to drive the front end into compression, and this might mean some noticeable intermod products during contest operation, or when strong adjacent channel signals are present such as television channels 12 or 13.

I noticed a slight amount of AGC "pumping" during contest operation when other strong signals were present, but it didn't degrade front-end sensitivity that much. The external preamp might make this situation worse depending on its particular compression characteristics. Indeed, switching my external JFET preamp inline during crowded band conditions did just that.

Still, for the serious UHF operator, the IC-375A is a great way to go for multimode operations. The overall design and performance combined with ease of operation makes this an excellent choice of transceiver. 27

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Claimed</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Coverage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmit:</td>
<td>216–236 MHz</td>
<td>216.00–236.00 MHz</td>
</tr>
<tr>
<td>Receive:</td>
<td>same</td>
<td>same</td>
</tr>
<tr>
<td>Output Power:</td>
<td>220.100 High</td>
<td>25 watts</td>
</tr>
<tr>
<td></td>
<td>223.50 High</td>
<td>25 watts</td>
</tr>
<tr>
<td></td>
<td>220.100 Low</td>
<td>2.5 watts</td>
</tr>
<tr>
<td></td>
<td>223.50 Low</td>
<td>2.5 watts</td>
</tr>
<tr>
<td>Receiver Sensitivity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB/LSB/CW</td>
<td><.28 uV</td>
<td><.28 uV</td>
</tr>
<tr>
<td>FM</td>
<td><.18 μV for</td>
<td><.2 uV</td>
</tr>
<tr>
<td></td>
<td>12 dB SINAD</td>
<td>12 dB SINAD</td>
</tr>
<tr>
<td>Signal for “S9” reading</td>
<td>n/a</td>
<td>3.5 μV</td>
</tr>
<tr>
<td>1-dB compression/output</td>
<td>n/a</td>
<td>-9 dB</td>
</tr>
<tr>
<td>Conversion Gain, First</td>
<td>n/a</td>
<td>18 dB</td>
</tr>
<tr>
<td>RF Amp/Mixer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selectivity, SSB/CW</td>
<td>2.3 kHz/6 dB</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>4.0 kHz/60 dB</td>
<td>n/a</td>
</tr>
<tr>
<td>Selectivity, CW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 kHz/6 dB</td>
<td>as claimed</td>
</tr>
<tr>
<td></td>
<td>30 kHz/60 dB</td>
<td>as claimed</td>
</tr>
</tbody>
</table>
UoSATs: The British Connection Part 2

University of Surrey's Contributions to Hamsats

by Robert J. Diersing N5AHD

Whole-orbit Telemetry Format

In late 1985 and early 1986, both UoSAT spacecraft began to operate under the control of a diary program stored in the on-board computer (OBC). This control program allowed much more flexibility in scheduling the activities of the OBC and data types transmitted on the downlinks. Consequently, whole-orbit telemetry surveys are transmitted very frequently from both spacecraft. The increased frequency of transmissions of whole-orbit data (WOD) make it more desirable to be able to decode and analyze this data. The amateur satellite enthusiast can thus observe the measurements made by onboard sensors when the spacecraft is not within range of his or her ground station. It is important to understand that the whole-orbit data is merely an extraction from the standard telemetry channels that has been stored in the OBC memory.

The amount of OBC memory available for data storage is about 8K for UoSAT-1 and 32K for UoSAT-2. The duration of the survey is under control of the OBC as loaded by the UoS command station. If whole-orbit data is transmitted, the status message transmitted by the command diary will give the date and time of collection and the channels included in the survey. Note that UoSAT-1 and UoSAT-2 computer status messages shown in Figures 1A and 2A include data related to whole-orbit data collection. They show the time WOD collection began and what channels are included. Typical whole-orbit data from UoSAT-1 and UoSAT-2 can be found in Figures 1B and 2B, respectively.

WOD Header Lines

There are some important observations to make about WOD surveys. First, each line consists of a four-digit line serial number followed by one to eight three-digit telemetry channel values and a two-digit checksum. The only exception is the first line, serial number 0000h. In this line the telemetry channel value positions contain the channel numbers of the channels included in the survey. An inspection of the UoSAT-2 sample will verify this. Spaces have been inserted for readability.

0000 0110 037 038 039 040
It should be noted that the channel numbers also appear in the status message. However, the date and time of collection can only be obtained from the status message and is not contained in the survey data itself.

The time span between successive lines is determined by multiplying the line serial number increment by the time required to digitize and transmit a standard telemetry frame at the current downlink data rate. Considering the usual downlink data rate of 1200 bauds, the digitize-and-transmit time for UoSAT-1 is 5.28 seconds, and for UoSAT-2 it is 4.84 seconds. Thus, the time between lines 0000h and 0010h in the UoSAT-1 example is (0010h - 0000h) x 5.28 and (0010h - 0000h) x 4.84 for the same lines in the UoSAT-2 example. The duration of a WOD survey can thus be determined by multiplying the highest line serial number by the same factors of 5.28 and 4.84. Various maximum line serial numbers recently observed are shown in Table 1. Both the time between measurements (lines) and the duration must, of course, be considered by any program that will plot the data.

Interleaved Transmission Scheme

The examples in Figures 1B and 2B were only short extractions from an actual WOD survey. Their intent was to show the general format for WOD. A typical survey from UoSAT-1 might consist of lines 0000h through 04C8h while one from UoSAT-2 could have lines 0000h through 0FD8h. The larger number of lines from UoSAT-2 is a result of the larger amount of memory available in which to store the survey. In actual practice, however, multiple sets of lines are transmitted as shown in Figure 3.

The data set with serial numbers 0001h through 0FD9h is transmitted following the data set with serial numbers 0000h through 0FD8h. There may also be a 0002h through 0FDAh set. The previous discussion of time between measurements still holds; i.e., the time between lines 0008h and 0009h is 4.84 seconds since the difference between serial numbers is one. The data is downlinked in this interleaved fashion so that burst errors during downlink reception can be repaired with the following set of "nearby" data points. This feature is particularly useful when observing the WOD in real time as the UoS command station does.

Checksum Validation

In order to verify the checksum, each pair of ASCII characters is taken as a hex byte value and summed. Using modulus 256 arithmetic, the summation should produce a constant result. In the case of UoSAT-1 whole orbit telemetry, the constant value is AAh, which is 170 decimal. For UoSAT-2 the value is BBh, which is 187 decimal. An example of the checksum validation procedure follows. It was taken from the UoSAT Spacecraft Data Booklet.6
Consider the WOD telemetry line: 008851449621693FF Take this line and add a zero ('0') in front of each three-digit telemetry value to get: 00 08 05 11 04 49 06 21 06 93 FF Add together the first digit from each pair (remembering A = 10, B = 11, etc.) and multiply by 16:
\[(0 + 8 + 0 + 1 + 0 + 4 + 0 + 2 + 0 + 9 + F) = 624 \]
Add together the second digit from each pair:
\[0 + 8 + 5 + 1 + 4 + 9 + 6 + 1 + 6 + 3 + F = 58 \]
Add these two previous results together, divide by 256, and note the remainder.
\[(624 + 58) = 626 + 2 \] with remainder 170
Lines producing the correct result when subjected to the validation procedure should represent correct data. The UoSAT-2 WOD should produce a remainder of 187 (BBb).

Merging Data from Multiple Orbits

Rarely can a complete WOD survey be captured in a single pass. This is usually due to a combination of two factors. The first is marginal reception due to low elevation pass-es and/or local interference with the down-link signal. The second is the switching off the WOD on and off the downlink by the OBC resulting in insufficient data capture.

The solution to this problem lies in the merging of data from orbits where the same WOD survey has been transmitted. Care must be taken that the WOD is from the same survey as indicated by the OBC status message. Table 2 shows data from several orbits collected at my station.

For UoSAT-2, a new WOD collection had already begun for the UTC day prior to the first visible pass. This can be seen by referring to the UoSAT-2 data in the preceding table. Note that the highest line serial number for orbit number 12089 is 090Ah, and for orbit number 12090 it is 0D99h. This is because WOD collection was in progress when the data was captured. When monitoring the downlink in real time, ‘WHOLE ORBIT DATA COLLECTION IN PROGRESS’ will be seen in the OBC status messages until the survey has been completed. For listeners in the United States, the best orbits for WOD collection will be the morning passes, since the survey will have been completed by then. Occasionally, a new WOD survey will start around noon UTC, but this is not common.

The same comments apply to UoSAT-1 with one notable exception. The difference is that frequently a new WOD survey is initiated between passes visible in the US, since this is when UTC midnight occurs. This can be seen in the preceding table. Orbit number 27162 occurs on 08/25/86 while orbit number 27163 occurs on 08/26/86. The highest line serial number is again lower on orbit 27163, indicating a WOD survey in progress.

A Look Ahead

The UoSAT Spacecraft Engineering Research Unit at the University of Surrey (UK) is now building a third UoSAT-OSCAR spacecraft—UoSAT-C. NASA has agreed to provide a launch for UoSAT-C on a DELTA launch vehicle currently scheduled for late 1988. The DELTA should place UoSAT-C into a 43-degree inclination, 500 km circular orbit.

Like UO-9 and UO-11, UoSAT-OSCAR-C will support a world-wide user community of engineers, scientists, educators and communicators. If all goes according to plan, UO-C will provide spacecraft housekeeping telemetry, long-term telemetry surveys, results from on-board experiments, news bulletins and communications facilities on a single downlink through packet-radio techniques. The UoSAT Spacecraft Research Unit will finalize and publish communications modern and protocol details as soon as possible to allow ground stations to equip themselves.

UoSAT-C, like the previous UO missions, will have a strong element of international collaboration—specifically with members of AMSAT-UK, AMSAT-NA in the US and Canada, VITA, Quadron, NASA, the British National Space Centre and the European Space Agency.

Table 2. A summary of UoSAT data collected at the author's location (27.28N, 97.24W).

Satellite Technology Experiments

UoSAT-C will carry a range of satellite technology experiments associated with power systems, on-board data handling (OBDB), attitude determination, control and stabilization (ADCS) and RF modulation.

- **POWER**—The spacecraft will be powered from GaAs solar cells and will include experimental patches of novel GaAs, InP and Si solar cells with a variety of newly developed cover-slides. The performance of these cells will be monitored throughout the mission as a function of radiation dose. The spacecraft on-board computers will constantly monitor and adjust the Battery Charge Regulator and Power Conditioning Module to optimize power conversion and storage efficiency.

- **OBDB—**UoSAT-C will include several computers. In addition to the primary CRA1802 on-board computer (OBC-1) running DIARY-type software, there will be a more powerful 80C86-based OBC-2 supporting complex attitude control algorithms and spacecraft data networks. Four TRANS-PUTERS in a parallel-processing array will be available for highly sophisticated on-board image and data processing, and the OBC will employ an 80C186-family computer to manage high-speed communications links and several megabytes of RAM.

A wide range of memory devices using different technologies and architectures will make up a total on-board capacity of around five megabytes of RAM. The radiation-induced effects on the processors and associated memories will be monitored and evaluated throughout the lifetime of the spacecraft. The network of computers on UoSAT-C will make this spacecraft the most computationally-complex VLSI devices have not yet been tested for space use. UoSAT-C will host several experimental payloads studying the effects of the space radiation environment on VLSI devices.

- **Cosmic Particle Experiment** (CPE)—comprising an array of large-area PIN diodes, will detect energetic particles which cause single event upsets (SEUs) in VLSI circuits (such as high-density RAMs).

- **CCD Single Event Upset Experiment**—(CCD-SEU) comprising an enclosed Charge-Coupled Device (CCD) array, will detect energetic cosmic particles and evaluate the effect of SEUs on CCD imagers. This data is of particular importance for scientists using sensitive CCDs as star sensors.

- **Total Dose Experiment** (TDE)—using special FETs located around the spacecraft, will measure the total radiation dose accumulated by the on-board subsystems and payloads. These dose measurements will allow engineers to assess the shielding properties of the spacecraft structure, and to correlate changes in LSI-device power consumption and performance with total radiation dose.

Satellite Technology Experiments

UoSAT-C will carry a range of satellite technology experiments associated with power systems, on-board data handling (OBDB), attitude determination, control and stabilization (ADCS) and RF modulation.
tionally powerful of its class and will support demanding experiments in advanced spacecraft attitude determination and control, data communications and image processing.

- **ADCS**—The 43-degree inclination, non-sun-synchronous nature of the UO-C orbit will necessitate the use of new attitude determination and control mechanisms to maintain accurate Earth-pointing. In addition to more complex attitude control algorithms executed by OBC-2, improved analog and digital sun sensors and Earth horizon sensors are being developed at UoSAT for the mission.

- **DSP**—If time and resources permit, a Digital Signal Processing Experiment may be included on UO-C to evaluate modulation/demodulation schemes.

A new concept of highly modular construction has been developed and is under test for UoSAT-C. This new, modular structure should result in much improved utilization of the available spacecraft envelope, greater ease of assembly and integration, and allow a more rapid response to future launch opportunities.

For More Information

Information about UoSAT operations can be obtained by copying the bulletins transmitted by the satellites. Examples of bulletins can be found in Figures 1B and 2B. These bulletins are usually updated on Thursdays so listening on the weekends will provide the latest information. The bulletins transmitted by UoSAT-2 are longer than those sent by UoSAT-1 since there is more RAM available for storing the bulletin text. The bulletins contain important information for all operational satellites.

Orbital information can be obtained from a variety of sources. The most popular method is to run predictions with the aid of a computer program. In the UK, programs for various microcomputers are available on both diskette and cassette tape from AMSAT-UK, 94 Herongate Road, Wanstead Park, London, E12 5EY. In the US, programs are available for a number of microcomputers from AMSAT-NA Software Exchange, Box 27, Washington, D.C., 2004. The reference elements sets are available through the various AMSAT nets and publications.

The UoSAT Newsletter is published periodically by the University of Surrey Electrical Engineering Department. It is sent to those who have a record of serious interest in using the UoSAT spacecraft. A complete description of the UoSAT-1 experiments was given in the August/September 1982 issue of *The Radio and Electronic Engineer* published by the Institution of Electronic and Radio Engineers, London. Another comprehensive description of UoSAT-1 can be found in *UoSAT: The University of Surrey Satellite Project* published by the University Department of Electrical Engineering. Another issue of *The Radio and Electronic Engineer* has recently been devoted to the UOSAT-2 spacecraft. Copies are available from AMSAT-NA and AMSAT-UK.

Publications available in the US containing information about UoSAT are *QEX/SAT* published by the American Radio Relay League, and *Amateur Satellite Report (ASR)* and the *AMSAT-NA Technical Journal (ATJ)* both published by AMSAT-NA. ASR is a membership service and is published every two weeks. *ATJ* is published twice yearly in January and July and contains high-level engineering and scientific papers related to amateur radio and other low-cost spacecraft projects.

Acknowledgements

The material in the sections on UoSAT-C Mission Profile and UoSAT-C Payloads is taken directly from the public announcement of the UoSAT-C mission prepared by Dr. Martin Sweeting, G3YJO, Director of Satellite Engineering at the University of Surrey, England.

References

N5AHD is Associate Professor of Computer Science at Corpus Christi State University, 6300 Ocean Drive, Corpus Christi TX 78412.

1988 Atlanta HamFestival
July 9–10, 1988 • Atlanta, Ga.
Georgia World Congress Center

- More than 30 forums, covering DXing, contesting, antennas and more! • Giant indoor flea market! • License exams both days! • Antique radio show! • Nearby lodging! • The sights and sounds of Atlanta!

For more information, call Roy Epps, K4UWO, at (404) 457-2916; access the Atlanta Radio Club Computer Bulletin Board at (404) 399-3083; or write to the Atlanta Radio Club, P.O. Box 777171, Atlanta, Ga. 30357

73 Amateur Radio • June, 1988 31
Buyer Beware!

But you don’t have to be infallible

R.C. Lukaszewicz WD8RCL

Have you ever bought a piece of gear that did not live up to the seller’s claims? There is a solution to get your money back or to recoup repair costs!

Buying used equipment carries the risk of inheriting someone else’s troubles. Unfortunately, not all hams honestly represent their hand-me-downs. Here are some pointers to avoid being left “holding the bag.”

I am not an attorney and I am not attempting to provide legal advice regarding the matters put forth in this article, but my experience could offer some valuable lessons.

The Transaction

A short time ago, I heard a ham announce over a 40 meter net that a five-year old, 25 watt, synthesized, two meter mobile was available for $165. I called him on the telephone to question the condition of the radio and if the price was negotiable. After speaking with the seller, I was convinced that the only flaw with the radio was a bulb that had reached the point of no return in the T/R meter. The price was not negotiable, and I believed that the radio functioned properly. Eventually, I followed through and made arrangements to examine the rig at a Swapmeet.

We met, and I examined the radio. Unfortunately, there were no provisions for testing the rig, and again I questioned the seller on his condition. I was given a verbal guarantee that nothing but the bulb was inoperative. Also, the seller claimed he had used the rig daily in his home without a problem. I thought that since this statement came from a fellow amateur, it was good enough for me. I paid the owner his full asking price of $165 in cash.

The Ultimate Test

Upon arriving home, I immediately connected the unit with my Bird wattmeter in line. I quickly discovered that the maximum output power was a mere eight watts, the T/R meter was not operating in the receive mode, and there was objectionable audio distortion on receive.

Immediately I called the previous owner and explained the problems. He agreed to make amends and reluctantly agreed that the T/R meter was not functioning on receive. We agreed to talk the following day with information on repair options.

The next day I was armed with as much information I could accumulate for the repair cost of the unit on short notice. I called the previous owner again and courteously asked that he either repay the cost of the unit or provide me with a modest $45 to partially cover repair costs (one hour of labor at the original equipment manufacturer).

The seller said that he would not take the radio back and would not pay the $45 for partial repairs. In closing, he said that I had purchased the rig “as is” and had to live with the problems. I responded that I did not buy the radio “as is.” I had a verbal guarantee, and I believed it was now necessary to take him to Small Claims Court to resolve the matter.

Preparation for Court

I immediately prepared a letter to the previous owner, which included all the facts of our dealings, and sent it via registered mail and requested a return receipt. The letter was refused, which is an option of the addressee. I then filed a court claim for the sum of $45 for the in-factory repair, $21 for the estimated replacement of the final power amplifier, and $20 court costs for a total of $86.

I then obtained a written quote from the manufacturer highlighting the cost of examining the radio. I obtained the FCC rule book and highlighted Part 97, ownership Subpart-C Technical Standards, section 97.67, Maximum authorized transmitting power subsection(a) and subpart E-Prohibited Practices and Administrative Sanctions, section 97.121, False Signals subsection(a).

I gathered together the equipment specification sheet, the radio, power supply, antenna, Bird wattmeter and associated cables to demonstrate the radio in court if necessary.

Trial Day

At the trial I informed the court that the case was a matter of principle. I felt I could prove that the radio I had purchased was sold with the knowledge of it being a defective radio. I stated the facts, presented the refused, unopened registered letter, Specification Sheet, ARRL/FCC rule book, equipment examination estimate, and radio. The seller simply stated to the court that he was unaware of any problems with the radio.

I pointed out the meter on the face of the radio, and said that I felt it had to be observed by the previous owner. I then pointed out that, per the rules and regulations, that the seller would have been operating illegally by not knowing his output or by transmitting false signals into a repeater by not having the T/R meter working. I then offered to set up the rig and demonstrated the power output deficiency.

This was all that was necessary for the court to rule in my favor. I received the full award of $66 plus court costs that I sought. I ultimately repaired the T/R meter and audio problem myself, with the power problem yet to be tackled.

Caveat Emptor

Here are some common sense guidelines to follow when considering a purchase of used gear.

• Thoroughly quiz the seller about the condition of the piece of equipment. Make certain about the condition of the gear before buying.
• Ask the seller if he would refund all monies if you are not totally satisfied with the equipment.
• Be certain to obtain the seller’s complete name, address, phone number and call sign.
• Ask the seller if he will take a personal check with proper ID. Some sellers are willing to take a check if they believe the equipment’s damage was described properly.
• On the other hand, some amateurs have been inconvenienced by bad checks.
• Ask for a demonstration on the spot if possible.
• If you purchase through the mail, “sight unseen,” be sure the seller will provide a return privilege in writing.

The Small Claims laws are different in many States, so check the options. Keep in mind, however, that it is not a joyous occasion to take a fellow amateur to court. Still, it is better to have the courts decide rather than taking the law into your own hands. Also, the time lost in attending court may not be worth the claim, and it then becomes a matter of principle.

Summary

It is wise to scrupulously check the piece of equipment as effectively as possible before buying it.

If you are ever taken advantage of, be patient in the effort to resolve the matter mutually between the buyer and the seller. If all else fails, the Small Claims Court may become the only alternative.

Remember, even if the equipment was bought “as is” and there are defects above and beyond what was bargained for, the damages may be reclaimed. If fraud can be proven, the seller of the equipment may have to rescind the deal or hand over the costs for the repairs.

Since laws in each state may be different, a consultation with an attorney may prove worthwhile before filing a claim.

Knowing there is solid recourse, I will continue to buy used gear and continue to look for those bargains.
Synchronization
How does a receiver demodulate this single side band without a reference carrier? By pulse coding the deviations to allow polarized pulse detection in a digital phased locked loop (PLL) demodulator system. Binary "one" is encoded as a brief pulse of a leading phase angle at the start of a clock period and a brief pulse of a lagging phase angle at the middle of this clock period. Binary "zero" is encoded only as a brief pulse of a lagging phase angle at the middle of a clock period. This coding thus provides a timing pulse at the middle of every bit for directly transmitting the clock.

Small Phase Deviation
The key elements in the new pulsed BPSK modulation system are: 1) the very small phase angle deviation, and 2) the nanosecond linear transient of the phase modulation.

Hund analyzed the sidebands generated by small phase deviations. At small phase angles of 0.2 radian (11.5°) or less, only two main sidebands, similar to AM sidebands, are generated. The modulating frequency \(f \) determines the sideband spacing from the carrier. The width of a sideband is the the modulating frequency variation, as in AM. Each sideband contains an equal amount of information. This allows PSK transmission on a single sideband (SSB) by using a small deviation angle and a bandpass filter to pass one sideband and reject the carrier and the other sideband. The width of this single sideband is reduced by a novel coding method that uses pulsed phase deviations of 0.02 radians (1.2°) to represent the digital information. The novel coding incorporates a timing pulse in every bit, which provides a coherent clock at the receiver enabling synchronous operation.

Synchronization
How does a receiver demodulate this single sideband without a reference carrier? By pulse coding the deviations to allow polarized pulse detection in a digital phased locked loop (PLL) demodulator system. Binary "one" is encoded as a brief pulse of a leading phase angle at the start of a clock period and a brief pulse of a lagging phase angle at the middle of this clock period. Binary "zero" is encoded only as a brief pulse of a lagging phase angle at the middle of a clock period. This coding thus provides a timing pulse at the middle of every bit for directly transmitting the clock.

The phase deviations arise from the transitions at the rising and falling edges of the rectangular phase modulating pulses approximately 1μs long. The phase angle deviation during the nanosecond rise and fall of the modulating pulse is approximately 0.02 radians or 1.2°. The sine wave carrier is phase modulated during a very small portion of a single carrier cycle when using this method, so modulation products occupy a very small frequency spectrum.
TX Modulator

The wave shapes used in this system are shown in Figure 1. Figure 2 shows a block diagram of the transmitter's simple modulation system.

A sine wave oscillator feeds a one-volt signal through the quad bilateral switches to separate L and C phase shift circuits when these switches are pulsed. The sine wave remains unshifted during the intervals between the digital bit pulses. The square wave clock oscillator circuit drives an inverter, which in turn drives a monostable multivibrator (M.V.) to produce a "zero" modulating pulse at the middle of every clock cycle. This pulse drives a switch to connect the L phase shift circuit to produce a lagging phase angle.

The NRZ data input, clocked by the clock oscillator, drives one side of the AND gate while the clock frequency drives the other side. When a digital "one" appears at the gate, the AND gate drives a second monostable M.V. to produce a "one" modulating pulse at the start of a clock cycle. This pulse drives a switch to connect the C phase shift circuit to produce a leading phase angle.

Inverters driven by the pulses open the switches, which transmit the carrier directly for the pulses' duration. When no pulses are present at the inverter inputs, the inverters drive the two switches closed to transmit the carrier directly to the load R without phase shift. The load resistance is coupled to a high impedance input amplifier, the output of which drives a frequency doubler.

At this point, there is a carrier with two sidebands present. The sidebands are about 1% of the carrier amplitude. A crystal single sideband filter selects the upper sideband, and an amplifier feeds the narrow single sideband to the antenna.

At The Receiver

Here, the SSB sine wave signal at a 455 kHz intermediate frequency (IF) is amplified to make it a square wave at the logic level (Figure 3). The square wave is further squared by a Schmitt trigger, and its leading edge is compared to the leading edge of the PLL voltage-controlled (VCO) square wave in the digital phase comparator of a well-damped PLL by RCA. The signal square wave input is also compared in a second digital phase comparator with the PLL VCO. The second digital phase comparator gives a positive output pulse for a lagging phase angle input, and a negative pulse for a leading phase angle input. This allows unambiguous identification of digital "ones" and "zeros" without a reference carrier, not possible in previous PSK systems.

The digital PLL locks on to the frequency of the bit stream. An inverting amplifier then amplifies the negative output pulses denoting binary ones from the second phase comparator. A diode clipper removes the negative portions of the signal. The positive "zero" pulses are amplified to a square wave at the logic level. A PLL digital phase comparator then compares these pulses with the square wave output of the VCO at the clock frequency but 180° out of phase. An inverter brings the VCO output into phase and feeds the clock output terminal, thus furnishing a coherent clock for the receiver.

Bandwidth Limits

With this encoding method for a clock frequency f, a string of "zeros" gives the
inner sideband boundary as $f \Delta \theta$, where f is the modulating frequency, and $\Delta \theta$ is the phase deviation angle from the center frequency of the carrier frequency F. The outer sideband boundary is $2f \Delta \theta$, for a string of "ones," which have two pulses per clock cycle. Then $2f - f \Delta \theta = f \Delta \theta$, the width of the sideband. As modulation takes place during the nanosecond rise and fall times of the pulses used, f is effectively multiplied by two. Since the deviation used is only 0.02 radian, and there are 2π radians in a cycle of the carrier frequency, this results in $(2 \times 20,000 \times 0.02) \times 6.28 = 127$ Hz bandwidth for a clock frequency of 20 kHz.

Prototype Characteristics

A working breadboard prototype has been operated at a carrier frequency of 21.4 MHz and a clock frequency of 19.6 kHz, an adequate speed for digital telephony or transmission of computer data. These benefits come, however, by sacrificing the high speed performance of the conventional 180-degree phase shift systems. It’s a trade-off of speed for economy, simplicity, synchronous operation, and bandwidth. The experimental system is capable of synchronous transmission and reception of 6-bit digital telephony in a bandwidth formerly associated with CW transmission!

The breadboard system has the following characteristics:

- **Transmitter**—Carrier frequency 21.388 MHz
 - Upper sideband—21.400 MHz
 - Clock frequency—19.6 kHz
 - Digital input RZ or NRZ—12V data
 - Power output—10 mW
 - Receiver—Hammarlund HQ–101A with 455 kHz IF 0.2V P-P
 - Receiver bandwidth—3 kHz
 - Demodulator accepts 455 kHz 0.2V P-P sine wave
 - Demodulator output—RZ or NRZ 12V data, 12V clock

System Construction

I bread-boarded the experimental system using standard Radio Shack #276-174 2" x 6" experimenter boards, with the ends trimmed off to fit the bottom of standard 3" x 5" x 2" aluminum boxes on top of a piece of 1/4" thick corrugated carton material, and glued in place. The carton material reduces capacity to ground.

Figure 4 is the schematic diagram of the modulator and carrier generator units. Q_1 is a standard crystal oscillator for crystal Y_1, which has a frequency of 10.694 MHz. Q_2 is a source follower and delivers a sine wave at about 1 volt to the 1.2kΩ resistor at terminal 1 of U_1, a quad bilateral switch.

Narrow pulses from U_1 drive control terminals 5, 6, 12 and 13 of U_2. When terminals 8 and 9 of U_2 are driven by a narrow positive pulse from pin 10 of one shot M.V. U_3, pin 6 of U_1 receives this pulse and closes the transmission gate between pins 8 and 9, which feeds carrier voltage from terminal 1 to C_1 and R_1, shifting the phase of the carrier to a leading phase angle. The complementary pulse from inverter pin 10 of U_2 at the same time opens the transmission gate between pins 3 and 4 of U_1, which had been closed to transmit the carrier directly to R_1. Also, when pins 12 and 13 of U_2 are driven by a narrow positive pulse from terminal 6 of U_3, pin 12 of U_1 receives this pulse and closes the transmission gate between terminals 10 and 11, which feeds carrier voltage from pin 1 to L_1 and R_1, shifting the phase of the carrier to a lagging phase angle. The value of R_1 determines the phase angle.

The complementary pulse from inverter #11 of U_3 at the same time, opens transmission gate between pins 1 and 2 of U_3, which had been closed to transmit the carrier directly to R_1. When no pulses appear at pin 6 and 12 of U_1, as in the time between pulses, gates between 1 and 2, 3, and 4 are closed by the inverters, so the carrier appears across R_1 without any phase shift. The dual M.V. at U_3 gives "one" pulses from pin 10, and "zero" pulses from #6, 1μsec wide.

The clock oscillator U_2 has a square wave output at pin 10, with a complementary output at #11. Frequency divider U_3 is driven at pin 1 by the complement at pin 11 of U_2, and pin 12 is a divide-by-two output of the clock frequency. The square wave output of #12 of U_3, is inverted at terminal 3 of U_1, and can then serve as a test program of alternate ones and zeros when applied to terminal 2 of U_2 by switch SW_1.

The clock frequency square wave from pin 11 of U_2 is sent through three AND gates of U_4 to delay its leading edge until later than the trailing edge of the "one" pulse at pin 2 of U_6. This delay prevents a false "AND" output from pin 3. A small capacitor might be necessary from #9 of U_4 to ground to increase this delay in cases where clocked data signals are delayed excessively by the digital processor in use.

Pin 5 of U_5 is driven by the trailing edge of the clock pulse to produce "zero" pulses from #6 at the middle of each clock cycle. Terminal 12 of U_5 is driven by a pulse from pin 3 of U_6 when the rising edge of a "one" pulse and the rising edge of the clock pulse are "ANDED" at pin 3. In this manner, a "one" pulse is delivered at #10 of U_5, and a "zero" pulse is delivered at #6 of U_5 at the proper times to accomplish the coding of the phase deviations of the carrier.

Output Coupling

The carrier voltage on R_1 drives a source follower Q_3, with high input impedance, and its low impedance output drives the amplifier Q_4, which in turn drives the frequency doubler Q_5. Output tank $L_1 C_1$ is tuned to the second harmonic of oscillator Q_1. A few turns on L_2 serve to couple to the output terminal at low impedance.

The output terminal and ground are connected by twisted pair to the input of the single sideband filter unit shown in Figure 5. The six-pole crystal filter centered at 21.400 MHz has a bandwidth of 12 kHz and drives a high impedance input amplifier Q_6. Amplifier Q_6 drives the output stage Q_7. Output tank $L_1 C_1$ is tuned to 21.400 MHz. A few turns on L_1 are used to couple to a few feet of antenna wire adequate for the 10-milliwatt experimental transmissions.

Bill K6HH received the callsign 2WQ in 1921 when he was 17. He worked as an RCA radio technician while studying engineering. Following work in radar development during World War II at ITT and Raytheon, he went on to work at Fairchild, General Dynamics, and Lockheed. He holds 32 patents and has had five articles published in technical journals.

Next Time: Part II Demodulator Details
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!

KIT, ONLY $675
WIRED $975
VHF OR UHF

FEATURES:
- **SENSITIVITY SECOND TO NONE!** GaAsFET front end on vhf models gives 12dB SINAD of 0.12uV (vhf), 0.15uV (220). UHF model 0.25uV std, 0.1uV with optional helical resonator preamp.
- **SELECTIVITY THAT CAN'T BE BEAT!!** Both 8-pole xtal filter & ceramic filter for > 100dB at only ± 12kHz. Helical resonator front end to combat desense & interference.
- **CLEAN, STABLE TRANSMITTER,** up to 18W output standard: 50W with accessory power amplifier.
- **FCC TYPE ACCEPTED** for commercial high band and uhf.
- **Courtesy beep**, field-programmable CWID, flutter-proof squelch, automatic frequency control to compensate for off-frequency transmitters (all standard features).
- **Full range of options available,** such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

HIGH PERFORMANCE TRANSMITTERS & RECEIVERS & DIGITAL LIks, TELEMETRY, ETC.

FM EXCITERS:
Kits $99, Wth $179. 2W continuous duty. TCXO & xtal oven options available.
- **TA51 for 10M, 6M, 2M, 150-174, 220 MHz.**
- **TA451** for uhf.
 FCC type accepted for commercial bands.
 Call for latest information on 900 MHz transmitters.
- **VHF & UHF AMPLIFIERS.** For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $79.

R144/R229 FM RECEIVERS for 2M, 150-174, or 229 MHz. GaAs FET front end, 0.12uV sensitivity!
Both crystal & ceramic filters plus helical resonator front end for exceptional selectivity: >100dB at ±12kHz (best available anywhere!) Flutter-proof squelch. AFC tracks drifting transmitters.
Kit $149, Wth $229.

R451 UHF FM RCVR. Similar to above. Tuned line front end, 0.25uV sens. (.1uV with optional hel. res. preamp). Kit $149, Wth $229.

R901 FM RCVR FOR 900 MHZ. Triple-conversion, GaAs FET front end, 0.2uV sens. Kit $169, Wth $259.

R76 ECONOMY VHF FM RCVR for 10M, 6M, 2M, 220. Without hel. res or afc. Kits only $129.

Weather satellite & AM Aircraft receivers also avail.

NEW HIGH-SPEED DIGITAL RF LINKS

LNG -(*)
GaAs FET PREAMP

ONLY $59! Wired/ tested

FEATURES:
- **Very Low Noise:** 0.7uB VHF, 0.8uB UHF
- **High Gain:** 13:20dB, depending on frequency
- **Wide Dynamic Range:** to resist overload
- **Stable:** new-type dual-gate GaAs FET

Specify tuning range desired: 26-30, 46-56, 137-150, 150-172, 210-230, 400-470, or 900-960 MHz.

LNW -(*)
MINIATURE GaAs FET PREAMP

ONLY $24/kit, $39 Wired/ tested

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-5/8"L x 3/4"H. Easily mounts in many radios.

Specify tuning range desired: 26-35, 35-55, 55-90, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNS -(*)
IN-LINE PREAMP

ONLY $79/kit, $99 Wired/ tested

GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W.

Specify tuning range desired: 120-175, 120-240, or 400-500 MHz.

HELIACAL RESONATOR PREAMPS

Outdoor low-noise preamps with helical resonators reduce internal & cross-band interference in critical applications.
MODEL HRA-44, $49 vhf, $84 uhf.

ACCESSORIES

COR-3 Kit. Control cchts and audio mixer needed to make a repeater. Tail- & time-out timers, local sckr amp, courtesy bpep...

CWID Kit. Field programmable, timers, the works...

TD-2 DTMF DECODER/ CONTROLLER Kit. Full 16 digits, switches 5 functions, toll call restrictor, programmable, much more. Great for selective calling tool...

AP-3 AUTOPATCH Kit. Use with above for repeater autopatch. Reverse patch and phone line remote control std...

MO-202 FSK DATA DEMODULATOR Kit. For crwcr end of link...

RECEIVING CONVERTERS

IN LINE FSK TRANSMITTERS & RECEIVERS with UHF & VHF MODELS, ETC.

HRC FACTORY

July 1984

Our 25th Anniversary

hamtronics, inc.
65-J MOUL ROAD • HILTON NY 14468-9535
Phone: 716-392-9430 Hamtronics® is a registered trademark
Memoirs of a Former Telegrapher

The Dodge Institute of Telegraphy located in Valparaiso, Indiana, was established early in this century. The Institute primarily trained American-Morse operators for employment by railroads; however, most of the operators employed by Western Union and Postal Telegraph were "home-grown" right on the premises. These 14-year-olds were employed as messengers and would practice American-Morse code on some available "pony" wire while waiting for a new batch of messages to deliver. They eagerly looked forward to working in the steam-heated world of the Morse Operator instead of pedaling their bikes out in the rain, snow and cold delivering messages.

Western Union messengers who brought a sufficient number of replies to messages delivered, were given a new bicycle as an award.

One routine death message to be delivered read:
"YOUR FATHER IS DEAD STOP COME AT ONCE"

By coincidence, the son to whom the telegram was addressed had also died on almost the same day as his father. The persistent messenger, who could already visualize himself on the new bike, would not leave the gathering following the funeral of the son until he had been given a reply telegram. Finally, the mourners composed this gem:
"I CANT COME STOP HIS DEAD TOO"

Dodge Institute

Poor farm boys looked upon telegraphy as the only available means to avoid spending the rest of their lives walking between the handles of a plow on the farm. High school graduation was not necessary for entrance into the Dodge Institute.

Professor G.M. Dodge's Pierce Arrow Sedan, which could be seen parked in front of the Institute, was a definite clue that the Professor wasn't "hurting" financially. Such a vehicle cost five thousand dollars in 1925, equivalent to $25,000 in today's "cheap" dollars. Older readers will remember the distinctive headlights of the Pierce Arrow automobiles, which seemed to "grow" right out of the front fenders.

The telegraph wires of all three railroads operating through Valparaiso were routed through the dormitories of the Institute. The clicking of telegraph sounders was heard twenty-four hours a day, no doubt the first use of sleep learning by anyone, anywhere.

The well trained graduates of the Dodge Institute, all of whom used the code commercially, never forgot how to read Morse code, even if they lived to be a hundred years old.

Later, when jobs for radio operators aboard ships and at shore stations became available, the school changed its name to Dodge Institute of Radio and Telegraphy, erected its own radio station and of course began teaching International Morse code and radio theory in addition to American Morse.

During World War II, it trained hundreds of radio operators for the Armed Services.

The buildings are now part of Valparaiso University. During the fifty years the Institute was in operation, five large letters comprising the word DODGE were fastened over the doorway to the Main Building. When the school closed its doors forever and these letters were removed, the lack of sunlight behind them for half a century had indelibly etched the word "Dodge" into the stone building and that is the only trace left today of a school dear to the hearts of many a landline or radio telegrapher. Inquirers relative to the Dodge Institute at Valparaiso University today are apt to be responded to with a blank stare by employees of the latter school.

Switchman Mooney

In 1949, I became acquainted with "Haywire Mac" McClintoc, a writer of short stories concerning railroads. He told me a true story about a boomer switchman named Mooney. He appeared one cold and blustery evening at a railroad switching yard in Chicago. McClintoc was a foreman of one of the switching crews there.

Mooney was in very poor condition. Due to participation in a drunken brawl, he had a black eye and deep lacerations in his face. Dental problems were of no concern to him, he had no teeth. His clothes were ragged and his shoes had large holes completely through the soles. Nevertheless, the yardmaster was in need of switchmen, so Mooney was hired. He began work on the so-called "graveyard" shift beginning at midnight. Mooney immediately started cutting out cardboard soles for his shoes, utilizing the narrow switch-list forms available in the yard office. These forms were printed on a rather tough type of thin cardboard. The temperature that evening was below zero.

All went well throughout the night in switching cars, although a stop had to be made occasionally while Mooney half-sole his shoes with new pieces of cardboard. However, at 5 AM, Mooney flashed a violent "wash-out" (stop) sign with his electric lantern to the rest of the crew. As foreman, McClintoc walked the length of a long string of box cars to determine the cause of this emergency signal and discovered that they had run over a hobo, completely severing the body. On the hobo's feet were a brand new pair of leather boots. Mooney was instructed to remain with the corpse while McClintoc went to the yard office to call the police and the coroner. When the latter arrived at the scene, he concluded that the case was a rather simple one, declaring that the hobo probably thought he was boarding a train for warmer climes and had slipped on the abundant ice present in the yard and thus fell under one of the moving cars. The coroner then added one statement on his assessment of the accident and said "There's one thing I don't understand though and that is what this poor fellow was doing out in this kind of weather without any shoes."

Mac looked over at Mooney and saw that Mooney was wearing a brand new pair of high boots. The Lord works in mysterious ways.

Years later, Mac was walking down State Street in Chicago on a summer afternoon when someone he did not recognize called his name. The man was wearing a completely white suit, patent leather shoes, a Panama hat and a diamond ring with a stone in it about the size of a dime. The 'stranger' turned out to be Mooney. Mooney, having had his fill of drunken fights, missed meals and shoes with out soles, had turned into a "home guard" (a railroad man who stays on the same job for a long time) and accumulated many years of seniority.

A further postscript to this story is that at the time of my conversation with Mr. McClintoc, NBC Television had a weekly program featuring a different song writer each week. The writer would sing and play his more popular "hits" and explain how he happened to compose each song and so on.

I was struck by the extreme modesty of Haywire Mac in not mentioning to me, during our long visit, that he was a successful composer of popular songs.
Briefly Speaking: RS-232C

Understand what this term really means.

by W. Max Adams W5PFG

Contrary to popular belief, RS-232C is not a physical unit of electronic equipment. It is the Electronic Industries Association (EIA) designation of a standard means for interconnecting digital equipment. "RS-232C" is an accepted "buzzword" which, like "Zerocks" and "Clean-x," has a more lengthy name that completely describes EIA's recommendations. It is "Interface Between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interface." RS-232C is a much easier verbal mnemonic to cope with than IBDTEDCE-ESBDI!

The category Digital Equipment has two subcategories: Data Terminal Equipment (DTE), and, Data Communication Equipment (DCE). DTE is a machine that originates and/or receives digital data, such as a computer. DCE is a machine that provides functions to establish, maintain, condition and terminate digital data signals for transmission to another machine, such as a telephone modem or packet-radio Terminal Node Controller. The physical (hard-wired) connection (interface) between most of today's equipment is according to the popular Electronics Industries Association (EIA) RS-232C specification.

The EIA RS-232C standard defines four areas of data equipment interfacing:
1. Mechanical characteristics of the interface.
2. Electrical signals of the interface.
4. Secondary functions for some applications.

The first three areas of the RS-232C specification are those of primary interest to the amateur radio or computer enthusiast.

The EIA RS-232C mechanical standard specifies:
1. Assignment of signals to connector pins.

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>EIA CKT</th>
<th>SIGNAL DESCRIPTION</th>
<th>TYPICAL MNEMONIC</th>
<th>FROM DCE</th>
<th>TO DTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA</td>
<td>PROTECTIVE (FRAME) GROUND</td>
<td>GND</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>BA</td>
<td>TRANSMIT DATA</td>
<td>TD</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BB</td>
<td>RECEIVE DATA</td>
<td>RD</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CA</td>
<td>REQUEST TO SEND</td>
<td>RTS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CB</td>
<td>CLEAR TO SEND</td>
<td>CTS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CC</td>
<td>DATA SET READY</td>
<td>DSR</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AB</td>
<td>SIGNAL GROUND</td>
<td>SG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CF</td>
<td>RECEIVE LINE SIGNAL DETECTED</td>
<td>DCD</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>RESERVED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>RESERVED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>RESERVED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SCF</td>
<td>SECONDARY RX LINE SIGNAL DET.</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>SCB</td>
<td>SECONDARY CLEAR TO SEND</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SCA</td>
<td>SECONDARY TRANSMIT DATA</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DB</td>
<td>TRANSMIT SIGNAL ELEMENT TIMING (DCE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SBB</td>
<td>SECONDARY RECEIVE DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DD</td>
<td>RECEIVE SIGNAL ELEMENT TIMING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>UNASSIGNED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SCA</td>
<td>SECONDARY REQUEST TO SEND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CD</td>
<td>DATA TERMINAL READY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>CG</td>
<td>SIGNAL QUALITY DETECTOR</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>CE</td>
<td>RING INDICATOR</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>CI</td>
<td>DATA SIGNAL RATE SELECTOR (DTE)</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>DA</td>
<td>TRANSMIT SIGNAL ELEMENT TIMING (DTE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>UNASSIGNED</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. EIA RS-232C Mechanical standard pin-out designations and applications.

40 73 Amateur Radio • June, 1988
RS-232C standard input/output (I/O) connectors are commonly called "serial ports" where data bits are "shipped" in and out, one bit after the other. Baud rate (number of signal events per second), signal voltage (or current in some applications), and protocol (responses to data) in digital communication must be the same, thereby allowing individual data machines to understand each other.

One of the most often cursed and discussed RS-232C subject is its signal characteristics and functions. RS-232C was written to standardize telephone (wire line) interfacing. Its original application has been carried over into many other digital communication systems. Some RS-232C features are therefore not presently used. For example, "Ring Indication" is not required for packet-radio equipment interfacing. Table I lists RS-232C standard mechanical (pin-out), EIA circuit designation, signal description, common mnemonic and typical DCE/DTE application.

Connections
RS-232C mechanical standard is often misunderstood. For example, a DB-25 type connector isn't specified by RS-232C. It became a de facto "standard" because of its popular use. RS-232C pins one through seven (and Pin 20) are of major interest in amateur radio applications. Only four of these, however, are required in amateur packet-radio equipment interfacing: protective Ground (GND, Pin 1), Transmit Data (TD, Pin 2) from DTE to DCE, Receive Data (RD, Pin 3) from DCE to DTE, and Signal Ground (SG, Pin 7).

Data signal voltage levels, according to the RS-232C standard, are shown in Figure 1. Negative signals between -3 volts and -25 volts are recognized as Mark signal conditions, and voltages between +3 volts and +25 volts are recognized as Space signal conditions. RS-232C voltage levels do not have to be the same. For example, Mark signal voltage can be -5 VDC, and Space signal voltage can be +12 VDC. (Note: Mark and Space cannot be generally defined as "logic Zero" or "logic One" signals, or vice-versa, since this relationship is a function of each individual electronic system). Other readily available voltage levels can (and are) used, but often require "conditioning" to safely interface with other equipment. Signal voltages cannot reside in the Signal Transition Region and must be within their limits beyond the transition region.

Signal Ground (Pin 7) is common to both transmit data (TD) and receive data (RD) lines, which often results in a major disadvantage of RS-232C application. For example, consider a computer and modem using RS-232C signal level interface. Each unit, operated from its own DC power supply, can cause different reference (power and signal) ground levels at each end of the interface cable, as shown in Figure 2. Data between equipment with different reference levels can be "misunderstood," thereby resulting in program or information "glitches."

RS-232C standard signal current is specified to a level that will not burn up interfaced equipment due to faulty or improperly connected cables or connectors. The equipment can be damaged, but should not "smoke!" (In electronics, never say "never." Mr. Murphy's well-known laws often puts egg on one's face.)

Ham Shack Analogy
Using an RS-232C interface is somewhat like using a radio transceiver to interface with another ham radio station. The receiver is patched to the data source station transmitter, and the transmitter is patched to the destination station receiver. Both source and destination equipment "parameters" (i.e., frequency, communication mode, communication protocol, etc.) must be the same for mutual understanding. RS-232C does not specify baud rates, communication mode, or communication protocol.

RS-232C does, however, provide flexible equipment interfacing and some interesting discussions on your local repeater! Briefly speaking, the primary purpose of EIA's RS-232C standard is a reference for system design. Manufacturing considerations produce a wide variety of connectors, special signals and voltage/current levels. Hopefully, the equipment manufacturer provided documentation to aid the user.

The functions of RS-232C standard signals are well documented.

Pin 1—PROTECTIVE GROUND.
Pin 2—TRANSMIT DATA (TD).

Connect it to a receive INPUT.
Pin 3—RECEIVE DATA (RD). Connect it to a transmit OUTPUT.
Pin 4—REQUEST TO SEND (RTS). A signal from the data source that tells the associated (receiving) device it (the source) has data to be transmitted.
Pin 5—CLEAR TO SEND (CTS). A signal from the associated receiving equipment to the data source (transmit) equipment, it (the receiver) is ready to accept data input.
Pin 6—DATA SET READY (DSR). DSR is "asserted" (made available) on Pin 20, when the equipment is operational and ready to transmit and/or receive data. DTR (and DSR), in some applications, are jumpered at the cable connector and not physically connected to other equipment.
Pin 7—SIGNAL GROUND (SG). This is not the same as pin 1. Pin 7 is the "return" path that Mr. Ohm requires.

When all else fails, look at the reference material in the bibliography. It may well allow the reader to come up with the seventh answer to a six-way-QSO RS-232C question on your local repeater, or at the next brown-watering hole (coffee shop) QRM session.

5. Radio Shack No. 62-1388, "Understanding Telephone Electronics".
6. Radio Shack No. 62-1389, "Understanding Data Communications".
7. Radio Shack No. 62-2010, "Understanding Digital Electronics".

Figure 1. EIA RS-232C Receiver signal levels.

Figure 2. Unbalanced RS-232C ground signal conditions.
Bicycle-Mobile R & D Lab
Practical Points for Inhibited Experimenters

by Steven K. Roberts N4RVE

I t can happen anywhere, and usually does. I wake in camp, breathe the vapors of morning inside a billowing nylon cocoon, rustle a warm hand from the depths of my sleeping bag to touch KASZYW, and lie there thinking intently. "Hmmm... if I let the new TNC handle speech control in parallel with the BCP, then I can sign on via packet from the HP and carry on a synthesized conversation with people around the bike... monitoring their audio on 49 MHz. Gee..." Maggie's hair cascades across my neck. "You were talking in your sleep again," she murmurs. "Is a speech-control bus something the government uses to arrest boring politicians?"

Those are the first clues. Over flawless campground coffee, I stretch, sketch, and mumble, scan my listings and schematics, regale the morning-sweet YL with complex tales of logic and technomagic. The maps are forgotten and there's no rush to pack... for it's a tinkering day!

Well, so now what? There's no room on a bicycle for diagnostic tools, documentation library, R & D inventory, prototyping board, and drafting equipment—or is there?

One of the things I've learned from this whole traveling circuit of mine is that no complex system is ever finished. And while reliability has been generally excellent, I find a lot of reasons to crawl under the hood and do some engineering. As such, I've had to put together a passable mobile R & D lab... and in this, the fifth column of the series, I'd like to take the reader on a quick tour.

The First Issue: Documentation
If I had to work on the Winnebago from memory, nothing would ever get done for fear of screwing it up beyond recognition. A project in progress becomes etched so deeply in the brain that the builder is sure he always remembers exactly how it works. A few grim all-nighters of staring glumly at undocumented creations, however, dispelled that fallacious notion from my head. I now carry three forms of documentation on the bike:

A clamp-style binder, stuffed with about % of schematics, listings, notes, wiring specs, idea sketches, and so on. This is the irreplaceable document that completely defines the custom parts of the electronics package, and I periodically photocopy the whole mess and mail it back to my office as a backup.

An "aquarium of microfiche" containing highly reduced copies of key IC databooks, software and hardware manuals, reference guides, and so on. A 20X Keyan reader gives easy access to what would otherwise amount to 15-20 pounds of books. I have also added Buckmaster's microfiched amateur radio call directory, a number of maps, and other convenient reference material.

A subdirectory of disk files on the HP laptop, defining operating procedures, the functions of all controls, and other variable information. This includes the Bicycle Control Processor's source code listings and—equally important—a sprawling file of comments and narrative explanations associated with each of the 15 major revision levels. This has proved invaluable time and again, as I wa de hesitantly into an obscure backwater of this real-time program and wonder what madness possessed me back when I wrote it.

Adding new documentation is something that should happen at the time of any change to the system, of course, so my "R & D pack" also contains a small case with basic drawing tools and templates.

Tiny Test Bench
With space at a premium, I had to forego a few basic essentials. I carry no oscilloscope, function generator, spectrum analyzer, hammer, or milling machine. But I do have a logic probe, digital multimeter, SWR bridge, prototyping board, software development system, bench supply, built-in current monitor, "Quick-Connect" wiring tool, butane soldering iron, and extensive toolkit.

It's amazing how much can be done with a few basic lightweight tools when the constraints of a nomadic lifestyle demand it. My software contains a library of test loops that exercise all I/O logic in a way that makes it amenable to debugging with a logic probe and development system. Internal jacks offer convenient supply voltages for prototyping, and a ledge inside the console even carries a permanent parts tray and soldering-iron stand. The point of all this, of course, is to make development work as painless as possible... even if it happens in a campground.

Easy prototyping depends upon a convenient packaging method, and I use the Robinson-Nugent Quick-Connect boards exclusively. They're faster than wirewrap, lower profile, and more rugged (a major issue on a bicycle). The boards are hinged in my installation, so modifications can be made without having to unplug any connectors or dangle live hardware from a cable harness.

One more thing. Despite convenient onboard equipment, there are still occasional projects that require more in the way of support facilities than I can carry. I keep a list of such "long-range TO-DO's" on disk, and scan it whenever I find myself visiting someone who owns a well-equipped lab. "Ah-hh... I see you have a spectrum analyzer. You know, I have some birdies that have been giving me trouble... got a near-field probe for that thing?"

The Junk Box
As we all know, no lab is complete—or even possible—without a well-equipped junk box of tinkering stock. It's just not possible to experiment effectively if the only access to components is a shopping list (hamfests and surplus stores notwithstanding). I carry about six pounds of parts, as well as a bag of fundamental essentials such as Ty-raps, wire, heat-shrink, and the like. There is a sheet of anistostatic foam with a hundred or so 74HC glue parts, along with a collection of particularly interesting devices I just gotta have. (You know how it is: "Well, someday I'll find a neat use for a high-speed array processor on my bike... sure, I'll take it.")

There are a few dozen individual Zip-Loc bags, dedicated to such things as R's, C's, D's, Q's, connectors, switches, ferrites, packaging parts, mechanical hardware, spade lugs, and so on—with, amazingly, enough depth and variety to support a typical day of tearing into the system with new ideas in mind.

Keep On Tinkering'

The bottom line, of course, is that no-one need be prevented from experimenting by the constraints of a nomadic, cramped, or socially harpered lifestyle. I have an old friend who lost the spark of tinkerspry when he married a rather dull prepie more obsessed with style than substance. The books in the living room were sorted by color of binding, the dog was a designer model far beyond their budget, and all that junk of his cluttering the basement JUST HAD TO GO! Before long he gave in: The subscriptions to journals lapsed, the equipment was all sold or given away, and this promising designer of early microprocessor systems became just another dull employee with no passions, no hobbies, no energy, no dreams.

But a single desk can hold enough to keep the creative spark alive—enough to keep the nose wrinkling with the acrid smell of solder... the eyes gleaming in the light of dances... the ears perking to the distant call of an unmet friend and yet another idea survives the smoke test and reinforces the reason for being.

Creativity can thrive anywhere—let it!
In 1937, Stan Burghardt (W0IT), because of his intense interest in amateur radio, began selling and servicing amateur radio equipment in conjunction with his radio parts business. We stand proud of this long-lasting tradition of Honest Dealing, Quality Products and Dependable "S-E-R-V-I-C-E"!

Above all, we fully intend to carry on this proud tradition with even more new product lines plus the same "fair" treatment you’ve come to rely on. Our reconditioned equipment is of the finest quality with 30, 60 and even 90-day parts and labor warranties on selected pieces. And always remember:

— WE SERVICE WHAT WE SELL —

AEA
Allinco
Ameritron
Amphenol
Amplifier
Antenna Specialists
Astron
B & W

Belden
Bench
Bird
Butternut
Centurion
Cushcraft
Dalwa
Hustler

Icom
Jerold/Delhi
Kantronics
KDK/Encomm
KLM
Larsen
Miroge
Moseley

Nye
Palomar
Radio Callbook
Rohn
Telex/Hygain
Ten-Tec
Trio-Kenwood
Unadilla/Reyco
Yaesu

We are the only repeaters and controllers with REAL SPEECH! Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4. Call or write for specifications on the repeater, controller, and receiver winners.

TELEX: #4922556 KENDECOM
FAX: 6173737304

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

2 meters 220 440

CIRCLE 92 ON READER SERVICE CARD

CIRCLE 295 ON READER SERVICE CARD
Island, Oahu, California, Missouri...and back to New Jersey. It was a fantastic six week trip, meeting hams at every stop and talking with thousands more while we were flying. Unfortunately, I was so irritated by OJJ's arrogance that I refused to write the story of the trip.

Where was I?

Now, Chandra...Well, on the strength of the article in the March Discover, I bought her book, Evolution From Space, a theory of cosmic creationism, written with Sir Fred Hoyle. Chandra, it turns out, is a well-known astronomer.

The book was utterly fascinating. I couldn't put it down. Chandra does a very scientific job of lining up all of the facts available from astronomy, geology, biology, and other sciences, and presents them as a completely new concept of how life started and developed on Earth. No, the ideas are not supportive of biblical creationism, nor of Darwin, for that matter. She makes a powerful case, carefully documented every inch of the way. Most impressive.

Particularly fascinating to religious zealots may be the problem of their cherished beliefs being challenged by science. Of course, that's supposing such a transformation is possible, which I don't accept. Religious, like political beliefs, often are remarkably durable, able to withstand incredible onslaughts of reason and facts with nothing more lasting than deep resentment resulting.

Unconventional Wisdom

While on the one hand Chandra demolishes all the accepted explanations of how life began on Earth, she comes up with both a mathematical and a scientific proof of the existence of God. Scientists who haven't had a religious brainwashing may find this irresistible.

For instance, Chandra shows clear evidence that life occurred on Earth at the earliest instant it could have survived here. She shows mathematically the utter impossibility of life getting started by chance. If you feel like arguing with her theory, read the book ($5.95 in paperback), don't get steamed up just from this microreview.

She shows that microbes are small enough to be pushed through space millions of light years by the pressure of light. She shows that they can live for billions of years in suspended animation, awaiting a suitable planet to colonize. She shows that there seem to be vast quantities of such cells moving through space.

I suspect Chandra's book may appeal to people in an inverse proportion to the degree of religious brainwashing they've received, mostly from parents when they're very young. "Give me a child until he's seven and I'll give you the man." Was it Freud who said that? If you watched the PBS program "7-14-21-28," you probably understand the startling truth of this concept.

Brain Power

Now, this brainwashing thing takes me back even before my exciting adventures on Operation World-Wide. We've all seen the Hari Krishnas at airports and read about Moonies, so we know on some level that brainwashing works terrifyingly well. We may think that there's a requirement for some sort of brain damage or stupidity to make someone susceptible to these religions.

No, it can happen to the most intelligent people. It's got little to do with intelligence or education. It has more to do with hypnotism, which is a mysterious working of the mind only a few people understand. For that matter, it's not really possible to say that anyone really understands how the mind works. Heck, we still don't even have a clue as to where or how memories are stored.

Anyway, quite a few years back there was a chap who came out with an outrageous explanation of how the mind worked. This, in turn, suggested a way to repair some of the more serious mental problems. Naturally the medical establishment quickly branded him as a quack, the same treatment they give almost anyone with a new idea, right or wrong. But I'm willing to give new ideas a chance, so I read carefully on the subject. Then, fascinated by what I'd read, plus some very convincing experimental proof, I left my job as a radio engineer/announcer and went to work with the chap for a while in his new research foundation.

One of the beauties of brainwashing with hypnotism is that the people hypnotized not only are unaware that anything strange has happened, they will fight to the death for their new beliefs. This is why it is so difficult to kidnap and reprogram people who have been captured by the mythical religious sects. This is one of the reasons why we have terrorists. You just can't reason with such deeply ingrained mind programming.

So What?

In general I've found that the louder and the more impressed the noise from politicians and religious leaders, the less I'll find of truth and the more I'll expect to accept beliefs on blind faith. How can we tell when we are reacting because of brainwashing or hypnosis? Heck, that's easy, if you think about it. The flashing red light should come on when you find yourself getting mad. This is a class A warning that reason is fighting some sort of belief. The easy way out is to get mad. This blanks the mind from receiving any further reasoned input. When you get mad you are no longer able to think rationally. Just listen to angry people screaming out slogans. Many things they say don't even fit the occasion, but their conscious mind is so heavily blanked by angry emotions that they aren't even aware of all this.

The Impossible is Possible

It's frustrating to realize that all of us are, to some degree, operating on the basis of early brainwashing. We're embarrassed at the thorough job our ancestors did on the American Indians. Could never happen again, right? Then we think about the job the Germans did on people not all that long ago. They killed about six million Jews and another six million non-Jews. Stalin wiped out over double that. The Chinese wiped out tens of millions fairly recently. 600,000 Ugandans have been murdered in the last few years. Several million Afghans. Who knows how many Iranians and Iraqis?

The people who are doing all this killing are people. People like us. The only difference is in the degree and type of brainwashing. Old times like me will remember the force of patriotism that fueled WWII. There was little thought of not fighting. Men were caught up in it, pushed hard by their wives and mothers. The media and Hollywood cooperated with the government in massive media hype. It worked.

It's fascinating to demonstrate the power of even the simplest of post-hypnotic suggestion. For instance, if you tell a person under hypnosis that when you touch his cuff he'll take off his coat and when you touch your ear he'll put it back on, you can have him taking off and putting on his coat dozens of times, always with a logical (to him) explanation, one he truly believes. It isn't until you have him taking it off and putting it on several times a minute that he finally realizes something is wrong that he can't explain. It's absolutely amazing how well a simple exercise like this is protected by the mind from recognition.

Yes, with the appropriate therapy it's possible to go back and decondition all this mess, setting people free to actually think. This must take a long time, right? No, it's incredibly faster than any of our accepted mental therapies. We're talking about months of cure in hours.

Lamentation

I jump into Bud at Dayton occasionally. I haven't seen W8DLJ since the trip, thankfully. It would have been an infinitely better trip except for him. Bill W2SKKE was a great traveling companion. He went on to become the head of CBS News and retired a few years ago.

I'll have to write about the trip. I don't remember that anything like it has ever happened again in amateur radio. It was a ham's idea of nirvana, visiting 24 countries, all the while keeping in touch with the entire world with the ham station on the C-54.

Old timers will remember when Arthur Godfrey went on a trip to Africa and took along amateur radio. I remember trying my darnedest to get through when he was on the air from French West Africa (FF8)—not to talk with Arthur, but with a close friend of mine, Carol Cone, who was along with him on the safari. Never made it.

Somewhere in the barn I have a couple of the old Operation World-Wide Ampex tapes. I wonder what ever happened to the dozens of tapes with the thousands of QSOs from that trip?

Ah, a lament for the old DX-pedition days: the Hallicrafters DXpedition into darkest Africa; Godfrey; Don Miller, for all his shenanigans, gave us contacts from almost everywhere. Gus Browning, W4BP's trips; Danny Weil and the YASME; Dick McKircher W0MYL's African barrage.

Say, where are Lloyd and Iris now? [1]
NEW PRODUCTS

Compiled by Linda Reneau

PRODUCT OF THE MONTH

A & A ENGINEERING

A & A Engineering's new Digital Frequency Synthesizer has 1 Hz resolution, an output of ½ V peak-to-peak into 75Ω with almost no phase noise to frequencies in excess of 6.5 MHz. Digital synthesis techniques eliminate VCO, PLL, and loop setting time. It comes complete with RF unit, microprocessor controller, seven segment display, keyboard, and 110 VAC power supply. The controller offers a standard 12-key program and accepts as many as 32 keys. Unused EPROM and RAM space allows the user to program custom features. The price is $429.95 per unit, FOB Anaheim. Quantity discounts. Call or write A & A Engineering, 2521 W. La Palma, Unit K, Anaheim CA 92801; 714-952-2114. Or circle Reader Service number 211.

ADVANCED COMPUTER CONTROLS, INC.

The new RC-96 Repeater Controller has remote programming, autopatch with autodialer, and memory for 200 phone numbers. It also features a talking S-meter, built-in keypad and shielded DIN cables. The RC-96 Repeater Controller supports pocket pagers, linking to other repeaters, and a bulletin board. A gas discharge tube across the phone line and transient suppressors on each signal line minimize the risk of lightning damage. The suggested retail price is $1,350. For more information, contact Advanced Computer Controls, Inc., 2356 Walsh Avenue, Santa Clara CA 95051, or call 408-727-3330.

APPLIED DIGITAL RESEARCH, INC.

ADR announces SAT TRAK II, an automatic satellite tracking controller. SAT TRAK II calculates satellite position and antenna angle in real time. It will drive most azimuth and elevation rotors including the Kenpro KR400I, KR500, KR5400A, KR5600A (an interface is provided for the "A" series), and CDE rotors. The $435 price includes all necessary connectors and a 110 VAC power supply. Applied Digital Research, Inc., PO Box 10184, Sarasota FL 34232; 813-378-3410. Or circle Reader Service number 201.

AMECO PUBLISHING CORP.

AMECO's new tunable preamplifier Model PT-3 continuously covers 1.8 through 54 MHz. Options are available for second receiver and separate receiving antennas. Retail, the PT-3 Preampifier is $109.95. The P-12T power supply adapter is $8.95. For further information, contact AMECO, 220 E. Jericho Turnpike, Mineola NY 11501; 516-741-5030. Or circle Reader Service number 214.
TRUE VALUE SOFTWARE

True Value Software TVS701B repeater controller can be remotely configured without ROMS or jumpers. The unit offers voltage telemetry and alarms to monitor batteries and power levels. A watchdog timer and EEPROM protect the unit from power failure. TVS701B has 74 functions, four levels of control security, digital inputs and outputs for auxiliary control and alarms. Easy-to-build kit price: $190. Assembled and tested, $300. True Value Software, 2805 E. Sherron Lane, Phoenix AZ 85016; 602-956-4259. Or circle Reader Service number 204.

INTELECT

The I-C-LATOR 16, available from Intelet, allows design and test of any DIP device. The user can open loops, inject signals, and modify circuits outside an original assembly. The experimenter can measure current and independently open each signal path. The user replaces the original IC with the I-C-LATOR 16’s cable, eliminating the need for card extenders. The unit will accommodate 6- to 16-pin analog or digital ICs. It can be used with emulator probes, function generators, logic analyzers, and scopes.

Price: $49.75. Free brochure. INTELECT, 2908 Nebraska Ave., Suite A, Santa Monica CA 90404. Or circle Reader Service number 203.

PERIPHEX, INC.

PeripheX announces new replacement battery packs for the Yaesu FT-23/R/33R/73R. The FNB-10, 7.2V 600mA for 2.5W output and the FNB-12, 12V 500mA for 5W output are both available from stock. Charge with standard Yaesu wall or desk chargers. Both battery packs offer a one year guarantee. FNB-10 is just $33, and the FNB-12 is $49 + $3 shipping. For further information on these or other battery packs, contact PeripheX, Inc., 149 Palmer Road, Southbury CT 06488; 1-800-634-8132, in CT 203-264-3985. Or circle Reader Service number 205.

BENCHER, INC.

Bench introduces the YA-1 Low Pass Filter, which demonstrates a minimum attenuation of 80 dB for harmonic radiation at 54 MHz. It has a working range of 1.8 to 29.7 MHz, an impedance of 50Q, power rating of 1.5kW continuous, and 5kW peak. The YA-1 sells for $39.95 plus $3 postage. Bench, Inc., 333 West Lake St, Chicago IL 60606. MCI Mall 277-5159, TELEX 650-277-5159, Phone 312-263-1808. Or circle Reader Service number 215.

TRIDOS

Terminator, from TriDos Software Publishers, is a real time graphic emulation of the Geochron™ clocks. The graphic map of the earth shows the terminator line between night and day. The time algorithms consider solar declination, apparent size of the solar disk, atmospheric refraction, and the difference between solar and earth times due to the earth’s slightly elliptical orbit. To display areas on the map add the user’s name, longitude, latitude, and time zone to the parameter file. Terminator is available from dealers for $39.95 or from Spite Software, 4004 SW Barbur Blvd., Portland OR 97201. Order toll free at 800-237-9111. Or circle Reader Service number 210.

DATAK

DATAK’s latest 30-page catalog is for the ham who builds or customizes his own gear. The catalog offers electronic title sets; multi-color transfer designs to make special meter dials and tap switch patterns; alphabet and number sheets; resist patterns for making printed circuits via the “Direct Etch” method; and a patented “Photo Etch” set that will copy circuit patterns from a magazine without harming the page. DATAK also has over 600 JotDraft™ printed circuit patterns, PC tapes, etching and plating chemicals, and protective coatings. For your free catalog write to The DATAK Corporation, 3117 Paterson Plank Road, No. Bergen NJ 07047. Or circle Reader Service number 213.
AMATEUR RADIO SCHOOL

Amateur Radio School announces their newest course, the Video Novice. Using your TV and VCR, this course demonstrates subjects not easily understood from books alone. Video Novice covers practical demonstrations and explanations for everyone new to amateur radio. The course consists of two, two-hour VHS cassettes, one C90 audio cassette, and a study guide with 302 questions, answers, and a frequency chart. Cassette #1 has two hours of theory, and #2 has one hour of theory and one hour of visual code instruction. The Video Novice Course is $39.95 plus $5 postage. To order or for more information, write or call Jerry Ziliak KB6MT, Amateur Radio School, 2350 Rosalia Drive, Fullerton CA 92635, 714-990-8442. Or circle Reader Service number 206.

WM.M. NYE COMPANY

The NYE RF Power Monitor gives peak, average or peak-and-hold readings using a sample-and-hold analog memory circuit. The monitor can display the correct peak power reading of a single 1 msec pulse for up to 20 seconds. Other features include adjustable ALO, automatic SWR, interchangeable couplers, SWR/REV warning display, NiCd batteries with a separate charger, and full-wave detection system. Rated up to five kilowatts, the RFM-003 and the RFM-005 differ only in wattmeter scaling. Priced at $297. Contact Wm. M. Nye Co., 1614 130th Ave. NE, Bellevue WA 98005, 206-454-4524. Or circle Reader Service number 208.

KENWOOD

Kenwood announces the new TM-721A FM dual-band, 2m/70cm mobile transceiver. Features include a dual-channel watch function, selectable full duplex operation, extended frequency coverage with 30 memory channels, large multi-color digital LCD displays, and programmable scanning with 45 watts output on VHF and 35 watts on UHF. Retail, $649.95. For more details, contact Kenwood USA Corporation, Communications & Test Equipment Group, 2201 E. Dominguez St., Long Beach CA 90816; 213-639-4200. Fax 213-604-4487.

GREAT CIRCLE MAP COMPANY

The Great Circle Map Company now has azimuth-equidistant wall maps that give the radio amateur instant information on range and beam headings to any location on earth. Each map is unique, specially drawn using computer techniques, and centered on the individual's QTH. The major surface features are detailed by hand. The station's call sign is hand-lettered on the lower right. Suggested retail, $59. For more information on these brightly colored, 35" x 23" maps, write The Great Circle Map Company, 8409 Bear Tree Circle, San Antonio TX 78255. Or circle Reader Service number 209.

SHURE

The Shure 444D Omnidirectional Controlled Magnetic Microphone offers switch selectable impedance, a normal VOX selector, and Shure's patented leaf switch with locking and momentary action. Frequency response is tailored for optimum speech intelligibility and purchasers can receive a free individually printed plate with their call letters. The suggested retail price is $78. For more information contact Shure, ATTN: Carolyn Gunnell, 222 Hartrey Ave., Evanston IL 60202; 312-866-2200. Or circle Reader Service number 212.

McGRAW-HILL BOOK COMPANY

Communications Receivers: Principles and Design, by Ulrich L. Rohde and T.T.N. Bucher, is a guide to the theory and design of all types of communications receivers—shortwave, military, broadcast, aeronautical, marine, and direction-finding. Accessories and peripheral equipment are covered, along with a wide range of design topics and engineering concepts. There are 583 pages with 402 illustrations. Cost is $59.50. McGraw-Hill Book Company, 11 West 19th Street, New York NY 10011; 212-337-5945 or 337-5951. Or circle Reader Service number 216.
DEALER DIRECTORY

CALIFORNIA

Burbank
New HAM store open and ready to make a DEAL. We carry all lines, ship UPS, and are open Sunday. A-TECH ELECTRONICS, 1033 Hollywood Way, Burbank CA 91505; (818)845-9203.

San Diego
Hard to find parts, surplus electronics, standard line items. Hams, hobbyists, industrial professionals—from nuts & bolts to laser diodes...Electronically speaking, Gateway’s got it! M-F 9-5:30 Sat. 9-5. GATEWAY ELECTRONICS, 4633 Convoy St., San Diego CA 92111; (619)279-6802.

COLORADO

Denver
Hard to find parts, surplus electronics, standard line items. Hams, hobbyists, industrial professionals—from nuts & bolts to laser diodes...Electronically speaking, Gateway’s got it! M-F 9-5:30 Sat. 9-5. GATEWAY ELECTRONICS, 5115 N. Federal Blvd., #32, Denver CO 80221; (303)458-5444.

DELAWARE

New Castle
Factory authorized dealer! Yaesu, ICOM, Ten-Tec, KDK, Kenwood, AEA, Kantronics, Sanetic. Full line of accessories. No sales tax in Delaware. One mile off I-95. DELAWARE AMATEUR SUPPLY, 71 Meadow Road, New Castle DE 19720; (302)328-7728.

Wilmington
Delaware’s friendliest ham store. Also Shortwave supplies. AMATEUR & ADVANCED COMMUNICATIONS, 3288 Concord Pike, Wilmington DE 19803; (302)478-2757.

HAWAII

Honolulu
Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-EX Towers, Fluke, Belden, Astron, Etc. HONOLULU ELECTRONICS, 819 Keaumoku Street, Honolulu HI 96814; (808)949-5564.

IDAHO

Preston
Ross WB7BYZ has the largest stock of amateur gear in the Intermountain West and the best prices. Call me for all your ham needs. ROSS DISTRIBUTING, 78 S. State, Preston ID 83263; (208)852-9830.

MASSACHUSETTS

Littleton
Reliable hamstore servicing New England. Full line of Kenwood and ICOM stocked and serviced, AEA, ARRL Publications, Anphon, Alpha Delta, Austin, Avanti, Alinco, Aoraro, Bencher, B&W, Cushcraft, Carol Cable, Daiva, Hustler, KLM, Kenpro, Larsen, Rohn, RF Concepts, Tokyo Hy-power, Trac Keyers, Vibroplex, Welz, etc. TEL-COM, INC., 675 Great Road (Rt. 119) Littleton MA 01460; (617)486-3408, (3040).

MISSOURI

St. Louis
Hard to find parts, surplus electronics, standard line items. Hams, hobbyists, industrial professionals—from nuts & bolts to laser diodes...Electronically speaking, Gateway’s got it! M-F 9-5:30 Sat. 9-5. GATEWAY ELECTRONICS, 8123 Page Blvd., St. Louis MO 63130; (314)427-6116.

NEW HAMPSHIRE

Derry
Serving the ham community with new and used equipment. We stock and service most major lines: AEA, Astron, B&W, Cushcraft, Encom, Hy-Gain, Hustler, ICOM, Kenwood, KLM, Larsen, Mirage, Mosley; books, rotors, cable and connectors. Business hours Mon.-Sat. 10-5, Thursday 10-7. Closed Sun./Holidays. RIVENDELL ELECTRONICS, 8 Londonderry Road, Derry NH 03038; (603)434-2371.

NEW JERSEY

Lyndhurst
Finally a ham store in NJ. Located 1/4 mile south of Rt. 3. Mon.-Wed. 11:30-7:30, Thursday 11:30-9, Friday 11:30-7-30, and Saturday 9-3. Visa/MC. ABARIS SYSTEMS, 276 Oriental Place, Lyndhurst NJ 07071; (201)939-8015.

NEW YORK

Jamestown
Western New York’s finest amateur radio dealer featuring ICOM-Larsen-AEA-Hamtronics-Astron. New and used gear. VHF COMMUNICATIONS, 915 North Main St., Jamestown NY 14701, (716)664-6345.

New York
New York City’s Largest Full Service Ham and commercial Radio Store. BARRY ELECTRONICS, 512 Broadway, New York NY 10012; (212)925-7000.

NORTH CAROLINA

Greensboro
9a.m. to 7p.m. Closed Monday, ICOM our specialty—Sales & Service. F&M ELECTRONICS, 3520 Rockingham Road, Greensboro NC 27407; (919)299-3437.

OHIO

Columbus
Central Ohio’s full-line authorized dealer for Kenwood, ICOM, Yaesu, Ten-Tec, Info-Tech, Ispan Radio, AEA, Cushcraft, Hustler, and Butternut. New and used equipment on display and operational in our 4000 sq. ft. store. Large SWL department, too. UNIVERSAL AMATEUR RADIO, 1280 Aida Drive, Reynoldsburg (Columbus) OH 43068; (614)886-4267.

PENNSYLVANIA

Trevose
Same location for over 38 years. HAMTRONICS, DIV. OF TREVOS ELECTRONICS, 4033 Brownsville Road, Trevose PA 19047; (215)357-1400.

TENNESSEE

Memphis
M-F 9-5; Sat 9-12. Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc. MEMPHIS AMATEUR ELECTRONICS, 1465 Wells Station Road, Memphis TN 38110; Call Toll Free: (800)238-6168.

TEXAS

Dallas
In Dallas since 1960. We feature Kenwood, ICOM, Yaesu, AEA, Butternut, Rohn, amateur publications, and a full line of accessories. Factory authorized Kenwood Service Center. ELECTRONIC CENTER, INC., 2890 Ross Ave., Dallas TX 75201; (214)909-1936.

Houston
Hard to find parts, surplus electronics, standard line items. Hams, hobbyists, industrial professionals—from nuts & bolts to laser diodes...Electronically speaking, Gateway’s got it! M-F 9-5:30 Sat. 9-5. GATEWAY ELECTRONICS, 10645 Richmond Ave., #100, Houston TX 77042; (713)978-6757.

DEALERS

Your company name and message can contain up to 25 words for as little as $199 yearly (prepaid), or $50 for three months (prepaid). No mention of mail-order business permitted. Directory text and payment must reach us 60 days in advance of publication. For example, advertising for the April '88 issue must be in our hands by February 1st. Mail to 73 Amateur Radio, Hope Currier, WGE Center, Peterborough, NH 03458.
HAM HELP

Your Bulletin Board

Looking for front panel, part #205-178-1 for Heath VF-7401 two meter rig. Heath no longer sells that part. Will pay for part and shipping.

Bob Clark N9GSE
5430 Markwood Lane
Houston TX 77005

I need schematics and alignment info for Lafayette Model HA-700 Receiver. I will copy and return.

T.W.Brown KA7NIE
5104 E. Farmdale
Mesa AZ 85206

Need conversion info re/Hy-Gain V, Model #2705, 40 channel, SSB, CB transceiver. The board is #PTBM048AOX. It is desired to start Ch. 1 at 28.300 MHz and work up from there. Any information on this conversion would be greatly appreciated. See you on 10.

Edward R. Levy WB3EY
PO Box 161
Blakeslee PA 18610

Help wanted for information.

Cost of copy or dispatch will be gladly refunded. 1) Any information or ECN’s for improvement/modifications on the Spectrum Generator and PLL Synthesizer part of National HRO-500 Receiver.
3) Diagram of MFJ 931 Tuner.
4) Technical info and application circuit of TOKO’s Mechanical Filter MF 455A 120F with coils 9579A and 9580A.
5) Possibility of adding the 7th digit-display TS-830S.

Fred Otle C30LEN
25C, La Plata Ordino, Principat d’Andorra (EUROPE)

W. Kinne
1163 Ingersoll Road W.
St. Paul MN 55112

HELP! I’m looking for a schematic or conversion manual if available for a Navy receiver in the RAX-1 Series. It has 4 band coverage from 1.5 MHz to 9 MHz. It’s type CG-46116. I’ll pay a reasonable price.

Gary Nelson
P.O. Box 3676
Portland ME 04104

for a vanishing breed. I would like to contact for friendly correspondence and mutual assistance any and all who are into collecting, restoring and using the classic receivers—Collins S-Line, 51-J, R-390, SP 600, HROs, etc. Also high grade, useful military surplus.

J.L. Browning
6442 Cathay Cir.
Buena Park CA 90620

I’m looking for schematic of AN/VRC-19 150-160 MHz, mobile, 24-volt FM TX and RX equipment, or data on same.

Richard Thompson
234 Spring St.
Hanover MA 02339

I need an instruction manual and/or schematic for the Hickock 6000 series tube tester. Will pay any copying and mailing costs.

T.H. Killoran W7PP
8316 54th Dr. NE
Marysville WA 98270

Propagation forecaster wanted! 73 needs a new propagation writer, since Jim Gray W1XJU plans to take his retirement seriously later this year. Naturally, you should be familiar with modern propagation prediction techniques, though writing experience is not required. Send queries to:

Larry Ledlow NASE
73 Magazine
Peterborough NH 03458

FOR THE BEST IN LINEAR AMPLIFIERS, ANTENNA TUNERS, TRANSCEIVERS, METERS ETC. REPLACEMENT PARTS, FACTORY SERVICE, NEW PRODUCT INFO DOMESTIC, INTERNATIONAL DEALER INQUIRIES INVITED.

IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...

AXM INCORPORATED

SUPPLIERS OF QUALITY EQUIPMENT SINCE 1976
PRESENTS THE INCOMPARABLE

M-8

FM/VHF TRANSCEIVER
COMPUTER CONTROLLED SYNTHESIZER

- True 40 Watt Power
- 14 Channels
- Wide Band
- I/F for MARIS, CAP
- Internal Filter, Ambulance, Etc.
- FCC & DOC type-approved
- Complied, complete without mobile Mount & Power Cable

AXM Inc., 11791 Loara
Garden Grove, CA 92640-2321
Write or Call 714-638-9807 For More Information

CABLE TV

Interference filters. Send for further info or $20 for sample. Specify output channel of cable converter.

dB Electronics, P.O. Box 8644
Pembroke Pines, FL 33084

DEN-TRONICS

Amateur Radio & Computers
6102 Dandel Road • Plaunam, MI 48433
(313) 559-1778 & RAC/CHEW
(UF Residency)
(600) 722-5484 & (600) PAC-KITT
(Grain Line)

"Looking for the best deal?"

Specializing in Kantronics and AEA Products
Terminal programs for popular computers

CIRCLE 103 ON READER SERVICE CARD

CIRCLE 263 ON READER SERVICE CARD

CIRCLE 271 ON READER SERVICE CARD

IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...

ANTIQUE RADIO CLASSIFIED

Antique Radio’s Largest-Circulation Monthly Magazine

Articles - Classifieds - Ads for Parts & Services Also: Early TV, Ham Equip., Books, Telegraph, 40's & 50's Radios & more...

Free 20-word ad each month. Don't miss out!

Free Sample. 6-Month Trial - $11.
1-Year: $19 ($28 by 1st Class). Foreign - Write.
A.R.C., P.O. Box 2-E4, Carlisle, MA 01741
Now you can get the highest quality QSL cards without spending a fortune! We put these cards on our press as filler between jobs; it gives the pressmen something to do and lets us print QSLs for you at an absurdly low price.

Not that we skimp: All three styles are produced in two colors (blue globe or satellite with black type). At these prices, you can start the new year out right by QSLing all those disappointed hams who’ve been waiting for your card. Tell ’em the card was printed by Wayne!
Digital Voice Compression

Potential for smaller bandwidth

by Charles Opitz WA3YQQ

Since a good friend of mine recently lost the use of her vocal cords, I have recently given a lot of thought to state-of-the-art speech synthesizers.

One of the primary interests in amateur radio is to obtain the narrowest passband. Voice naturalness is often a secondary concern. Digitizing voice is a sort of "audio tele-type," where the transmitter operator's voice is automatically encoded into a lowest possible bit rate for transmission, and where the receiver decodes this message and generates, in more or less real time, an audio version of the input spoken word. The synthesized voice must contain the meaning of the original voice message, and do so with an acceptable low error rate (1-3%).

I predict that regenerated voice will be a standard pitch male voice. (No chauvinism here, but the female voice is much more difficult to synthesize.) The new voice will lack subtle cues for emotional state of the speaker. In essence, the generated speech will have just about the information content of an equivalent printed word message, but without the redundancy of spelling of the printed English word.

Note that I say English here, because that will be the language used in any first-generation voice compression system (VCS). All the advance work in speech analysis/synthesis is in English. Also, English has relatively few phonemes, and is becoming the world's lingua franca.

Smaller is Better

When receivers are white-noise limited, the signal-to-noise ratio (S/N) is proportional to narrowness, required transmitter power is inversely proportional to narrowness, and the number of permissible communication channels within a given band is directly proportional to narrowness of the transmissions.

Many have mentioned an ultimate voice transmission bandwidth of 25 Hz. E.C. Cherry, an early English worker in this field, wrote a paper that suggested this number. I have never seen, however, that value vigorously derived. It's possible, though, that it came from removing the redundancy of spelling from printed matter, then using the true information content (bits) and taking the average person word-speaking rate to compute the bit rate. The average ham QSO information rate is more like ½ that rate, but for now this article will work with the 25 bits/second figure.

Since there's no common system on the market today, I believe that a relatively inexpensive commercial device with a bandwidth as wide as 500 Hz would be quite marketable. Think of the expensive and sophisticated equipment hams gladly acquire to cut the required bandwidth of AM to one half with SSB! Imagine cutting the SSB signal bandwidth again by a factor of ¾ or just ½.

Figure of Merit

For discussion purposes, here's an attempt to quantify the quality of DVC systems by using a figure-of-merit (FOM). The FOM is referenced to the "ultimate" 25-Hz passband mentioned above. In this score system, the perfect system, which is the one with a 25-Hz passband, gets 100%.

Any system with a wider passband gets a lower score. Where BW = system bandwidth in Hz:

\[
\text{FOM} = 100(25 / \text{BW})
\]

The FOM in dB would be:

\[
\text{FOM} = 10(\log(25 / \text{BW}))\text{dB}
\]

For example, a typical telephone quality link with a bandpass of 250-2800 Hz has a BW of 2550 Hz, in which case, the FOM is only 0.98% or -20 dB regarding the ultimate system.

Please note that for this discussion I assume the permissible bit/second ratio is proportional to bandwidth in Hz for simplification purposes. I am aware of Shannons' information theory equations, so in this case let's permit about 1% word error, in which case my assumption is about right for simple pulse modulation with a S/N in the channel of about 15 dB.

Using ultimate VCS system parameters, let's go to the year 2000. The FCC has allocated a 100 kHz slice of the 20-meter phone band to VCS. Rather than allowing 30 simultaneous QSOs with conventional SSB rigs, this band would supporting about 3000 VCS channels and 1 kW transmitters generating the same S/N in receivers that a conventional 100,000 watt SSB transmitter does in an old fashion SSB receiver.

There is one little problem left—how to manufacture a compact, inexpensive 100% FOM VCS? It's impossible to say. I predict, however, that compromised systems in the laboratories today will be seen shortly.

Why Digital Voice?

Many of the early workers in voice analysis/synthesis used analog devices, such as lumped constant filters, electro-optical frequ...
Brute force digitizing of voice signals to reproduce telephone quality (e.g., 250 Hz-2800 Hz, and about 26 dB dynamic range) at the receiver is subject to the theoretical Nyquist minimum sampling rate criterion, among other things. But in this case, a practical sampling rate would be 2.5 x 2800 Hz, or 7 kHz. Then to accommodate a full dynamic range of 26 dB (at least 20 level quanta), a 5-bit binary word should be used to define the level of each 1.7000 second level sample of the speech signal. Thus, the minimum digitized voice signal becomes 7000 x 5, or 35 kHz. Since brute force digitization must more or less be used for music (it is so unpredictable), high digitized music takes awfully wide bandwidths.

Back in 1975, I went through the above types of arithmetical exercises when I sought to develop a real time voice encryption unit used on existing military radios and long distance telephone lines, both of which have the narrow passbands. The thought at the time was to first digitize the voice, then add a number from a pseudo random noise code generator. The receiving end used an identical pseudo random noise code generator. This was synchronized to the transmitter unit to decode the digital word when the random number was subtracted from each digital level word. This system works fine, but only with a passband of 25-35 kHz, a width NBPM military radios don’t have.

Redundant Features

Obviously, brute force digitizing was not practical for existing narrow band voice circuits. All early workers agreed. Help came from Claude Shannon’s work on information theory.

Harry Nyquist’s minimum sampling rate barrier could not be assailed directly—it was written. The bright developers then turned to the basic human speech pattern to look for redundancy, and here they hit pay dirt. Unlike music, voice patterns are quite redundant. The duration of phonemes, basic sounds in speech, is 20-30 milliseconds, so using this knowledge, they believed that they had about 1.30-1.50 of a second in which to encode the phonemes and send a digital word defining each one, rather than a level sample every 1.7000 second. This approach could affect a sample rate reduction of at least 140 (that is, 7000.50). This implied that, regardless of which of the three synthetic approaches one takes, there are about 1.30-1.50 of a second to encode the basic building blocks of speech. And that is a long time for today’s digital ICs.

Phonemes

Let’s first consider the problem of identifying each phoneme in real time, that is, within about 1.30 of a second. For realism, one must consider the base frequency, amplitude, spaces, and rhythm of the phoneme. It becomes more difficult when considering differences in speech such as accent.

Here is a paraphrase of a few of the best state-of-the-art survey papers on speech analysis/synthesis where the waveform concatenation (WC) synthesis is discussed.1 Klatt

"Digitizing voice could be termed a sort of "audio teletype" where the transmitter operator’s voice is automatically encoded into a lowest possible bit rate for transmission’’

sad’s it’s possible to consider speech synthesis by concatenation; that is, by stringing together chunks of prerecorded or subroutine generated voice sounds, upon command from a real time speech analyzer. The syllable unit is not practical, because there are over 10,000 different syllables in English. The phoneme appears much more attractive because linguists say about 40 are found in English.

However, as of September 1987, all efforts to concatenate only 40 phoneme-size samples had failed because of "well-known coarticulatory effects,” an effect between adjacent phonemes that cause substantial changes to the acoustic manifestations of a phoneme, depending on the context. Fortunately, these effects tend to be minimal at the center of the phoneme. One worker proposed to generate a synthetic phoneme which he called the "diphone.” This comes from a sample made from the center of one phoneme to the center of the next. As 40 squared is 1600, there can be 1600 diphones, but it has been demonstrated that a usable system can work with only 1000.

In addition to the 40 English phonemes, there are about 14 commands for phoneme stress, silence, and syntactic considerations, such as primary stress and question intonation. Diphone duration was not mentioned, and that is important, too. So if one puts the 1000 diphone dictionary into binary code, it will take a 10-bit word. So, accepting a minimum diphone duration of 20 milliseconds, about 50 10-bit diphone words per second for a total bit rate of about 50 bits per second are required. Using the previous S/N link criterion, it would appear that a diphone approach could be realized with a 50 Hz passband, so let’s say 100 Hz and be safe for now. In this system, the 1000 diphones for the synthesizer would easily be stored in a small ROM.

Now let us look at another approach to the problem, one that is in much use today.

Waveform Encoding

This second example of analysis/synthesis has been in existence for several years. Examples of instruments using this technique are talking clocks, and the Texas Instruments’ “Speak ‘n Spell” educational toy.

Waveform encoding works on the wave’s time domain, rather than the frequency domain, as do the formant analyzer/synthesizers. It, too, relies on redundance of the phonemic waveforms. The technique, which uses linear prediction encoding of speech waveforms, estimates following waveforms from a weighted sum of about 10 previous waveform samples.2

Linear prediction analysis of speech does quite well for storing and playback of complete words or sentences, but for concatenating smaller pieces of speech to form new words or sentences, some difficulties arise. Words per se have been stored in waveform encoding at a rate of 1000 bits/sec in ROM. Compared to brute force binary encoding of voice at 32,000 bits/second, this is an impressive reduction, but using my S/N criterion, the improvement factor amounts to a FOM of 32%. Even so, this technique may be the easiest approach to a first generation system, since TI has the chips.

Demo Record Available

I strongly recommend the reader to copy the 52-page review and tutorial on text-to-speech conversion for English in the Acoustical Society journal. This Dennis Klatt production also included a vinyl demonstration floppy record, 33-1/3 rpm, tucked inside the cover of the Journal. The record demonstrated every practical form of speech synthesis used in the recent past and today. The reader can contact Klatt at Room 36-523 at MIT.
Have you ever wondered how long it takes a battery to run down or just what the voltage drop looks like during those last few minutes? How fast does it get light in the morning or dark in the evening? Getting the answers to those and other questions has recently gotten much easier, thanks to Radio Shack.

One of the items introduced in the 1987 Radio Shack catalog is called an "8-Bit A/D Converter IC". The description further states "Complete Data Acquisition System in One IC". That is a big claim—just had to buy one and find out.

The catalog description was pretty accurate. The only extra components you need are a power supply and a stable reference source. The finished product is an analog-to-digital (A/D) converter with a recommended range between 0 and 5 volts DC with an 8-bit resolution giving 256 steps of value between 0 and 5 volts.

Figure 1 gives the schematic. Everything in the schematic and all the hardware was purchased at Radio Shack and all the Radio Shack part numbers are given.

How It Works

The IC itself is a Texas Instruments TLC548. It contains a complete analog to digital conversion circuit. In addition to the power supply requirements mentioned above, only three data lines are required to interface it to a microcomputer. These lines are chip select, clock, and data.

Basically, to get data from the chip, the chip select line is pulled low, and the most significant bit (MSB) of the previous voltage conversion is presented on the data line. If the

Figure 1. The simple electronics required to interface the TLC588 A/D converter to a Centronics parallel printer port.

Figure 2. BASIC program for TRS-80 Model 100 to read data from the converter.
Modulo port rather than the serial port, even
program in figure 3.
done.

"Only three data lines
are required to interface
(the A/D converter) to a
microcomputer."

Connecting these signals to a microcomputer is most easily done through the parallel printer port rather than the serial port, even though this chip provides a serial data stream. Many serial data interfaces from microcomputers do not have clock signals available to send to external devices. Also, they are expecting RS232 voltage levels. On the other hand, a parallel port works with TTL (0 to 5 volt) voltage levels, and these are compatible with the TLC548.

Circuit Specifications

The schematic diagram indicates one IC and two voltage regulators. The IC is the TLC548. One of the voltage regulators is a 7805, 5-volt regulator. An input voltage of at least 7 volts should be applied to the 7805 to generate a stable 5 volts for the Vcc pin of the TLC548. The other voltage regulator provides a reference voltage for the converter. The converter provides a count, or reading, that is proportional to the ratio of the unknown input analog voltage and the reference voltage. The TLC548 is designed to perform best with a reference voltage of 5 volts.

The voltage reference should be as accurate and stable as possible, and semiconductor devices exist for this purpose; however, Radio Shack does not stock any. Thus, the second voltage regulator is provided. Another 7805 was not used since these regulators are not specified to be exactly on 5 volts. Instead, an LM317 was selected. It is an adjustable regulator. After connecting power the first time, it was calibrated using an external voltmeter to provide as close to 5 volts as possible to the TLC548 for its reference voltage input. This is not as accurate or stable as would be desirable, but it is about all Radio Shack has to offer.

The specifications for the TLC548 imply that the maximum allowable input voltage on the analog (unknown) voltage pin is Vcc + 0.3 volts and the minimum allowable voltage is -0.3 volts. With this restriction in mind, the Vref pin and the chip ground pin are tied together. This means that the converter does not appear to have a true differential input and will measure only ground-referenced signals.

Other Hardware Considerations

In order to make this unit easy to interface to a large number of computers, I chose to use a 5-pin DIN connector on its I/O interface. Thus, with only one interface cable, the unit should interface to nearly any computer with a standard Centronics interface. If the computer has some sort of other connector on its parallel interface, a different cable will be required.

The circuit is constructed on a standard perfboard, catalog number 276-158. It is housed in a box, 270-627, which required several holes drilled and filed into it. Power is supplied by a 9 VDC wall transformer, 273-1453.

Some computers use the parallel printer port for more than one thing. This will cause extraneous signals to appear on the lines, which will confuse the TLC548. In order to avoid this, some type of latch was required. The extra IC, an MC14013, is a dual flip-flop capable of latching two data lines. Just enough for the chip select and clock. These data lines are latched into the MC14013 by using the strobe signal, also part of a

Figure 3. Turbo PASCAL program for an IBM PC clone to read A/D data.

Figure 4. Utilities for the PASCAL program in figure 3.

73 Amateur Radio • June, 1988 55
standard Centronics interface. On the converters I constructed, a socket for the MC14013 was included on the perf board along with a dummy socket not connected to anything. A header shorts pins 1 and 5 together and pins 9 and 13 together. Thus, if the computer in question had no extraneous signals on the parallel port, then the header would be put in the MC14013 socket. If required, the MC14013 itself would go into the socket. The unused device should then be stored in the dummy socket.

Software Requirements

Using the parallel printer port on a microcomputer solves some problems, but it raises others. The good points are that individual lines are easily controlled. This makes it easy to raise and lower the chip select and clock lines from software. However, very few parallel ports are bi-directional. By that, I mean that they are almost always output lines. There is no way to tell what the TLC548 is trying to send back.

However, all parallel printer ports have a busy line. Thus, to find out what value the converter is sending back, one needs only to monitor the busy line. The problem with this is that no popular microcomputer operating system allows for easy checking of the busy line of the parallel port. Moreover, trying to output anything to the port, such as new clock information, will not happen if the busy line is high. The operating system assumes a high level to mean that the printer is not available for new data.

In short, to use this converter, you must know something about hardware of the parallel printer port and write a program that can manipulate it properly. I will discuss three computers and give information required to communicate with the converter through their parallel printer ports.

The TRS80 Model 100

I chose this computer for the project because it is from Radio Shack and battery powered. This means that a remote data gathering setup is possible if the converter circuit is also powered from a battery. This is easy to do with any voltage greater than about 7 volts. Also, the Model 100 parallel port serves multiple purposes requiring the use of the MC14013 latch on the data lines.

Figure 2 is a listing of the BASIC program used to continuously read a voltage from the converter. The data statements are for a small assembly language routine used to send data to the parallel port. This routine is needed to disable hardware interrupts while this program sends data to the converter. It is a lot faster than using BASIC to send the same data out the port.

The BASIC program is short and to the point. The first few lines set up the needed constants. PA, PB, and PC are the addresses of the parallel ports in the 81C55 chip, a parallel I/O adapter. CH and CL are used to raise and lower the clock bit in the parallel printer port data byte. As each bit is taken from the converter chip, the next one must be clocked out by making the clock line high and then low. Data bit 0 is used as the clock bit. SH and SL are used to select and deselect the converter chip. In order for the chip to deliver the converted data and accept clock bits, it must be selected. This is done by lowering the select bit. In this application, the select bit could be left lowered, thus selecting the converter all the time, because no other hardware shares the data lines used to communicate with the TLC548. Finally, the variable BB defines the bit position held by the BUSY line in the status byte appearing on port c, PC, of the PIO.

The program clears the screen and prints headings used to identify the value just read and how many times a value has been read. To read data from the converter, the program lowers the select line, uses a loop to clock in the 8 data bits, and then raises the data line.

Examining the loop reveals that the level of the data bit from the TLC548 is read in. As it is read in, it is shifted from bit 2 to bit 0 by dividing the input value by 4. The answer is then masked with a value of 1 to

![Image of Turbo Pascal routine for the Kaypro 4-84 computer to read and display the digitized data.](Figure 5. Turbo Pascal routine for the Kaypro 4-84 computer to read and display the digitized data.)

![Image of Utility routines for the program in figure 5.](Figure 6. Utility routines for the program in figure 5.)
isolate the bit. Then this value is added to
the variable AN, thus building the final
answer.

The converter chip yields a number
from 0 to 255. This number is the ratio
between the analog input voltage and the
analog reference voltage on the chip. The
actual voltage read can be calculated by
multiplying the reference voltage by the
ratio of the returned count and maximum
count.

For instance, if the input voltage is ex-
actly 1 volt, the ratio of 1 to 5 is 2. The
value read will be .2 times the maximum
count (255) or 51. Dividing this value by
the maximum count will give this ratio,
and then multiplying the ratio by the ref-
ence voltage gives the answer: (51/255) x 5.0 = 1.0.

The rest of the program is devoted to dis-
playing the answer and checking the key-
board. If the operator presses any key, the
program terminates.

The small assembly language routine
actually writes the clock and select line
levels to the converter chip. Because the
data lines used in the parallel port are shared
by the keyboard scan hardware, this scan
must be stopped while the converter is
communicated with. In addition, while not
addressing the TLC548, the data lines on
the port change value while the keyboard is
scanned. This dynamic changing data
pattern confuses the converter and cause
invalid results to be obtained. To avoid
this problem, a latch is installed in the
converter circuit as discussed above. The
strobe line, a part of all parallel printer
interfaces, is used to latch the desired levels
of the clock and select lines to the TLC548.
The strobe line toggling is also handled by the
assembly language routine.

Ubiquitous PC Clone

One good thing about IBM computer
clones is the care taken to match the IBM
hardware. This means that nearly any PC-
DOS or MS-DOS computer with a parallel
port will probably have exactly the
same hardware at an I/O address that is easily
obtained. Figure 3 is a Turbo Pascal program
that will obtain the address of the LPT1: port
and use it to read the converter.

The main portion of the program is very
short. We will cover it first. As in the BASIC
program, the screen is cleared and descritive
titles are printed. In addition, a loop or reading
counter is initialized.

The rest of the program (figure 4) is in a file
called "atodutis.pass". This file contains
procedures and functions to initialize the IBM
hardware and to take a reading from the
analog to digital converter.

Reviewing this file, the definitions of the
various bits and their positions comes first. In
the IBM program, the address of the parallel
printer port must be determined. The operat-
ing system conveniently keeps this address at
location $0040:$0008. This is a strange look-
ing address. The first number, $0040, is the
paragraph number to use as the base of the
actual physical memory address. A para-
graph is 16 bytes long. In the Intel 8088
world, memory addresses are defined as a
base address and an offset. Each base, or
paragraph, address can point to up to $10000,
65536, individual physical addresses. These
numbers are called the offset, and they form
the second part of the address description;
that is, the "$0008" above.

In any case, as mentioned, the contents of
that address is the base port address of the
parallel printer port assigned as LPT1. The
data for the port is at the base address, and
the status is at the next higher address.

In addition to getting the address, the
initialization program also sets the select
bit high on the TLC548. It also initializes
a variable, "port-data," to equal the value
just written. This is necessary, because the
value just written cannot be read back
from the data port. The only way to know
the value is to save it somewhere. Notice that
in this case, no strobe line toggle is neces-
sary.

The IBM, the parallel printer port is
dedicated to the printer alone and no other
data will appear on it. Thus, the latch in
the converter circuit is removed. In my pro-
type, I simply unplugged the MC14013
device and replaced it with the jumper block
already described and stored the MC14013 in
the spare socket.

The function that reads the measured value
is simpler than it looks. It starts out with a
read value of 0 and adds in the values from the
TLC548 one at a time.

The first step is to lower the select line as in
the BASIC program. Notice that this is done
by a logical AND between the current value
in the parallel port with a constant called
"sel...bit...o." "Sel...bit...o" has a value
of $f1. When this value is ANDed with the
port value, bit 1 of the port value will uncondi-
tionally set to 0, and all others will remain
as they were. In the value $1c, bit 1 is a zero,
and all others are ones.

Most of the rest of the function is a loop
that gets the current data bit from the con-
verter chip and saves it. First the accumu-
lated answer is shifted to the left to make
room for the next data bit. The data bit value
comes in on the busy bit of the printer port.
In the IBM this bit is inverted. Once again, the
logical AND trick is used to determine the
value. In this case the constant is $00, be-
cause the busy signal is in bit 7 of the
status data. This time, we want to know
the value of that bit, so all the other bits are
0. Thus, with a logical AND all bits will
set to 0 except bit 7. Bit 7 will be
remain unaffected. If it is 0, then the bit
coming from the TLC548 was a 1 and the
least significant bit of the answer is set to a
1 by simply adding 1 to the value. Then
the clock line on the converter chip is
toggled to bring out the next data bit.
After the loop, the select line is returned to
a high value, and the converted value is
returned to the procedure that called the
read-atod function.

The main routine calls the read func-
tion. It then takes the converted value and
makes it into a voltage, just as in the
BASIC program above. This value is dis-
played on the screen. A small delay is includ-
ed in the program to make the answer readable.
If the voltage read is not exactly on a
value that is one of the 256 steps between 0
and 5 volts, the answer may fluctuate be-
tween the closest such values. This program
can read and display the voltage so quickly
that the screen display can flicker between
the different values and the actual number cannot
be read before it changes. The small delay
gives us poor humans a chance to catch
up with the machine. The last statement is a
check of the keyboard. If any key is pressed,
the program stops.

The Pickup Truck of the CP/M World

The CP/M world is not as lucky as the
MS-DOS world. Standardization of port
addresses and hardware did not occur. I
have several CP/M computers, but the one
that I use the most is a Kaypro 4-84. It is
representative of a CP/M computer, and
the parallel port on it is similar to other
Kaypro 8-bit computers. The program (fig-
ures 5 and 6) is very similar to the one
for MS-DOS, since it also is written
in Turbo Pascal. However, the programmer
must determine the address of the parallel
printer data and status ports. This infor-
mation is available in the documentation
which comes with the Kaypro. As in
the IBM, the printer port is dedicated to the
printer and no strobe line toggling is required.

If you have a different CP/M-80 computer,
this program can be used if you determine
the hardware addresses of your printer data
and status ports. You will also need to know
the location of the busy line bit in the status
port, and whether any other data appears
on that port. Most likely, however, in a CP/M
computer the data port will be dedicated to
the printer.

There you have it. Get busy! If you have
a computer, you should be able to go down
to Radio Shack and get the parts needed to
let you put your IOC voltometer. Next week
you should be able to tell me things like
how long it takes a battery to discharge, or
when the sun came up 7 days in a row, or
maybe the average S-meter reading on 20
meters over a 24 hour period. Let's see, how
about the temperature for the last 24 hours?
I'll have to think about that one.
Peoria Area Amateur Radio Club presents
SUPERFEST '88
Sept. 17-18
at
Exposition Gardens, Peoria, Illinois
For Radio Amateurs and Computer Enthusiasts
See...
Amateur Radio Equipment and Accessories
Home and Professional Computers
Parts and Components
Large Flea Market

Hear...
Wayne Green, publisher "7" Amateur Radio"
Packet Authority Jim Grubbs
Tickets $4 Advance/$5 Gate
Lots of Prizes
Commercial Buildings Open at 9 a.m.

FOR MORE INFORMATION AND TICKETS, WRITE (SASE PLEASE):
SUPERFEST '88, P.O. BOX 3461, PEORIA, IL 61604
OR CALL 309-674-5656

CHANGE OF ADDRESS?
CALL TOLL-FREE:
1-800-227-7585
Please allow 6 weeks for processing.

NEW!
MORSE TUTOR
Made Easy & Fun
Introducing the most Comprehensive and Easy-to-Use code course available today!—MORSE TUTOR is available for IBM PC, XT, AT, PS/2 and compatibles.

FEATURING!
* 1-100 word/minute code speeds
* Standard or Farnsworth modes
* Adjustable code frequency
* Over 1 Billion possible random QSOs
* Letter, number, and punct. mark coverage
* Self calibrating/menu drive design
* Display text—while listening or after copying
To Upgrade or learn CW, Send check or M.O.
for $19.95 + $2 S/H and to:

GGE
2188 Summer Circle, Dept. MTS
Huntington Beach, CA. 92646
CA. Residents add $1.20 sales tax
TWO TNC's in your IBM® PC!

The PC®Packet Adapter gives you two independent packet radio TNC’s on one short PC plug-in card. Its on-board 1200 baud modem connects directly to your VHF/UHF radio. Add DRSI’s HF®Modem with internal tuning indicator and you have another TNC in your PC. Our AX.25 software package includes simultaneous dual-port operation, multiconnect on both ports and cross-band digipeating. Introductory price for the PC®Packet Adapter is $119.95 until July 1. The HF®Modem is $59.95. Call today, get on the air tomorrow!

DRSI
Digital Radio Systems, Inc.
2065 Range Rd. ▲ Clearwater, FL 34625 ▲ (813) 461-0204
Building a Duplex Digipeater

I promised some time ago to present details of the duplex digipeater that our group uses in the Washington DC area. It's a simple device that requires little hardware and no software.

The first step in constructing a duplex digipeater is to choose a frequency and a site. The group chose the frequency pair on 220 MHz to conform with standard voice repeater operations, i.e. frequency and split. The group's initial duplex digipeater had the frequency assigned and coordinated by The Mid-Atlantic Repeater Council (TMARC) as if it were a voice repeater.

Since that time, there have been changes in Part 97 of the FCC regulations that differentiate between digital communication devices and ordinary repeaters. It's now permissible to construct a duplex digipeater and operate it in any portion of the amateur radio spectrum above 50 MHz where the emission mode is legal, provided the transmissions use the AX.25 protocol. This means a duplex digipeater can operate on two meters outside the standard repeater subbands of 144.5-144.5 and 146-148. Our group has two new duplex digipeaters under construction that have inputs in the range of 145.6-145.7 MHz and outputs in the range of 145.0-145.1 MHz, using the standard 600-kHz split.

Hardware Selection

There are four major pieces of the duplex digipeater: the duplex receiver, the transmitter, and the modem. The transmitter is a standard simplex digipeater used for normal repeater operation. Our group has been quite satisfied with the performance of a WA2COM four-cavity duplexer.

The receiver is any NBFM receiver. The group uses a Midland 13-509, but just about any receiver should do. A receiver designed for repeater service is a better choice due to the high quality and wider environmental tolerance designed into these devices.

The group's modem is a Bell 202T look-alike produced by Rixon found at a hamfest for about $40. This turned out to be a very good performer, because its carrier detect circuitry doesn't trigger on voice signals. Only a valid Bell 202 carrier causes the carrier detect to assert. This is very important, because the carrier detect signal of the modem is used to key the transmitter.

The transmitter is the transmitter section from a Midland 13-509 but just about any NBFM transmitter will do. As in the case of the receiver, a transmitter designed for repeater service is probably the best choice. Be sure to have full schematics for the transmitter for slight modifications to ready it for duplex digipeater operation.

Signal Flow

The incoming signal goes directly from the detector in the receiver. The receiver's squelch and COR (if it is a repeater receiver) are NOT used. The signal from the detector travels to the buffer amplifier shown in Figure 1. Buffer adjustment consists of applying a 5 kHz deviation, 2200 Hz modulated signal to the receiver, and adjusting R2 to provide a 0.77 Vrms (0 dBm) signal at the buffer output.

The buffer output goes to the input of the Bell 202T modem. The data output of the modem is looped back to the data input of the modem, regenerating the transmitter so all stages are powered all the time. In order to key and unkey the transmitter rapidly, one of the intermediate stages in the transmitter needs to be keyed. Since the amplification and multiplexing stages of most FM transmitters operate Class-C, the transmitter is stable and quiet with no drive. I modified the last multiplier stage so its emitter is keyed by a small keying transistor, which is turned on (keyed down) by the application of a positive voltage. Be sure to use plenty of bias on the emitter of the keyed stage to ensure its continued stability. See Figure 3.

In a Nutshell

A received signal is amplified and buffered by the buffer amplifier and presented to the demodulator in the modem. Only a valid data signal activates the data carrier detect (DCD) line. The DCD line turns on the keying transistor, which pulls the emitter of the last multiplier stage to ground turning the multiplier on. This allows RF to pass from the multiplier to the amplification stages in the transmitter (our transmitter keys in about five microseconds). The data is detected by the demodulator in the modem and passed to the modulator through the jumper between pins 2 and 3 of the RS-232 connector. The regenerated tones now modulate the transmitter.

So far, this technique has worked very well. The keyup delay is only 8 milliseconds—essentially the time it takes the modem to detect carrier. Since the modem does a very good job at differentiating between noise, voice, and valid data, it's almost impossible to get the duplex digipeater to falsely key up. The duplex digipeater remains keyed until the signal goes away. (One can always add a watchdog timer that will unkey the transmitter after some period of time, say a minute, should someone's TNC stay on the air too long.)

Since the duplex digipeater has no IDer of its own, one of the TNCs on the frequency should broadcast an ID packet for it at least every 10 minutes. This should keep everybody happy and everything legal.

A Few Caveats

Don't try to use the COR in an existing repeater receiver to key the transmitter. The squelch in most receivers is too slow to work effectively and it cannot differentiate between a voice and a data signal. The duplex digipeater must pass only data to be eligible for operation outside the repeater subbands.

Don't try to key the transmitter by keying the audio and oscillator stages of the transmitter (this is how most repeater transmitters are keyed). The transmitter needs to key up more quickly than most of these stages can accommodate.

Use a Bell 202T modem that
does not falsely trigger on voice or noise. For this reason, neither the 2211 PLL nor the 7910 world modem chips used in most TNCs are reliable. The 2211 will not reject voice and the 7910 will assert DCD for any signal, even noise.

Go build one! Find out what packet radio is like when everyone in your area can "hear" everyone else. Just be sure to remind users to turn on the duplex switch on their radios prior to attempting connections to their neighbors directly (no digipeater specification required).

Backbones

One of the biggest problems facing amateur packet radio is how to build long-haul networks that pass data efficiently without losing it. Digipeaters were not very useful for constructing long-haul backbones. Packet loss rates rendered them useless for more than one or two hops. The proliferation of NET/ROM and bulletin boards was an attempt to solve this problem. Bulletin boards act as store-and-forward devices and NET/ROM added link-layer acknowledgments (hop-by-hop ACKs) in an attempt to make each link appear to be more reliable. This improved things somewhat but didn't solve the problem. It just made it less visible. The real solution is to make the links truly reliable.

The measure of link reliability is its packet loss rate. A reliable link doesn’t lose packets. Packets are lost for two major reasons: poor link implementation and collisions. The reliability of a link can be improved by properly adjusting the modems, radios, and antennas to ensure that transmitted packets will be received with a very low probability of error. Collisions can be avoided by ensuring that only one transmitter uses the frequency.

The first suggestion, proper installation and adjustment of the hardware, seems straightforward but the second suggestion, that of having a single transmitter to a frequency, seems rather unusual. How can there be a network with only one transmitter to a frequency? The key to this issue is proper network topology. It requires some rethinking about packet radio based networks.

Collision-Free Network

Phil Karn KA9Q wrote a very interesting paper for the ARRL 6th Computer Networking Conference entitled “A High Performance, Collision-Free Packet Radio Network.” The interesting thing about Phil’s paper is that the concepts presented therein apply to any radio-based network regardless of networking protocol. These concepts will work for TEx-NET, NET/ROM, TCP/IP, Rose (COSI), or even plain vanilla AX.25 with digipeaters. A network based on Phil’s ideas, in addition to being collision-free, is also inherently full duplex! Here is a general description of how a network based on Phil’s ideas would work.

Every node in the network has one and only one transmitter. That transmitter operates on a frequency assigned to it for a region. Each of the adjacent network nodes has a dedicated receiver and possibly an antenna to listen to that frequency. This means that each node in the network has one transmitter on its own frequency and one or more receivers each tuned to the transmit frequency of the adjacent network nodes. The transmitters should probably use omnidirectional antennas and the receivers should use directional antennas to increase link signal margin and reduce interference from undesired signals.

To make the network easier and less expensive to implement the transmitters at adjacent nodes should probably operate on a different amateur band. This reduces or eliminates the need for cavities on duplexers at a site.

Do not discount 6m and 2m as link bands. Users can transmit signals up to 20-KHz wide on these two bands. The 220 and 430 MHz bands allow signals up to 100 KHz wide. For bands above 450 MHz, the signals can be as wide as the band itself. Based on these bandwidths, speeds of 9,600 bauds (6m and 2m), 56,000 bauds (220 MHz and 430 MHz), and 10 Megabauds (902 MHz and up) are possible.

The packet switch hardware at each node must handle multiple receivers and a single transmitter. Currently the KA9Q TCP/IP networking code supports this topology and, with only a slight modification, the multiport digipeater and NET/ROM code could also. Imagine a network where eight digipeater hops are considered normal and acceptable with negligible packet loss rates!

Users should have access to the network on a separate band from backbone links. This is where the duplex digipeater comes in. Local users communicate with one another through the duplex digipeater. Should someone wish to communicate with another user reachable only through the network, the packets are switched off the LAN and onto the backbone. When the packet finally arrives at the destination LAN, it is switched to the duplex digipeater and then delivered to the destination.

Our group is constructing a network that uses duplex digipeaters to define and support the LANs and has a collision-free backbone to tie the duplex digipeaters together into a single network. The network node switches will support NET/ROM, TCP/IP, and AX.25 digipeater connections. Users will have their choice of networking protocols all with a very high probability of packet delivery. I will keep the readers posted on this progress.

NET/ROM Update

There are two significant developments of interest to the NET/ROM users. First, the Northern Germany Packet Group has written a NET/ROM replacement package and placed it into the public domain. This package is fully compatible with NET/ROM version 1.3, but has no encrypted calsigns. The software is in the public domain and is available in either source (‘C’ plus a tiny bit of assembler) and/or object code format. Those interested in information or a copy of the software should contact: Michael Roehner DC4OX, Hans Georg Giese DF2AU, Hinter dem Berge 5, D3300 Braunschweig, FRG. There is also a new version of the KA9Q TCP/IP code that is NET/ROM compatible. This code permits a TCP/IP station to be part of a NET/ROM network, passing both AX.25 and TCP/IP traffic over the same link at the same time. This code doesn’t support end-user NET/ROM access (i.e., it does not allow connections with an ordinary TNC), but it’s ideal for a backbone packet switch with restricted backbone access. A vote of thanks and a hearty “well done!” go out to Dan Frank W9NK for this addition to the KA9Q TCP/IP net package.
RTTY LOOP

Amateur Radio Teletype

Marc Leavey MD WA3AJR
Jenny Lane
Pikesville MD 21208

Teleprinter Machines

This month's RTTY Loop column takes a look at the models the Teletype Corporation produced. Although other companies, notably KleinSchmidt, have produced teleprinter machines, those from the Teletype Corporation have the widest circulation in the amateur RTTY community.

Baudot/Murray Machines

First on the list is the Model 12. This ancient boat anchor allowed many an amateur to use RTTY in the early days. With six magnets in the typing unit, each requiring 300 mA of current, it generated more electrical noise rather than mechanical noise, (the latter still being considerable). This is a machine for masochists.

The Model 14 series are strip printers and tape punches. The tape versions of this series are commonly combined with the Model 15 into a Model 19. More on those in a paragraph or so.

The Model 15 is the “standard” if ever there was one. This machine comes immediately to mind when someone mentions “Teletype.” This sturdy page printer runs on a 60-mA loop supply, and will stand up to use day in and day out, longer than an amateur will want to run it.

The Model 19 is equivalent to a Model 15 on a table with a Model 14 tape punch. (Who knows why it’s not called the Model 29?) It’s the forerunner of today’s “ASR” (Automatic Send-Receive) sets. The Model 19 is still in service at many installations.

The Model 26 is a machine designed for light duty. As a machine requiring for moving the paper past the type head, like a typewriter, rather than the other way around as most modern printers do. This is a transitional machine. It has an early daisy-wheel printing device. There aren’t many of the Model 26s around any more.

The Model 28 was the first machine to break into the modern RTTY era. With multiple gears to run 60, 75, or 100 wpm, it was the window into high-speed RTTY. There are many of these babies still in use. The Model 31A is a strip printer!

This 20-pounder was designed for “portable” use, within the definition of portable in the late 1960s. I have not seen or known anyone who has this specimen.

The Model 32 is a modern five-level teleprinter, which may as well be the ultimate machine. It’s the Baudot version of the Model 33, a familiar machine to the ASCII crowd.

ASCII Machines

The Model 33 is the standard in ASCII teleprinters. This modern teleprinter has many versions. Use the “Call Control Unit,” which is on the right plate of the machine, as a key to learn what the machine is wired for.

The Model 35 is the ASCII version of the Model 28. Even though this is an ASCII machine, many of the internal parts are the same as the Model 28, and interchangeable. Note that although the selector magnets in the Model 35 have a rather high current demand (500 mA), an internal selector magnet driver takes care of the interfacing. The Model 35 tends to be the heavier-duty version of the Model 33.

Thanks to the people who offered information on various machines, especially Bob Roehrig K9EUI, R. Lee Hagan K4OZQ, Doug Reed, and Tom KARKT (via Compuserve).

WWV

I mentioned WWV two months ago and wondered if decoding the encoded information was possible. Well, Bob K9EUI also passes along the information that the National Bureau of Standards publishes a guide to the WWV time-code format. WWV and WWVH use the same format, and WWVB uses a somewhat different format. The WWV format is a one pulse per second code on a 100-Hz subcarrier. It’s a binary format and it gives the minute, hour, and day of the year. The length of the burst of the subcarrier determines the binary value of each bit. Those interested in this information should write for NBS Special Publication Number 432, NBS Time and Frequency Dissemination Services. Send your request to the Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80302.

PC RTTY

Bill Kantz WD2AVE sent in a query via Compuserve. Bill has a copy of a RTTY program for PCones called BAUDOTC.EXE. He said that the docs with the program claim to have source code available, but he can’t find it anywhere. He’s looking around for information on RTTY for the PC.

Well, there are quite a few public domain programs for the PCones. One I have looked at is available on Compuserve’s HamNet for downloading. RTTY.EXE was written by Perry Taylor W8SE, and T.L. Vinson W0NW. It seems to be a rather full-featured program, with selectable speeds, modes, disk access, and the like. Free for the taking and that may be hard to beat. The reader might make note also of W0KU, a net user, who also talked about PCote RTTY via the Delphi information system.

KB8BMN sent along a Delphi Mail message, wondering about slow scan programs for the CoCo.

Well, the first one that comes to mind is Marty Goodman’s famous WEFAX program. It’s a transmitting version and is available on Delphi for downloading. This may be just the ticket for the ham who wants to try SSTV on a shoestring. Hardware solutions are around as well, of course, with the AEA PK-232 described here a while back, leads the pack. The cost of the AEA PK-232 may be more money than one is willing to plunk down to try something out.

CoCo Instructions

Several hams have received a copy of January’s RTTY program for the CoCo on tape and have asked for more specific information on how to use the program. The tape will have two programs on it. First of all, there are three CSAVEs of RTTY.BAS. This is the driver program for the RTTY routines, and will be the program to run first to get the thing started. So, CLOAD RTTY into the computer, then CSAVE RTTY onto a new tape only once. Now, put the tape back in and CLOAD MAKKERTTY. The MAKKERTTY program is a BASIC program that will create a binary program, usually called RTTY.BIN. This is the “ gut ” of the program.

Therefore, after loading MAKKERTTY, put the new tape back into the recorder, position it right after the RTTY.BAS program. Push the RECORD buttons and type RUN. The computer must know the amateur is working from a cassette. It will save RTTY.BIN right after the BASIC loader.

Now, rewind the new tape and turn the computer off for a few seconds to reset. Put the new tape in, press PLAY, and type CLOAD RTTY. When the BASIC program is loaded, RUN it, and the computer will load the binary routine and start the ball rolling. Okay? Is that clear enough? Let me know.

Odds and Ends

Jim W. Pook is a Canadian friend who would like to monitor RTTY on his Apple IIgs. We have covered Apple software before, and I have sent Jim a list of what I know about that software. But, with the enhanced capabilities of the II-gs, I would think that there should be some new and exciting programs on the market.

Manuals and books are the object of Robert E. Becker’s search for RTTY information. On the market, the current information is precious and very little, besides what I’ve talked about here in the column. I like to think that RTTY Loop remains one of the most current sources of RTTY and ham-computer information. While there isn’t a “book” of RTTY Loop columns, back issues are available from little old me. Send me a self-addressed, stamped envelope and I will send an index of this column dating back more than ten years.

Input from readers has been heavy this month, by mail and computer. Let me hear from you! Send letters to the above address, with a self-addressed, stamped envelope for personal replies, or Email via Compuserve (ppn 75036, 2501) or Delphi (username MARCWA3A3JR). I always look forward to hearing from the amateurs.

Some of the most exciting hardware and software items have tickled my interest lately, and they will show up here in RTTY Loop. Not only that, but as I write, the Greater Baltimore Hamoree and Computerfest is on the horizon with goodies galore to fill next month’s column. How can that be missed?

Check that subscription label on the wrapper of 73 right now, before it gets thrown out, and make sure it hasn’t run out. The last thing you want to do is miss next month’s RTTY Loop!
VHF and UHF Operation

Pete Putman KT2B
3353 Fieldstone Dr.
Doylestown PA 18901

TX MIXER BOARD
FOR LMW 2304

Last month's column covered the Universal Local Oscillator (ULO), Receive Mixer, and IF Amplifier sections of the LMW 2304-MHz transverter kit. This column details the Transmit Mixer board construction, as well as the completed chassis and on-air performance.

Overview

Figure 1 shows the transmit mixer board. This is the most intricate stage to assemble and perhaps the trickiest to align! The somewhat obscure pictorial diagrams doesn't help matters. The schematic is correct and the final word on parts placement.

The design is quite simple. 144-MHz drive is injected through a large resistive pad that allows up to a 10-watt signal level. A 100Q potentiometer adjusts the saturated drive. This output is connected to a diode mixer stage. A pair of HP2835 diodes function as a mixer stage, but there is not a lot of conversion gain. Due to this, the 144-MHz drive needed for saturated output is typically 1-2 watts. This level is easily obtainable.

The ULO board has more than adequate output at 1080 MHz (see last month), delivering between 40 and 50 mW across 50Q. This signal is injected into TR1, an NEC 85637 bipolar device functioning as a doubler stage. Gain is about 3-4 dB and the output at 2160 MHz is fed to the ring mixer stage. Tuning here is critical, both to suppress the unwanted 2160-MHz LO signal and peak the desired 2304-MHz mixer product.

This stage is followed by five Class-A stages that run straight through at 2304 MHz and develop about 4-5 dB each. TR2 to TR5 are also NEC 85637 bipolar devices. TR6 is a Philips BU98 stage that develops 400-500 mW output maximum. All stages except TR6 run at 8 volts from a regulated bus line. TR6 is a more conventional 14-volt stage, and takes its power directly from the 13.8-volt input.

Construction

The assembly is quite tricky—check work often against the schematic. Of all the pictorial diagrams in the kit, this is by far the hardest to read. The importer, Bill Olsen of Down East Microwave, plans to have some of diagrams redrawn to alleviate this problem.

Perhaps the trickiest area of the board are around the driver and final stages. Here, the builder must carefully solder coils, resistors and diodes in a tiny area. For example, the pictorial does not show a 47Q 1/4W resistor from the base of TR5 to its associated choke, but the schematic does. Furthermore, placing the resistor with minimum lead length and attaching the choke (1 turn of wire with 4mm inside diameter) presents quite a challenge! I cut the leads down so far they were virtually non-existent and stood the resistor on end, making the shortest possible connection to the choke.

Also make sure to solder ALL the plated-through holes around the PC board, especially at the ground end of each etched inductor. I missed a few the first time, which adversely affected the unit's performance. LMW supplies strings of tiny pins to push through the holes and solder. They often don't fit without extra drilling, so use cut-off leads from components instead. Form these into a tight "U" shape and insert them into the board. After soldering, clip the leads flush to the board.

The trimmers are also tricky. The tiny leads at the head of the trimmer need to pass through the PC board to solder on the backplane. Pull them as tight as possible while holding the trimmer flush to the top of the PC board, and apply solder to make a smooth flux. Clip the excess leads as close to the board as possible. The trimmer bodies are made of a gold alloy and solder quite easily to the circuit traces. Use a low-wattage iron (40 watts is plenty) and tin them slightly before fluxing the solder to the trimmer body.

There are plenty of small chip capacitors—cautiously solder them to the designated points. These devices are susceptible to high heat, so just lightly flux solder over the ends. DON'T APPLY HEAT DIRECTLY FROM THE SOLDERING IRON!! There are only enough chips to make the kit work. Replacements have to be ordered from Down East.

Install the transistors last. LMW instructs the builder to pass the emitter leads for TR1-TR3 through the mounting holes and solder them to the backplane for the lowest impedance ground. Since the holes aren't large enough, enlarge them with a hand drill.

TR4, TR5 and TR6 solder entirely to the top of the board. (I mistakenly soldered the emitter leads from TR4 to the backplane, but it had no apparent adverse effect.)

Create the regulated 8-volt bus by strapping #22 wire between each of the insulated feedthrough capacitors. Again, enlarge the too-narrow holes with a hand drill. Install the feedthroughs with the solder flange on the backplane side and flux each flange completely to make a well-grounded and mechanically secure connection. I used uninsulated wire for the bus, but any type will suffice.

The DC voltage regulator mounts to the backplane. Apply a small coating of silicon grease (not included) since the regulator gets plenty warm during use! Bend the leads carefully to make sure the flange lines up with the screw hole punched in the board, and fasten securely. The DC relay fits nicely into its pre-drilled holes.

The remaining components are easy to install. Most of them go to the top of the PC board. Cut the leads as short as possible to keep a low profile when installing the diode bias networks. Watch the resistor markings! I mistakenly installed 100Q types where 10Q resistors were called for and vice-versa. This made things quite exciting on initial power-up.

Tune-up

First make sure the 8-volt bus functions correctly. Do this before connecting any of the collectors from TR1 through TR5.

Next, determine the operating bias. Monitor the collector current of each device with a milliammeter when testing the resistors marked "SOT." I found a value of 390-470mA yields the desired collector current on each stage. The range is not critical. If the manual specifies 10-12mA, for example, anywhere from 8mA to 15mA will do.
Once the bias has been established for each stage, set up the mixer ring. This is a tough job without a spectrum analyzer or RF probe! Dave Mascaro WA3JUF checked out mine with an analyzer probe, which he also used to roughly align all the gain stages. A spectrum analyzer, however, isn't a must. The builder can still peak up the mixer and gain stages by using an RF probe or absorption wavemeter, both of which are readily found as surplus.

Set the trimmers on TR1 for maximum output by following the pictorial and checking with a probe. Next, connect the probe to each stage and adjust for maximum output while monitoring collector current. Each stage should have output peaks at minimum current values. Distinguish between the LO output and 2304-MHz composite signal by momentarily cutting the 144-MHz drive. The output should drop off completely. If this does not occur, the LO output has been peaked instead of the 2304-MHz signal. In this case, return the ring mixer. If the output does drop off, the correct signal is present. Continue alignment as before.

Use a good 50Ω load to tune TR6 and carefully monitor collector current. Although the manual claims that 100mA will be the peak value, the stage can go into oscillation and considerably exceed that value! The final alignment of my unit yielded 65–75mA with the drive saturated. I used a Boonton 92 with 2W 50Ω load—not very accurate at 2304, but 50Ω nonetheless.

Use the above scheme to tweak the ring mixer and suppress the 2160-MHz LO signal. Apply power to the board and increase the Boonton 92's sensitivity until a signal is present. This is the LO signal. When I redjusted the trimmers, it dropped almost 10 dB, after which 144 MHz was re-injected and TR2 repeated. The manual claims 35 dB of LO rejection at 500mW output. With 300mW output, there was an adequate 40 dB of rejection.

Final Assembly

The truly fun part is stuffing everything into a chassis! LMW makes a nice housing for the kit that allows space for the accessory 2-watt amplifier. Photo A shows the completed unit with front panel controls for power and transmit. Red and green lamps respectively indicate the status of these switches. A small Calexto milliammeter monitors final collector current and also displays relative output when the final board is installed.

There are separate connectors for 2304 RX in, 2304 TX out, 144 TR, and DC control and power. I chose the standard 5-pin chassis connector used by Microwave Modules. It's easily found in parts stores and the connectors are quite reliable. A surplus Teledyne relay with SMA connectors takes care of antenna switching, but the Tohtsu 500-series relays1 with N connectors are probably better choices. These use 13.8 volts instead of the 28 volts needed for the Teledyne.1

Operation

The completed transverter was barely ready for the January VHF Sweepstakes. With the barefoot 300mW output into a Down East Microwave 45-element loop yagi atop my roof tower, I gathered 11 contacts in 2 grid squares—not bad at all! N2SB in southern New Jersey, a 40-mile path away, was my most distant contact. Most contacts were on CW, with a scattering on SSB.

Conclusions

The LMW 2304 Transverter kit is an inexpensive way to get a signal on 13 centimeters, but I don't recommend it for the inexperienced builder. Those who know their way around microwave circuitry, however, should find it a snap to assemble and align. All of the boards, especially the ULO, are well engineered. The importer quickly corrected, at no cost, the problem of missing parts and obscure documentation.

The feeling of working that first contact on 2304 after building the kit is unmatched! Those who want to take a plunge on 13cm should give this LMW kit a try. !

1Tohtsu 500-series relays are available from Transverters Unlimited, PO Box 6286, Station A, Toronto, ONT Canada M5W 1P3, (416) 759-5562.

1LMW Transverters are available as kits or assembled from Down East Microwave, Box 2310 RD #1, Troy ME 04987, (207) 948-3741.

Figure 1. The schematic for the LMW 2304 13cm transverter TX mixer board.
HAMS SHOULD BE SEEN AS WELL AS HEARD!

TVC-4G 70Cm ATV Downconverter
Now only $99 Delivered UPS surface in cont. USA

- See live action color & sound like broadcast TV
- Many areas have ATV Repeaters (call us or see the 87/88 ARRL Repeater Directory pg. 328 for your area)
- Most ATVs use home cameras and VCRs to show the shack, projects, home video tapes, public service events like parades, races, etc.
- Some repeaters also have weather radar, Space Shuttle video, BBS, & computer video

It's easy to start watching: 70cm antenna, a TVC-4G and any TV set tuned to ch2, 3 or 4. Our TVC-4G tunes the whole 420-450 mHz band & includes GaAsfet preamp & mixer, AC/12vdc wall plug, attractive shielded 4x2.5x7 cabinet. We also have wired & tested boards for the builder starting at $39. See ARRL Hbk chapter 20.

When you are ready to try transmitting, we have transmitters, transceivers, antennas, and all your AN needs for the 70, 33 & 23cm bands.

Hams, Call or Write for our full catalog of AN gear!
(818) 447-4565 m-f 8am-5:30pm pst.

P.C. ELECTRONICS
Tom (W6ORG)
2522 Paxson Ln Arcadia CA 91006

Special
OUTSTANDING PRICES ON IBM XT/AT COMPATIBLE SYSTEMS!
SYSTEM #1 $299.00
MOTHERBOARD WITH BIOS AND ZERO K OF RAM UPGRADABLE TO A FULL 640K OF RAM. FLIP TOP CASE. XT/AT LOOK ALIKE KEYBOARD. 150 WATT POWER SUPPLY WITH ALL THE POWER NEEDED TO RUN EXTRA DRIVES AND CARDS.

SYSTEM #2 $499.00
MOTHERBOARD WITH BIOS AND ZERO K OF RAM UPGRADABLE TO A FULL 640K OF RAM. FLIP TOP CASE. XT/AT LOOK ALIKE KEYBOARD. 150 WATT POWER SUPPLY. DUAL DISK DRIVE CARD WITH CABLES. ONE FLOPPY DRIVE DD 360K. A COLOR GRAPHICS CARD WITH RGB AND COMPOSITE OUTPUT. (ALL YOU NEED IS A MONITOR)

SYSTEM #3 $799.00
MOTHERBOARD WITH BIOS CONTAINING 256K OF RAM UPGRADABLE TO A FULL 640K OF RAM. FLIP TOP CASE. XT/AT LOOK ALIKE KEYBOARD. 150 WATT POWER SUPPLY. COLOR GRAPHICS CARD WITH RGB AND COMPOSITE OUTPUTS. MULTI I/O CARD WITH TWO DISK DRIVE PORTS, ONE PARALLEL PORT, ONE SERIAL PORT AND ONE SERIAL PORT OPTION, ONE GAME PORT, CLOCK AND CALENDAR WITH BATTERY BACKUP. TWO FLOPPY DISK DRIVES DD 360K AND A COMPOSITE MONITOR.

SHIPPING INFORMATION: PLEASE INCLUDE 10% OF ORDER FOR SHIPPING AND HANDLING CHARGES (MINIMUM $25, MAXIMUM $150). CANADIAN ORDERS, ADD 7% GST IN US FUNDS. MICHIGAN RESIDENTS 400% SALES TAX. FOR FREE FLYER, SEND 22-STAMP OR SASE.

DEALER FOR TENTELE & MFJ

HAL-TRONIX, INC.
P.O. BOX 1101 DEPT. N
12671 DIX-TOLEDO HWY
SOUTHGATE, MICH. 48195 PHONE (313) 281-7773

AMATEUR TELEVISION

A DOLLAR AND A QUARTER DOESN'T GO VERY FAR THESE DAYS.....

BUT A MAXCOM® GOES AROUND THE WORLD !!!

Absolutely no tuning with a MAXCOM system. Simply connect... dial your frequency and talk... That's it, just TALK.

OVER 4000 MAXCOM STATIONS WORLD WIDE
BOX 502, FT. LAUD., FL 33302 305-587-5178

MAXCOM is a registered trademark and is owned by Maxcom Electronics, Inc.
THE BOTTOM LINE: "MAXCOM WORKS"

ORDER TOLL FREE (800)426-2820

AEA
10 METER OR 6 METER DX HANDY

AEA PK 232
Your Choice $278.88

HAMTRONICS, INC.
4033 BROWNSVILLE ROAD
TREVOSE, PA. 19047
(215) 357-1400

Days M,T,W-9-6 Th-F 9-8 Sat. - 9-3

Authorized Sales & Service --- Yaesu • Kenwood • Icom

CIRCLE 309 ON READER SERVICE CARD

BUT A MAXCOM® GOES AROUND THE WORLD !!!

Absolutely no tuning with a MAXCOM system. Simply connect... dial your frequency and talk... That's it, just TALK.

OVER 4000 MAXCOM STATIONS WORLD WIDE
BOX 502, FT. LAUD., FL 33302 305-587-5178

MAXCOM is a registered trademark and is owned by Maxcom Electronics, Inc.
THE BOTTOM LINE: "MAXCOM WORKS"

CIRCLE 175 ON READER SERVICE CARD

CIRCLE 101 ON READER SERVICE CARD
Low Power Operation

Mike Bryce WB8VGE
2225 Mayflower NW
Massillon OH 44646

Packet QRP

Last month's column looked at some of the digital modes of communications. QRPers have at their fingertips. This month's column finishes up digital QRP with packet radio before moving on the phone operation.

Packet radio is so far most at home on the two meter FM band. HF packet is not reliable enough for most people's tastes. I use a TNC (terminal node controller) and a two meter FM transceiver running at two watts output. By using the built-in digipeating capability of the TNC, a packeteer can communicate across the state using QRP power levels. Small portable packet stations will soon become the mainstay of communications during emergencies. Solar energy can power lightweight computers and TNCs. Packet is still quite new, but there are many good books out on the subject, such as *The Digital Novice* by Jim Grubbs K9EI and *The Packet Radio Handbook* by Jonathan Mayo KR3T. Also check out the PacketTalk column in this magazine.

Phone QRP

As much fun as the digital modes can be, they almost always require an interface between operator and radio. Phone operation requires much less—just the rig and the mike! That of course rules out the Heath HW-8 and the HW-9. Ten-Tec's Argusy and Argo-naut are super on Single Side Band (SSB), but there are also many other fine SSB radios on the market.

SSB

Working SSB while running QRP can be most interesting. You can find other QRPers running phone on the 3985, 7285, 14285, 21385, and 28855 kHz. There is a move within the Board of Directors of the QRP ARC1 for a QRP calling frequency for the Novice ten meter phone bands. When the board settles on a frequency, I'll list it here.

Most important in phone operation is clear, articulate speech. Don't talk very fast. Adjust the audio/mike gain for the best sounding audio. An oscilloscope takes all the guesswork out of setting the controls for the best audio. Calling CQ while using SSB on QRP is usually a waste of time. Tail-ending a QSO produces far better results. This is the method I use with very good results. Don't forget to check out the other bands. Many times you can find 15 meters open and the DX running but with few stations working the band. Don't overlook the Novice phone band. Ten meters can support some really fine DX openings without the need of QRO (high power).

AM

This is perhaps the oldest form of voice communication. AM phone had its heyday in the early years of ham radio until the 1950s, when SSB came into use. AM is now experiencing a resurgence, however, especially for local to medium distance ragchewing, because of the much more pleasant and realistic sound than one hears on SSB.

Many of the older radios support AM. QRPers who can get their hands on an old Viking, Johnson, Elmac, or Heath DX-100, will be on AM phone with style. Some of the newer, high-tech imports also have AM operation, but they just don't have the punch of the old plate-modulated rigs.

It's true that AM is a high-power mode. There aren't many AM QRPers. There was a lot of AM on the ten meter band several years ago with the use of converted CB radios, and this can happen again with the increasing solar flux. The reader can buy back issues of *73 Magazine* that contain modifications for many different types of CB radios. Amateur radio, however, really needs a good band plan for AM operation on the ten meter band.

It should be possible to amplitude modulate an HW-8 by modulating the PA transistor. Any QRPers want to try it? It would be an interesting experiment! A solid state low-level modulator should not be hard to build. Prospective AMers looking for more info can drop a letter to S.P.A.M. (Society for Promotion of AM) F. A. Dunlap, 14113 Stoneshire, Houston, TX, 77060. Send an SASE.

PJJM

DX chasers should keep an eye out for this call. An expedition to Saba Island, manned by 6M DX Society members Mario Karchich WB2CZB, Jim Holt N3AHI, and John Laing W1EXC, has been finalized for 7–14 July 1988. Operation will be on all bands, 80 through 6, SSB and CW will be used. Particular attention will be paid to QRP operators. WB2CZB will be actively soliciting QRP contacts. QSL via Mario K2MUB. (SASEs, please!)

Field Day?

Those not looking for DX may be too busy getting ready for Field Day. This column would've focussed on this event, but no one responded to my call for Field day items!

Field Event station W8NP did something different last year. A computer logging system kept track of contacts. That setup proved itself so well that we're going to use it again this year. Forrest Hudspeth WA3FAE wrote it and called it "TestLog." The program is in Microsoft Quick Basic™ and runs on a IBM computer or clone. It has very, very fast dupe checking, error trapping, and error correcting ability. VHFD grid collectors can also use this program. The program will hold more than 2000 calls per band!

After going home from Field Day, the contestant can load the program up on the home computer and batch-print the entire contest while he bags some much needed sleep.

Interested readers can get a copy of the program directly from Forrest for $20. This price includes all the printer routines and all the docs with which to run the program. This could well be the best $20 a contestant ever spent. Drop Forrest a letter at 5897 Woodbine Road, Woodbine, MD, or leave a message on CompuServe (#ID 72126,1173).

More Program Listings

Propagation master Bob Brown N7M7 put together the "QRPers Basic Propagation Tool Kit." This is a handbook of propagation hints alone with several small basic computer programs listings. Each program can stand alone, or link together to become a rather slick propagation program. The programs are written in generic Microsoft basic, executable on almost any personal computer.

The tool kit contains 45 pages of text and comes in a 6 x9 inch copy. Copies are available from the QRP Candy Store, Bob Spidel W8SKG, 45020 N. Camolin Ave., Lancaster, CA, 93534. Ask for a flyer. The Candy store sells many QRP goodies. (Don't forget the SASE.)

"Milliwattting"

Here's the awaited milliwatt rig. John WB2QGH sent this in to me, saying the source was likely from an issue of 73 from some years back. It runs about 500 milliwatts input, and is a very easy "rainy day afternoon" project to build and get running.

Although the schematic does not show what frequency the transmitter covers, I'd say 40 meters. L1 is 17 turns #24 wire 1/4 inch diameter. L2 is 3 turns link. C1 is adjusted for the best sounding CW tone and best keying. The transistor can take up to 50 mA, so it's best to heatsink it. Also, I have found that the metal 2N2222 gives a bit more bite than the plastic versions. Since the transistor keys on and off by grounding the emitter, use a low resistive keying device. A straight key is fine. An electronic-keyer driven read relay is also OK.

There is no PC board for this project. Use perf-board or make the small PC board.

The term "milliwattting" is starting to replace the awkward-sounding phrase "QRP." Running less than half a watt really makes the hair thin. This requires the absolute best antenna system possible, operating style, and every trick in the book. will be needed to catch a QSO.

One last word for those milliwaters out there: "Success grows from the soil of despair!"
DEALERS

Sell *73 Amateur Radio*

Selling *73 Amateur Radio* will make money for you. Consider the facts:

- If you carry *73 Amateur Radio* it will increase your store traffic—and our dealers tell us that *73* is the hottest selling amateur radio magazine on the newsstands today.
- Increased store traffic means increased sales for you. Hams will come into your store to pick up the latest *73* and end up buying the latest all-band, all-mode transceiver (or at least a few feet of coax).
- *73 Amateur Radio* guarantees each issue—you pay only for the copies that you sell. We pay for all shipping.

For information on selling *73 Amateur Radio*, call Peter Murphy at 800-722-7790, or write to *73 Amateur Radio*, WGE Center, Peterborough, NH 03458.

FACTORY-LESS, JUMPER-LESS, ROM-LESS PROGRAMMING.

With the new S-COM 5K Repeater Controller, you’ll be able to configure your repeater remotely—using DTMF commands. Only the 5K offers this capability for just $189, wired and tested.

- Easy to interface
- Polite ID’er
- Nonvolatile Memory
- Needs only 55 mA/12 V
- Adjustable Audio
- CMOS Microprocessor

Easy-to-program control box, solderless, jumperless, factory-programmed.

S-COM Industries
PO. Box 8921
Fort Collins, CO 80525
(303) 493-8316

INTERFERENCE?

- Interference Location
- Stuck Microphones
- Cable TV Leaks
- Security Monitoring

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver’s antenna and external speaker jacks. Uses four omni-directional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

CABLE-TV SIGNAL ELIMINATOR

ELIMINATE A CHANNEL

that you find unsuitable for family viewing, but is poorly served by your cable company.

or

CLEAR UP A CHANNEL

that presently contains severe interference, by ELIMINATING whatever signal is creating this.

NOTE: picture and sound are equally affected, this IS interference and CANNOT be removed by our product.

If only picture is affected, this IS NOT interference and CANNOT be removed by our product.

$30 each

CABLE TV DESCRAMBLERS

STARRING

JERROLD, HAMLIN, OAK

Amateur Radio Technology

PACIFIC CABLE CO. INC.

P.O. Box 907
Palm Beach, FL 33408

FUTURE OF REEL TO REEL TAPE TRANSMISSIONS: SIRIUS SATELLITE RADIO

Will make...
UNCLE WAYNE’S BOOKSHELF

Aw right, a’ready! NOW, the popular electronics and amateur radio books you’ve been hounding poor old Uncle Wayne for are here! Now you can build up your ham shack library with these soft-cover favorites . . .

- The Packet Radio Handbook
 by Jonathan L. Mayo K3JT
 "... an excellent piece of work. Well-worth reading for both the experienced and the new packeteer, the definitive guide to amateur packet operation..."
 —Gwyn Reedy W1BEI Only $14.95

- The Digital Novice
 by Jim Grubbs K9E1
 Your guide to the fascinating worlds of communication that have just opened for thousands of amateur radio operators. Now you can learn about everything from Morse code to the latest in packet radio technology. $9.95

- The Commodore Ham’s Companion
 by Jim Grubbs K9E1
 160 pages of useful information on selecting a Commodore computer for the ham shack, where to find specialized programs, the Commodore-packet connection, and more! $9.95

- Master Handbook of 1001 Circuits—Solid-State Edition
 by Kendall Webster Sessions
 With this outstanding reference in hand, electronics hobbyists and professionals will never have to search for schematics again. Completely updated, the book is thoroughly indexed and all 1001 circuits are clearly illustrated. 420 pages. $19.95 soft cover or $28.95 hard cover.

Uncle Wayne’s Bookshelf Order Form

- The Packet Radio Handbook $14.95
- The Beginner’s Handbook of Amateur Radio — 2nd Edition $16.95
- DX Power: Effective Techniques for Radio Amateurs $10.00
- Secrets of Ham Radio DXing $12.95
- Transmitter Hunting: Radio Direction Finding Simplified $17.95
- The Radio Amateur’s Microwave Communications Handbook $18.95
- The Digital Novice $9.95
- The Commodore Ham’s Companion $9.95
- Master Handbook of 1001 Circuits—Solid-State Edition $19.95

Total Enclosed

Please Print!

Name

Address

City State Zip

☐ AE ☐ MC ☐ VISA ☐ Check/Money Order

Card # Exp. Date

Mail your order to 73 Magazine, WGE Center, Peterborough NH 03458 Attn: Uncle Wayne
WEATHERSATS

View On Video Processing

Dr. Ralph Taggart W8BDQ
602 S. Jefferson
Mason MI 48854

This month’s column deals with quite literally the “big picture”—the whole earth to be precise. Following the US and Soviet polar orbiters is a way to get a very detailed view of the weather in the reader’s part of the continent, but it falls far short of viewing the whole earth from space. The sat-chaser can greatly enhance that view by adding WEFAX capability to his station.

Worthwhile Investment

Although early WEFAX experiments involving image relay via geostationary satellites were begun in the early 70s using VHF transmissions, all current WEFAX activity is now conducted on 1691 MHz (plus 1694.5 MHz for the European METEOSAT spacecraft). This requires the addition of some S-band microwave hardware to the station. Since image transmission formats are similar to those used by the VHF polar orbiters, an S-band upgrade can be as simple as the addition of a small dish (typically 4 feet or 1.2 meters in diameter) and a downconverter to convert the 1691 MHz signal down to a standard VHF frequency (typically 137.50 MHz). The Weather Satellite Handbook (WSH) covers many of the hardware details. There are some very real advantages to having WEFAX capability:

1. The U.S. GOES and European METEOSAT spacecraft are geostationary, so once the sat-chaser has the antenna aligned on a spacecraft within range, he simply locks it in place and forgets it.
2. A wide variety of image products, including weather charts, mosaics (polar and mercator) of polar orbit imagery, and samples of GOES imagery, are available for viewing. Over 100 images are contained in the GOES central daily schedule.
3. All images are transmitted on a fixed daily schedule, making it easy to plan the reception of particular pictures of interest.

The most interesting pictures for most experimenters are the images derived directly from the GOES spacecraft themselves. GOES East and GOES West scan

Figure 1. Diagram of the arrangement of WEFAX quads that make up the mosaic of the full earth disc as imaged by one of the GOES spacecraft. This particular diagram shows the coverage from GOES E and is reproduced from Clark, R.M. and E.W. Faigel. 1981. The WEFAX User’s Guide. Nat. Earth Sat. Serv., NOAA, U.S. Dept. of Commerce.

Figure 2. Manual assembly of prints of individual quads is the standard way to reconstruct the earth disc. This example shows an 1800Z IR image derived from GOES E and transmitted through GOES Central. Although this procedure is simple, it takes time, uses up four sheets of FAX paper, and the resulting image is too large for convenient storage! This image was prepared from four Smartfax prints from the scan converter video memory. Each quad represents 768 image lines, each line digitized to 1024 pixels. All of the examples shown here are late December (1987)/early January (1988) IR with plenty of nasty winter weather in northern North America.

70 73 Amateur Radio • June, 1988
Explore All The Fascinating Possibilities Of Packet Radio!

The number of packet stations in the U.S. has grown at an average rate of 2000% a year for the past five years. Find out why packet is the fastest growing mode of ham radio, and learn how you can become a packeteer!

The Packet Radio Handbook
by Jonathan L. Mayo KR3T

gives you a minicourse that includes:

• the development of packet radio
• how to combine packet with other areas of amateur radio in civil defense communications
• traffic handling
• modulation methods and networking principles
• the use of protocols, AND MORE!

You'll want to join the packet bandwagon after reading KR3T's fact-filled Packet Radio Handbook! Order your copy now!

THE PACKET RADIO HANDBOOK
$14.95

Please Print.
Name ____________________________ Call ____________________________
Address __
City ______ State ______ Zip ______
☐ AE ☐ MC ☐ VISA ☐ Check/Money Order
Card # ____________ Exp. Date ____________

WEATHERFAX

Receive & Transmit AM/FM Radio Faxcimile View Satellite Image on Graphic Display Zoom and Pan Around Image Print to Epson (IBM) Compatible Printer Works with Hercules, CGA, EGA Monitors Plug In Board for IBM PC or Compatible

$599.00

COMPUMAX

26 W. Boylston St.
W. Boylston, MA 01583
(617) 835-2722
the entire earth disc every half hour and transmit the highly detailed, multispectral images back to earth in a wide band digital format. These digital signals are transmitted back through the originating spacecraft in a time-stretched format to reduce the required bandwidth, but it requires quite a sophisticated ground station to receive, decode, and display these digital images. A number of dedicated experimenters have accomplished this formidable task, but such installations are still out of reach for most satellite hobbyists.

Good News

Fortunately, the images of the earth disk are available, at reduced resolution, via WEFAX transmissions through the primary imaging spacecraft and via GOES Central, which is dedicated entirely to WEFAX relays. The NOAA ground computers, which digest and format the detailed digital images, are also used to format the earth disc imagery for WEFAX transmission. The primary format involves breaking the earth disc up into four quadrants: NE, SE, NW, and SW (see Figure 1) which are transmitted in sequence.

The WEFAX format is quite easy to process. The WSH scan converter, for example, operates automatically in the WEFAX mode, displaying each picture as it comes in. This is a rather neat way to observe the many WEFAX images that are transmitted—just watch them instead of using up film or paper. The viewer inevitably gets the itch to put those four quadrants together to see what the entire earth looks like. To do so, he has to print each image quadrant (using a FAX printer) or photograph and print each one (if he is using a CRT display system). With hardcopy of the four quads in hand, the

rest is just manual labor. Each quad overlaps its neighbor by just a small amount, so the four images can simply be overlapped slightly to reconstruct the earth disk image. The whole process gets a bit tedious and time consuming, but the results are often spectacular, as shown in Figure 2.

Aside from the time required to prepare the disc mosaic, there are a few other factors that interact to reduce the number of such pictures the viewer is likely to construct:

1. He must print out each of the image quads. Each disc requires at least four sheets of FAX paper.

2. Phasing must be very precise. If he loses a portion of one or more quads, a good match up may be impossible.

3. The contrast for each of the quads must be identical. Tonal variations between quadrants detracts from the appeal of the image.

4. The resulting images are quite large since they represent four normal prints. The WSH FAX recorder prints images that are approximately 7 inches square, so the final disc image will be almost 14 x 14 inches. This is fine for hanging on the wall, but the pictures are difficult to store, not to mention the bill for FAX paper!

The use of the scan converter eliminated some of the problems in that succeeding WEFAX images could be registered laterally with an error of less than 0.1% (under 1 pixel displacement error in a 1024 pixel line) and line registration is virtually perfect. At a given contrast setting, tonal variation from quad to quad is unnoticeable, provided the NOAA computers do their job properly!

Figure 4. A complete rewrite of the software to compensate for any reasonable clock errors resulted in an essentially perfect merge of the quads. In addition to being able to preview the disc image using the scan converter, hardcopy printouts now only require a single sheet of FAX paper and the print is easily filed away. Each quad in this image consists of 384 image lines, each digitized to 512 pixels, resulting in a total of 768 lines for the composite with 1024 pixels per line. This image is a Smartfax print directly from the scan converter video memory.
Although quad resolution must be reduced to fit the full disc into memory, resolution is still acceptable as shown by the Smartfax print of a high resolution zoom into the image memory. State boundaries are recognizable, cloud features are reasonably detailed, and the image even shows the waters of Lake Michigan to be warmer (darker) than the surrounding land surface. The area of this high resolution zoom represents about 1/16th of the total image area.

Programming Hurdles

A child can do the manual preparation of mosaics, which involves the trimming off of extraneous border material from each print and fitting together the four quads. The computer, however, is an absolute dunce by comparison. The electronic trimming and fitting turned out to be a major programming task that required many hours of measuring and calculation of the limits of extraneous border and the horizontal and vertical overlap of quads, all in terms of pixel counts.

Figure 3 shows the first attempt at electronic quad assembly. The quads were all in the right place and the joining of northern and southern quads was fine, but the image showed those nasty white wedges between the eastern and western quads! The problem was a slight error in the master clock frequency, tilting each image just enough to make east-west merge impossible. Getting the clock precisely on frequency would solve the problem, but I chose to completely redo the programming so the effective resolution of each quad in order to fit all four into the 380K video memory. Holding the full disc at full resolution would require over 1.5MB of RAM! The reduced resolution, while noticeable, is not really too serious, balanced against the spectacular view. Figure 5 is a Smartfax print of a high resolution zoom into the disc image. While not as detailed as the original, it is still usable and provides a pleasing appearance. The final result of this programming effort is shown in Figure 4 and features a virtually perfect merge of the four quads.

In addition to the convenience of being able to view the whole disc on the TV monitor, the image can be printed via Smartfax using just a single sheet of paper! While manual assembly of a disc almost always requires the use of tape recordings of the quad transmissions, this is not true of the software assembly. It works so well that I can set up the station system to input the sequence of quads into the scan converter directly from the receiver so that the 1800Z earth disc can be waiting for me when I get home!

The only disadvantage is that one has to reduce the original quad transmission rate to be able to fit four quads onto one page! The WEFAX mode to quad resolution must be reduced to fit the full disc into memory, resolution is still acceptable as shown by the Smartfax print of a high resolution zoom into the image memory. State boundaries are recognizable, cloud features are reasonably detailed, and the image even shows the waters of Lake Michigan to be warmer (darker) than the surrounding land surface. The area of this high resolution zoom represents about 1/16th of the total image area.

"Holding the full disc at full resolution would require over 1.5MB of RAM!"

References

Outside of the US, please include an additional $1 for postage.

Ed Note: We encourage the exchange of weatherfax ideas and software on the 73 BBS. Call 603-525-4438 (300/1200 baud) and sign on.
Great Ideas From Our Readers

ADD 160 METERS TO YOUR AMPLIFIER

If your amplifier has a tube-type pi-network output circuit, it should be an easy job to add our lowest frequency band to its coverage. Either adjust the output capacitor to minimum or disconnect it. Add an external coil (about 2-inch diameter and 4-inches long and 8 turns per inch) and 2000 pF capacitance. Partly variable. Adjust to resonance using your dummy load and reduced drive level.

Robert L. Larson W7LNG
Medford, OR

SELECTABLE NiCd CHARGER

This unit was originally built to charge cells "rescued" from bad battery packs. It is much better to slow charge NiCds. There is always the danger of forgetting to remove the cells from charge at the appropriate time, so a timer was incorporated. With the normal tolerance of tantalum capacitors, the timer should time out between 15.5 and 17 hours. The relay used is a small low current relay. A surplus 13.5 VAC 750 mA wall transformer is used as the AC source and a one amp bridge was used to rectify it. The resistors were made up of stock units in series or parallel to make up the proper value, checked with a DMM.

R.R. De Jongh WB7CPT
Bellevue, WA

SIMPLE OSCILLATOR CIRCUIT

It occurred to me that some of my fellow hams might be interested in a simple oscillator circuit that I have used for years. Almost any NPN transistor will work, but the base bias should be varied for each transistor. Characteristics vary a great deal. Also the lower the resistance of the inductance, the better the circuit will work. If the resistance is too high, the circuit will not oscillate.

The figures show the versatility of the circuit.

L.C. Pocho W6LBH
Ontario, CA
KENWOOD TS940 OWNERS
Are you frustrated tuning in SSB & CW signals because of the too fast main tuning rate of 10 KHz/revolution???
Try the NEW Copyrighted Ghieh Electronics Software Kit!

Features:
• Main tuning rate of 2 KHz/revolution LSB, USB, CW & FSK
• Main tuning rate of 20 KHz/revolution AM & FM
• Tuning rate automatically increases when the knob speed exceeds 2 turns per second to make the long QSY’s fast
• Split dot CW problems solved
• Easy to install (simply remove the old IC chip from its socket and plug in the new Ghieh Electronics IC chip).
• Complete instructions
Send check or money order for $25 to:
Ghieh Electronics
P.O. Box 18335, Cincinnati, Ohio 45218

MAO Electronics Company
PO Box 6871, ALEXANDRIA VA 22306
CHUCK 703-360-5145 MARY
MICROPROCESSOR, DIGITAL, & LINEAR IC’S
FAST AND COURTESY SERVICE

MAIL ORDER SPECIALS
FRANKLIN ACE 1000/1200 KEYBOARDS $15
ACECALC OR DATAPERFECT SOFTWARE $10
80 COLUMN CARTS $40
7.37 Mhz TURBO KIT FOR IBM PCs $50

HARDWARE RESET KIT FOR IBM PC/XT $10
$2.25-20 $5 6874 $58 0027 $100
SSI-501 & SSI-202 DTMF CHIPS $7
NO MINIMUM ORDER, LIMITED QUANTITY

CIRCLE 320 ON READER SERVICE CARD

NextDay
Call by 9 am
We deliver by 6am your time

Quantities NextDay 2nd day

100 $19.95 $14.95
200 $25.95 $24.95
400 $44.95 $39.95

1971 N Oak Lane 1200 E
Provo, UT 84606-2138

Antennas West
(801) 374-1854

CIRCLE 304 ON READER SERVICE CARD

MOVING?
Subscription Problem?
Call our toll-free number:

1-800-227-5782

Monday through Friday
9 a.m. through 5 p.m. EST
Please have your mailing label in front of you, as well as your
cancelled check or credit card statement if you are having
problems with payment.

Think you’ve seen it all?
TAKE A LOOK AT THIS!

THE RF CONNECTION
“SPECIALIST IN RF CONNECTORS AND COAX”

PART No. DESCRIPTION PRICE
PL-258/A UHF Male Phonic, USA made $ 60
83-1SP-1050 PL-259 Phonic, Amphenol .85
83-2/2 PL-299 Teflon, Amphenol 1.50
PL-295ST UHF Male Silver Teflon, USA 1.50
UG-17 S/R Reducer for RG-58 20
UG-176 Plastic Plug for RG-59 & Mini 6 20
UG-210D Male RG-210, 214, Amphenol 2.95
UG-210BU Male RG-210, 214, Kings 4.00
9913/PN Male F/N for 9913, 9606, 8214, etc 1.50
UG-212/9913 Male RG-212 with 9913 Pin 3.95
UG-218/9913 Male RG-218 with 9913 Pin 4.75
UG-430U Female to PL-259, Teflon USA 5.00

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

PRICES DO NOT INCLUDE SHIPPING PRICES SUBJECT TO CHANGE DRAFTS/MASTERCARD, ADD 4%
UPS C.O.D. ADD $2.25 PER ORDER

CIRCLE 115 ON READER SERVICE CARD

RF POWER TRANSISTORS

We stock a full line of Motorola & Toshiba parts for amateur, marine, and
business radio including
Partial Listing of Popular Transistors
2-30 MHz 12V (328V)

P N Rating Net Ea. Match Pr.
MRF421 100W $24.60 $53.00
MRF427 150W 35.60 78.00
MRF454 A 80W 14.50 32.00
MRF455 A 60W 11.75 26.50
MRF492 60W 16.00 38.75
SRF2072 65W 12.75 28.50
SRF3662 110W 24.50 58.00
SRF3775 75W 13.00 29.00
SRF3795 90W 15.50 34.00
SRF3800 100W 17.50 39.50
2SC2290 80W 16.75 39.50
2SC8279 100W 22.00 48.00
5 Selected High Gain Matched Quads Available

PARTIAL LISTING OF MISCELLANEOUS TRANSISTORS

MRF966 2.75 MRF966
MRF145 3.75 MRF145
MRF144 2.50 MRF144
MRF136 2.50 MRF136
MRF137 2.50 MRF137
MRF138 2.50 MRF138
MRF150 2.50 MRF150
MRF174 3.50 MRF174
MRF208 1.25 MRF208
MRF216 1.25 MRF216
MRF211 1.25 MRF211
MRF217 1.25 MRF217
MRF224 1.75 MRF224
MRF226 1.75 MRF226
MRF227 1.75 MRF227
MRF228 1.75 MRF228
MRF229 1.75 MRF229
MRF230 1.75 MRF230
MRF245 1.75 MRF245
MRF246 1.75 MRF246
MRF262 1.75 MRF262
MRF264 1.75 MRF264
MRF265 1.75 MRF265
MRF266 1.75 MRF266
MRF267 1.75 MRF267
MRF268 1.75 MRF268
MRF406 1.25 MRF406
MRF433 1.25 MRF433
MRF450 1.25 MRF450
MRF453 1.25 MRF453
MRF455 1.25 MRF455
MRF458 1.25 MRF458
MRF473 1.25 MRF473
MRF476 1.25 MRF476
MRF477 1.25 MRF477
MRF479 1.25 MRF479
MRF485 1.25 MRF485
MRF492A 1.25 MRF492A
MRF497 1.25 MRF497
MRF515 1.25 MRF515
MRF555 1.25 MRF555
MRF607 1.25 MRF607
MRF620 1.25 MRF620
MRF622 1.25 MRF622
MRF641 1.25 MRF641
MRF644 1.25 MRF644
MRF646 1.25 MRF646
MRF648 1.25 MRF648
MRF670 1.25 MRF670
MRF685 1.25 MRF685
MRF688 1.25 MRF688
MRF709 1.25 MRF709
MRF715 1.25 MRF715
MRF717 1.25 MRF717
MRF727 1.25 MRF727
MRF846 1.25 MRF846
MRF901 1.25 MRF901
MRF1072 1.25 MRF1072

Hi-Gain, Matched, and Selected Parts Available

We stock RF Power transistors for Atlas, KLQ, Collins, Yaesu, Kenwood, Cubie, Miracle, Motorola, Heathkit, Regency, Johnson, Tenn., Drake, TWC, Wilson, GE, etc.

Cross-reference on CD, PT, SD, SRF, JO, and 2SC P Ns.

Quantity Pricing Available - Foreign Orders Accepted

Shipping Handling USA $5.00 CODE VISA MC Orders received by 1 PM PST shipped UPS same day.

Next day UPS delivery available

PARTS ORDERS ONLY - NO TECHNICAL

ORDER LINE FOR TECH HELP

(619) 744-0728

CIRCLE 115 ON READER SERVICE CARD

73 Amateur Radio • June, 1988 • 75
PROPHAGATION

Jim Gray W1XU
210 Chateau Circle
Payson AZ 85541

HOT DX!
June has several interesting characteristics including the longest day of the year; the greatest amount of potential ionization; and the longest band openings from our part of the world to DX locations. It is also the month when VHF opportunities abound.

The general conditions for DX are expected to be good for the first ten days of the month, fair to poor for the next ten days, and fair to good for the last ten days. The daily forecast will indicate the days on which the magnetic field is expected to be unsettled (F), to active (P), DX will not be as good as it was in March-April, or as good as it will be in September—October, but the sunspot numbers and solar flux values are climbing, so good openings may occur. In particular, look for the gray-line DX along the darkness path at dawn and dusk, since signals can be excellent at these times.

The best days for any DX path, particularly the difficult ones, is when the solar flux rises to about 100 or more, and the magnetic field is quiet (G). The A and K indexes for the day and the solar flux, may be found by tuning in to WWV at 18 minutes past each hour. Because WWV gives data for the previous day and the expected data for the following day, plot trends may be made.

Bear in mind that daily forecasts may vary one way or the other, by a day or two. Sometimes the sun and magnetic fields don't behave as predicted at all, that makes propagation forecasting as much an art as science!

The band openings are for June, July and August. Note that a (D) will indicate a difficult path. Try on days when the geomagnetic field is quiet (G) and when solar flux is 100 and greater.

Tropospheric Propagation
Summer usually brings with it enhanced propagation conditions for the VHF and UHF bands. Most of the weather occurs in the lower portion of the atmosphere, or troposphere, and many times certain weather will support VHF/ UHF propagation over hundreds of miles, well beyond normal line-of-sight.

Atmospheric conditions can bend radio waves, just like they affect light to create mirages and other optical illusions. In the case of radio signals, the distribution of water vapor has a dominant effect on tropospheric propagation. Water vapor content, atmospheric pressure, and temperature all determine the atmosphere's index of refraction, n, which is a measure of air's transmission characteristics. In particular, $n = 1 + N \times 10^{-6}$, where N is called refractivity. Refractivity is calculated by $N = (77.6P/T) + (4810e/T^3)$, where P is atmospheric pressure in millibars, T is temperature in degrees Kelvin, and e is the water vapor pressure in millibars.

When all of these variables change quickly as a function of height, or when the atmosphere is layered as in the case of a cold or warm front, tropospheric propagation can be very favorable. In fact, if n changes very sharply, say within the lower 500 feet of the atmosphere, signals can become trapped in a tropospheric "duct." Ducts can even support microwave propagation over distances of 1000 miles or more!
CTM is the ham radio and computer magazine with that “down home flavor”, dedicated to the practical aspects of Amateur Communications. Just starting out? You’ll find our well-illustrated tutorials friendly and open; we show you how. If your interest is in High Tech, you’ll find reviews and user reports of the latest thing to come down the pike and they are written so you can understand them too! If your interest is in training, you’ll find articles for ham radio, computers and emergency communications.

You’ll find it ALL in CTM

Hey LOOK!
Your Friends have been talking!

The Secret's Out!

There is always time for some friendly fun that you don’t need a license to enjoy — and appreciate...

Are you into Packet Radio? Thinking about it? Then you definitely need CTM! During 1987 we had 65 packet and packet related articles and that doesn’t even count the other HAM articles or the many Computer articles. The other four ham magazines* only had 26 packet articles during 1987. There’s something for everyone in CTM! Jump right in, you’ll find the natives friendly — and helpful, too!

*CTM™ 5 articles; Ham Radio™ 10 articles; QST™ 5 articles and 72™ 6 articles = 26 articles for 1987 for the other ham magazines...

NOW which do you need to SUBSCRIBE?
CTM of course!
HAMSATS
Amateur Radio Via Satellite

Andy MacAllister W4SZI/B
2310 Romayor Court
Pearland TX 77581

Spaceborne Bits

Amateur satellites and 73’s theme this month, digital communications, have much in common. Excluding CW telemetry, digital hamsat-generated transmissions began with AMSAT-OSCAR-7. This satellite used RTTY as an alternative to CW for communicating its vital signs to control stations on earth. There’s been a rapid move to high-speed ASCII and packet since this beginning in the early seventies.

AMSAT-OSCAR-10 used PSK (Phase Shift Keying) at 400 baud as the primary downlink of telemetry. This speed and format is also incorporated in the system on board Phase 3C. Only a few stations around the world are designated for ground control of the satellite’s functions. Before the memory on A-O-10 gave out, these stations were able to leave short messages for each other via specially designated parts of the telemetry data stream set aside for this purpose. It worked well as a limited form of store-and-forward communications.

The UoSAT series have provided many with an opportunity to experiment with automatic data capture and telemetry decoding using mainly 1200 baud ASCII. With several passes a day from two satellites, UoSAT-OSCAR-9 and UoSAT-OSCAR-11, it’s easy for interested hams to find orbits that fit their operating schedules.

Store-and-Forward

In addition to the telemetry and bulletins, UoSAT-OSCAR-11 provided the first amateur satellite store-and-forward system for use by hams not actively involved as ground control stations. This DCE (Digital Communications Experiment) on U-O-11 has allowed global communications for designated stations active in the experiment and others with packet connection to them. The DCE shares downlink frequencies with the beacon and uplink frequencies with satellite command channels, so access must be limited.

Gateway stations have been created to allow other amateurs to pass messages through the system. These stations collect traffic from local and regional packet systems and send the messages to the satellite while downloading messages for local distribution. Harold Price NK6K in Redondo Beach, near Los Angeles, is one of the U.S. stations set up to forward traffic through U-O-11.

In August of 1986, Fuji-OSCAR-12 became amateur radio’s first packet radio satellite available for general use. Although power budget problems prevent long continuous operation, this offering from the cooperative efforts of the Japan Amateur Radio League, AMSAT and NEC, may be used by any licensed amateur with the desire and equipment needed to do the job. Due to the special equipment requirements, there aren’t many stations using this resource. This is both good and bad.

Two-sided Coin

On the good side, it keeps activity to a manageable level. The satellite can only handle a limited number of “connected” stations at a time. Imagine the confusion of a single digipeater with most of the United States able to hit it via line-of-sight. If this “digi” only provided bulletin board service most of the time like F-O-12, any reasonable communications would be uncontrollable, since everyone on the system simultaneously attempts to upload messages and read replies.

The bad news is that for many, F-O-12’s digital transponder is too much effort for too little return. Look back to the August 1987, Hamsats column. A station minimally equipped for FO-12 Mode JD (the digital mode) will have two-meter FM with reasonable antennas or power or both; 70cm sideband receive capabilities; with an automatic circuit for Doppler correction of the downlink frequency during the pass; a PSK modem hooked to a packet radio TNC (Terminal Node Controller); and a computer. Other niceties that make the system more manageable include an automatic computer-driven rotator system and high-gain circularly-polarized antennas with power and preamplifiers. It is also useful to have a way to capture all of the activity on a pass via recorder, disk storage or paper print-out.

A few hundred hams around the world have put the pieces together, but for others, the wait for packets from space continues.

P3C’s New Offerings

With the launch of Phase 3C, a new form of packet radio experiment from orbit will begin operation. Although access won’t be limited to select stations, the equipment requirements will keep away all but dedicated enthusiasts.

RUDAK (Regenerating Transponder for Digital Amateur Communications) uses 1269 MHz 2400-baud PSK for the uplink and 400-baud PSK on 435 MHz for the downlink. The exact frequencies are shown in Table 1. A complete RUDAK earth station will start with a PSK modulator; two-meter transmitter set up for the necessary bandwidth to handle 2400 baud; and a two-meter-to-24cm transmit converter with power amplifier. For receive, any good 435 MHz multi-mode rig will do. The antenna for 24cm should be at least a 45-element loop Yagi or a four-foot dish with circular feed. An 18-element crossed Yagi with preamp will work well on 70cm.

The heart of the system includes a computer, or terminal, and a modified TNC2 (or clone) with an appropriate demodulator connected to the modem disconnect jack inside the TNC. Like the FO-12 mods, nothing is available in commercial form prior to launch and subsequent proof that the system works in orbit. Empty circuit boards from AMSAT DL in West Germany or AMSAT UK in England can be purchased for those who can’t wait.

It will require serious effort to build a complete system. The majority of RUDAK users will likely be European satellite/packet experimenters until competitively-priced 24 cm radios and appropriate mods can be bought or constructed from kits available here in the states.

The Next Generation

A third UoSAT spacecraft, UoSAT-C, is currently under construction at the Engineering Research Unit at the University of Surrey in England. It is scheduled for launch as early as the end of this year on a Delta launch vehicle. The orbit will be circular and 500km high with a 43º inclination.

Among the many experiments on board is PCE (PACSAT Communications Experiment). Using a Mode J style system with two-meter uplink and 70cm downlink, the PCE will be available for amateur radio use, while additional frequency allocations may be used by VITA (Volunteers in Technical Assistance) outside the amateur bands. VITA activities will focus on message store-and-forward from remote areas to provide technical assistance and disaster relief. Access will be much easier since the system will use FM up and down with standard TNC’s and no external mods.

In a recent demonstration of the potential of a LEO (Low Earth Orbit) packet satellite operation to U.N. officials, AMSAT NA President, Rip Raportetta WA2LQQ used a complete station carried in an attach case. With external ground-plane antennas in place, the station could be used for reliable and portable satellite communications through a future PACSAT. Such a system would be used primarily for emergency use from remote locations.

Companies supporting the demonstration included Radio Shack with a new model laptop computer, Yaesu with the latest miniature HT’s, and Taso of Japan with their new ultraminute TNC, the size of a cigarette pack. The day for easy satellite packet operation may come soon.

<table>
<thead>
<tr>
<th>Mode B</th>
<th>Uplink:</th>
<th>Downlink:</th>
<th>General Beacon:</th>
<th>Engineering Beacon:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>435.420-435.570 MHz</td>
<td>145.975-145.825 MHz</td>
<td>145.812 MHz</td>
<td>145.985 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode JD</th>
<th>Uplink 1:</th>
<th>Downlink:</th>
<th>RUDAK up:</th>
<th>Downlink 1:</th>
<th>Downlink 2:</th>
<th>RUDAK down:</th>
<th>General Beacon:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1269.620-1269.330 MHz</td>
<td>144.425-144.475 MHz</td>
<td>1269.710 MHz</td>
<td>435.715-436.005 MHz</td>
<td>435.990-435.940 MHz</td>
<td>435.677 MHz</td>
<td>435.651 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode S</th>
<th>Uplink:</th>
<th>Downlink:</th>
<th>Beacon:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>435.601-435.637 MHz</td>
<td>2400.711-2400.747 MHz</td>
<td>2400.325 MHz</td>
</tr>
</tbody>
</table>

Table 1. Revised Phase 3C Frequency Plan
Comm operation to: UoSAT Spacecraft Engineering Research Unit, University of Surrey, Guildford, Surrey GU2 5XH, England.

Field Day

June is Field Day month and a satellite station in the woods or out on the beach is great fun. Satellites available for use this year may include RS-10/11, A-O-10 and F-O-12.

For RS-10/11 a simple station should do the job, but don’t cut corners. With the transponder full of stations looking for the bonus points for a satellite QSO, those with only a few watts to quarter-wave whips will have trouble getting a complete exchange through. For two-meters, use a small to moderate beam, and on ten meters a dipole will work fine. Hopefully, the satellite will be in Mode A only, since simultaneous Mode K operation, with its 15-meter uplink, will put a lot of earth-bound Field Day participants unwittingly in the transponder passband. Watch out for generator noise, the HF stations nearby, and take along a preamp.

AMSAT-OSCAR-10 should be in full sunlight by the end of June. Check the AMSAT nets for the latest schedule of operation. The satellite experiences a little eclipsing on almost every orbit in 1988, so strict adherence to posted schedules is important to preserve the batteries. Antennas for this satellite are not quite as portable compared to an RS-10/11 arrangement. A 14- to 20-element crossed Yagi with preamp for the Mode B two-meter downlink, and 25 watts to a 16- or 18-element crossed Yagi on 70cm should be sufficient. Some hams have made several contacts on Field Day with much less, but usually with a very experienced satellite chaser operating the station.

For F-O-12, the antennas used for A-O-10 will do the trick, but that’s assuming that the satellite is available for Mode JA, the analog transponder mode, for Field Day. Last year the satellite was scheduled for JD operation for the duration of the outing.

Get your club or group involved with a satellite Field Day station. It does not count as a transmitter in the final tally, yet it can make a lot of points if conditions are right. It is also a fine opportunity to demonstrate the fun of hamsat activity.

Table 2. Major Specification of JAS-1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch and Orbit</td>
<td></td>
</tr>
<tr>
<td>Launch date</td>
<td>20-45, 12 August, 1986 UTC</td>
</tr>
<tr>
<td>Launch by</td>
<td>NASA, with H-I rocket</td>
</tr>
<tr>
<td>Launch site</td>
<td>Tanegashima Space Centre, Japan</td>
</tr>
<tr>
<td>Orbit</td>
<td>Circular, altitude 1500km</td>
</tr>
<tr>
<td>Period</td>
<td>116 minutes</td>
</tr>
<tr>
<td>Inclination</td>
<td>50 degrees</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>50kg</td>
</tr>
<tr>
<td>Configuration</td>
<td>Polyhedron of 26 faces covered in solar cells</td>
</tr>
<tr>
<td>Size</td>
<td>400mm (dia) X 470mm (height)</td>
</tr>
<tr>
<td>Antennas</td>
<td>Receiving: A quarter Wave slanted monopole at the top of satellite</td>
</tr>
<tr>
<td>Transmitting</td>
<td>A transmatch at the top for analog signal, and a transmatch at the bottom for digital signal; both radiate circular polarized wave.</td>
</tr>
<tr>
<td>Power</td>
<td>Solar array: output 8.5W, nip silicon 2cm X 2cm</td>
</tr>
<tr>
<td>Storage Battery</td>
<td>NiCd, 6AH</td>
</tr>
</tbody>
</table>

OSCAR MODE-J FILTERS

PREVENT DESENSE OF YOUR DOWN-LINK RECEIVER

<table>
<thead>
<tr>
<th>Filter</th>
<th>I.L. @ 145 MHz</th>
<th>I.L. @ 435 MHz</th>
<th>Loss @ 435 MHz</th>
<th>Loss @ 145 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMF200-7</td>
<td>0.5dB</td>
<td>0.1dB</td>
<td>40 dB min</td>
<td>70 dB typ</td>
</tr>
<tr>
<td>PSF432</td>
<td>(for extra protection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 cm PreAmp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 cm Rx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDER NOW

See Uncle Wayne’s Books

HIGH PERFORMANCE

When you think of high performance, you should be thinking of "International Radio Inc." We Sell High Performance 8 and 10 pole Crystal Filters for most models of ICOM®, KENWOOD® and YAESU® Radios. We also sell High Performance radios with up to 16-poles of Crystal Filtering, installed. We can also install any factory changes, or changes from our Monthly Int'l Radio ICOM®, Kenwood® or Yaesu® NEWSLETTERS. Back issues available from 1979. We sell most Amateur Radio products. We also Sell IBM® Compatible XT-AT Computers, call or write for our latest brochure.

INTERNATIONAL RADIO, INC.

751 S. Macedo Blvd.
Port St. Lucie, FL 34983
(305)879-6868

THE WORLD Is Yours For Only $5.00

Yes, places you’ve never even heard of! Nearly 400 DX countries gleaned from the Awards Lists of dozens of IARU members—more countries than any other map available anywhere! ARRL’s DXCC map doesn’t even come close!

73 Magazine offers readers our giant DX Map of the World for the absurdly low price of only $6.00.

Order now....

See Uncle Wayne’s Books
T E C H T I P S

PC-Board Fabrication

W.C. Clonginger’s article, “EZ PCB’s,” was very interesting (73 Amateur Radio, August 1987). TEC-200 film is unquestionably the easiest of several PC board processes that I have tried, but it does have its limitations. I would like to share some of my PC-board fabrication experiences with other readers.

Be aware that thermal expansion of TEC-200 film while transferring an image to the copper surface tends to spread or smear the pattern. This effect is small and does no harm in most cases but could be a problem with large boards, especially those with very fine traces.

A far more serious problem is size change when photocopying. Most office copiers don’t make copies that are exactly 100 percent of the original size and of course the error is doubled when making a reversed image. I had to discard some etched and drilled boards because the holes didn’t even come close to matching pins on a long connector. Check dimensions on the final film before proceeding with the remaining steps. If the error is too large, try another copier machine.

With regard to etching, the author alludes to warming the etchant to speed up the process. As a matter of fact, heating the etchant to 90° to 115° is mandatory to achieve advertised etching times. I used a 250 watt heat lamp about 12 inches above the tray.

Continuous agitation to bring fresh etchant into contact with the copper is also essential. A motorized tray rocker is handy (though not essential) and numerous designs have appeared in amateur radio publications. Experimenters who make many boards may want to build a bubble etcher for even greater efficiency. Jim Stinson has described an easy-to-build etcher that utilizes a plastic refrigerator box and an aquarium air pump in QST, November 1984, page 45.

Finally, don’t “push” the etchant too far. Depleted etchant works slowly and produces poor results. Try to avoid “erosion craters” of average to large size boards, we use just enough etchant to cover the board and discard it after a single use.

This procedure may be modified when making several small boards or for bubble etchers, which generally require a larger volume of etchant.

Experimenters should not feel intimidated by these comments. Printed circuit board fabrication isn’t as difficult as it might appear and TEC-200 film is an excellent way to get started. Proceed carefully, making corrections if needed, and you’re likely to turn out a perfect board on your very first attempt.

Scott Hofer N7DFR
Federal Way WA

Flashlight Battery Hazard

Recently, an individual replaced the 1.5 volt, D-size batteries in a flashlight. The batteries were of two different brands and types (one general purpose and one alkaline battery). The flashlight was checked for operation and issued for use. Ten minutes later a worker returned the flashlight as inoperable. The inoperable flashlight was placed aside and a new flashlight issued. Twenty minutes later, the inoperable flashlight was checked for condition. The handle was too hot to hold and nearly burned the individual handling the flashlight. The individual then used a cloth to empty the batteries into a metal container so as not to damage the counter top. The plastic covering of the alkaline battery began to melt and was too hot to handle for 1.5 hours. The incident was reported to wing safety of an AF Form 457, Hazard Report.

Investigation of the incident found a warning on the alkaline battery which read: “Do not dispose in fire, recharge, put in backwards, mix with used or other battery types. May explode, leak or cause personal injury.” The incident was caused by the mixing of two different types of batteries. Alkaline and rechargeable batteries (nickel-cadmium) should always be used by themselves.

Normally, general purpose (carbon-zinc) and heavy duty (zinc chloride) batteries may be mixed together in the same flashlight or electronic component (portable radio, tape player, etc.). However, alkaline and rechargeable should always be used alone and never mixed with any other type of battery. Mixing of either of these two types of batteries could cause a hazard. For example, if a rechargeable battery and an alkaline battery is used in a flashlight, the rechargeable battery will probably lose its charge first. This may cause the alkaline battery to reverse its charge or leak.

The alkaline battery is an extremely powerful battery and should be handled carefully following the manufacturer’s instructions for the battery and the equipment being powered by the battery. If the spring in the battery compartment should tear the protective coating of the battery, it could cause the battery to short out and overheat. An alkaline battery that overheats can reach a temperature of 200 degrees Fahrenheit, which could cause burns when handling. For this reason, alkaline and rechargeable batteries should be handled carefully at all times.

Craig Bledsoe K4TXK
Fairbanks AK

A Quick HT Holder

An inexpensive dashboard mount for handheld transceivers can be made by attaching a colonial-style strap-iron drawer pull to the top of the dashboard with screws. Bend the ears slightly to compensate for the slant of the dashboard padding. Hook the HT’s belt clip over the handle.

Screw a small cabinet hook to the dashboard to hold the power and antenna cables out of the way of the HT’s front panel.

The HT can easily lift off the mount and use it anywhere in the vehicle. A number of holsters and mounts are available on the market for holding an HT on a vehicle dashboard. These are much more expensive than this simple handle, and none holds the HT any better. Also, they take up much more room on the dashboard when the HT is not present.

Charles E.Cohn KK4CS
Austell GA

Connecting Circuit

I have read with interest the 1987 issue on Packet. The circuit to connect an IC-2AT is interesting. However there is a much simpler way to do it.

I have been using an IC-02AT for more than a year with an MFJ-1270 and later with a PK-232. I obtained the information on how to connect my rig to the TNC from the local BBS VE7KIK. I don’t know who originated this connecting circuit. It’s Not Me! And I don’t take credit for it! But it works really well! One may have to experiment with the value of the resistance the recommended 33kΩ worked fine with my system. I don’t have any RFI problems and my TX Delay works fine at zero. I built the whole “circuit” in the DIN plug itself (isolating the leads to avoid shorts) as there is only a cap and a resistor.

I have seen this circuit on our BBS for months and I thought it was available on all BBS. As far as I know it works for the IC 2-AT as well as the 02-AT.

Patrick M. DuBois
Richmond, B.C. CANADA

Ten Meter Ground Plane Antenna

Now that the sunspots are returning and lower grades are ad-
mitt ed to ten meters, many people are shopping for suitable anti-
neas. My choice was to build a ground plane, using a matching output which was widely used (commercially) on two meters about twenty years ago, which some people call a Beta match.
Actually, it is a shorted stub in parallel with the feed point, using one of the radials as part of the stub. It is very tolerant and broad-band, which is important on such a wide band as ten. I made mine for 29 MHz, because I am interested in FM, but it works adequately over the whole band. Longer dimension would lower the frequency to your choice.

Radiator and radials are 8 2" long and the stub is a 19" piece of RG8U, with cover and braid removed, wrapped in a loose spiral around the radial to keep it from sagging. Make all of the elements adjustable so it can optimize for frequency and SWR. This is a grounded antenna, for DC and perhaps also for lightning!

Fig. 4. 10m ground plane antenna.

Fig. 5. Bracket for coax socket.

Improved J-Pole Match

I have liked J poles for years and built many of them, but never found a simple way to get a competitive flat SWR. Now I have. It looks a little unconventional in theory but it measures well. I made this one with square aluminum tubing, which is easier to work with mechanically, although not always easily available. If available, the mounting hardware is simply as the diagram shows. The main difference between this model and others is the length of the radiating portion, which is increased from 38" to 47 1/2" and allows a completely flat match at the design frequency. SWR readings are shown in Figure 2. Apparently, what we have here is a 1/4 wave element and a quarter wave matching section, at DC ground potential at the bottom, in the usual fashion. Remember that on these frequencies, lead dress of coax affects SWR as does proximity to other objects. Adjust installation with a meter for best results.

Materials:

- two pieces 3/4" square aluminum tubing, one 19 1/4" for stub, one at least 7' long, for the radiator and main support, drilled for 8-32 bolts as indicated.
- aluminum strap, 1/4" x 2 1/2" drilled one 7.16".tr.
- insulating bar, 2 x 2 1/2" drilled one 7.16".tr.
- stainless steel hose clamp small bracket to support coax socket (see drawing)
- short piece of #14 wire between socket and stainless steel strap, eight 8-32 bolts, nuts, and lock washers

Wm. Bruce Cameron

Temple Terrace Fl.
Super ComTech 64

Programmable Repeater Controller/HF & VHF Remotes/Autopatch

- **VHF** (140-175)
 - No Hole
 - Easy to Mount
 - Rugged
 - Superior Performance
 - Radiator Snaps On and Off
 - Competitively Priced

- **UHF** (420-520)
 - 3 db gain
 - No Hole
 - Easy to Mount
 - Rugged
 - Superior Performance
 - Radiator Snaps On and Off
 - Competitively Priced

- **Cellular/Trunking** (800-895 MHz)
 - 3 db Gain
 - No Hole
 - Easy to Mount
 - Rugged
 - Superior Performance
 - Radiator Snaps On and Off
 - Competitively Priced

Look at our MOBILE MARK

"ON WINDOW" Line

VHF
- 1000 (10 digit/16) & 2500 (5 digit)
- 300 watt V/TG & 2 tone input
- 50 watts output
- Individual access or pr. lines
- Direct mode & rev. or pr. page
- Scan & Full duplex (Rev level tool)
- Security mode TT feedback circuit
- Store your list in memory
- Reverse Patch all modes
- Call waiting/quick dial & reset
- Touch tone
- Professional

UHF
- 4200 (10 digit/16) & 2500 (5 digit)
- 1000 watt V/TG & 2 tone input
- 50 watts output
- Individual access or pr. lines
- Direct mode & rev. or pr. page
- Scan & Full duplex (Rev level tool)
- Security mode TT feedback circuit
- Store your list in memory
- Reverse Patch all modes
- Call waiting/quick dial & reset
- Touch tone
- Professional

Super ComTech C55-45
- $39.95
- 400+905 US only (incl. computer interface & display cables & manual)
- (Single or version inc. in request)

Super Radiator Snap On and Off
- $149.95
- Easy to Mount
- Rugged
- Professional
- Broad Bandwidth
- Small Size
- Competitively Priced

Cellular/Trunking
- 3900-3970 MHz
- 3 db Gain
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Priced

MOBILE MARK, INC.

COMMUNICATIONS ANTENNAS

Brings imagination and innovation to antennas and has been since 1948!!

Info-Tech RTTY Sale!

The Info-Tech M-6000 is the most powerful RTTY decoder you can buy. Simply connect to your receiver's audio output and add a video monitor to experience the exciting world of advanced RTTY monitoring. Too many features and modes to list here. Write for a free spec sheet and a free pamphlet titled: Listening to RTTY on Your Shortwave Radio. Reg. $849.95 On Sale $50 Off. Only $799.95

Info-Tech FAX Sale!

The Info-Tech M-800 is the inexpensive way to receive high resolution facsimile prints on your compatible plain-paper dot matrix printer. There are many FAX stations on SW and satellites transmitting maps, weather information, marine charts and press photos. Write for a free spec sheet, list of compatible printers and a free pamphlet titled: Receiving Facsimile on Your Shortwave Radio. Reg. $349.00 On Sale $50 Off. Only $299.00

Universal Radio

1280 Aida Dr. Dept. 73
Reynoldsburg, OH 43068
Toll Free: 800 431-3939
In Ohio: 614 866-4267

Please add $8.00 for UPS shipping. Visa, Master-card, Discover and checks accepted. New 70 page SWL catalog sent with each order or $1.00 without order.

NAVAL ELECTRONICS, INC.

5417 Jetview Circle • Tampa, FL 33614
Phone: 813-885-6091 • Telex: 289-237 INAVUR

CIRCLE 163 ON READER SERVICE CARD
The page contains various advertisements and notices, including information about a computer magazine, products for sale, and services offered. Here is a breakdown of the content:

- **QSLS TO ORDER:** Variety of styles, colors, card stock, W4BPD QSLs, PO Drawer DX, Cordova SC 29039.
- **THE DX'ERS MAGAZINE** Up-to-date, informative, interesting. Compiled and edited by Gus Broming W4BPD. Send for free sample and subscription information today. PO Drawer DX, Cordova SC 29039.
- **QSLS CARDS—Look good with top quality printing. Choose standard designs or fully customized cards. Better cards mean more returns to you. Free brochure, sample guarantee.**
- **LEARNS CODE on your IBM-PC (or compatible) or Commodore C64/128. CODE-PRO takes you from no knowledge to competent, $10 plus $2 S&H.**
- **COMMODORE REPAIRS** We are the largest Authorized Service Center in the country and we repair your Commodore computer within days. (Our prices are low; eg: C64/$39.95 complete...)**
- **SUPERFEST M Morse Code SUPREASy** Subliminal cassette. $10. LEARN MORS CODE IN 1 HOUR. Amazing new supereasy technique. $10. Both $17. Moneyback guarantee.
- **BARSLEY INSERTS:** ICOM BP2 $17.95, BP3 $19.95, BP7 $30.95, BP8 $30.95, Kenwood PB24 $19.95, PB25/25H $24.95, Zenith 300 $19.95, Tempop 114/200 $21.95, 521,2.5,15,150mAh $22.95, Tem Audio $24.95, Santeck KT165 $19.95, KT202 $21.95, Rebuilding: (Send your pack) Yeasu FNB3 $34.95, FNB4 $37.95, Standard: BP11 $27.95. Install inserts above: add $3.00. SASE Info. In PA add 6%.
- **athing Center, Operates daily and Saturday evenings. Medically oriented amateurs (physicians, dentists, veterinarians, nurses, therapists, etc.) invited to join.** For information, write MARCO, Box 73/5, Acme, PA 15660.

Barter 'N Buy

Barter 'N Buy advertising must pertain to ham radio products or services.

- **Individual** (noncommercial) 25¢ per word
- **Commercial** 60¢ per word

Prepayment required. Count only the words in the text. Your address is free. 73 cannot verify advertising claims and cannot be held responsible for claims made by the advertiser. Liability will be limited to making any necessary corrections in the next available issue. Please print clearly and type (double-spaced).

No discounts or commissions are available. Copy must be received in Peterborough by the first of the second month preceding the cover date. Make checks payable to 73 Magazine and send to:

Hope Currier
Barter 'N Buy
73 Magazine
WGE Center
Peterborough NH 03458

Barter 'N Buy

CHASSIS AND CABINET KITS SASE, KSWK, 5120 Harmony Grove Road, Dover PA 17315.

CALL SIGN BADGES: Custom license plate holders. Personal, distinctive. Club discounts. SASE, WBGND, Box 750, Clinton MD 20735. 301-246-7304.

WANTED: Military radios and related equipment circa WW2. Collections or single items. KA1GON, 617-396-9354 or write, 501 Mystic Valley Pkwy, Medford MA 01955.

QUALITY QSL CARDS and Rubber Stamps: Send 39¢ postage or SASE for samples. New stock designs or custom cards from your black ink artwork. Sand Dollar Press, P.O. Box 30726, Santa Barbara CA 93106.

ROSS SS$ USED NEW SPECIALS: KENWOOD TR-9500 $499.99, R-9990 and T-5939B $549.99, TS-700 $399.90, YEASU YO-501P $379.90 and YO-100 $169.90, FP-75/76HD $199.90, E.TO 76 $1299.90 $1295.90 76AW3 $887 $1999.90 looking for something not listed?? Call or write, we have over 300 used items in stock. MENTION AD prices cash. F.O.B. Preston. We close at 2:00 Saturdays and Mondays. ROSS DISTRIBUTING COMPANY, 78 South State, Preston ID 83263. 208-852-0830 P.O. Box 234.

C00DATING STATION and TOOLS

- **SASE, CPRC-26 military Manpack Radio, 6 meter FM, with antenna, crystal, handset: $22.50, $42.50/pair, $97.50/six. Military-issue TS-352 VoltOhm/Multimeter, leads, manual: $12.50. $4.50/pc piece shipping, $9 maximum. Baytronics, Box 591, Sandusky OH 44870.**

European and American. Free catalog. Robert W. Mink Import-Export, Box 64275, Fair Haven NJ 07704. 201-758-8388.

CHASSIS AND CABINET KITS SASE, KSWK, 5120 Harmony Grove Road, Dover PA 17315.

CALL SIGN BADGES: Custom license plate holders. Personal, distinctive. Club discounts. SASE, WBGND, Box 750, Clinton MD 20735. 301-246-7304.

WANTED: Military radios and related equipment circa WW2. Collections or single items. KA1GON, 617-396-9354 or write, 501 Mystic Valley Pkwy, Medford MA 01955.

QUALITY QSL CARDS and Rubber Stamps: Send 39¢ postage or SASE for samples. New stock designs or custom cards from your black ink artwork. Sand Dollar Press, P.O. Box 30726, Santa Barbara CA 93106.

ROSS SS$ USED NEW SPECIALS: KENWOOD TS-140S $799.90, TS-440SWAT $1199.90, TW-4100A $499.90, TM-2530A $394.90, AEKA 484/WHFM $199.90, MP-64 $99.90, MP-20 $79.90, ICM-IC37A $409.90, IC-471/AG1-A $759.90, IC-471/HW AG-35 $969.90, IC-320A $529.90, 64AT $349.90, IC-290H $489.90, YAESU FT-270R $309.90, FT-772R $769.90, FT-776R $1499.90. ALL T.O. (LIMITED TIME OFFER) LOOKING FOR SOMETHING NOT LISTED?? CALL OR WRITE. Over 8700 ham-related items in stock for immediate shipment. Mention ad. Prices cash, F.O.B. Preston. We close at 2:00 Saturdays and Mondays. Ross Distributing Co., P.O. Box 234, 78 South State, Preston ID 83263. 208-852-0830.

No discounts or commissions are available. Copy must be received in Peterborough by the first of the second month preceding the cover date. Make checks payable to 73 Magazine and send to:

Hope Currier
Barter 'N Buy
73 Magazine
WGE Center
Peterborough NH 03458

73 Amateur Radio • June, 1988 83
Hams Around the World

John TG9VT operates a "no-beacon" mailbox on 14085.625 kHz mark frequency at 74 baud. Access QUAEMAIL in the daytime. At night, he's on AMTOR on 14073.500 kHz, with selcall TGVT. He runs an ICOM 751 to an Alpha 78 no-tune amp, feeding a 4-element quad.

Chod Harris VP2ML
PO Box 4881
Santa Rosa CA 95402

RTTY DXing

The recent RTTY equipment revolution has dramatically improved the sport of RTTY DXing. Once the neglected stepchild of DX, RTTY DXing is rapidly entering the main stream of the pursuit of new countries.

With the replacement of the noisy, troublesome Model 19 by silent, smoothly-operating electronics, many more amateurs have joined the digital DX crowd, including many stations in other countries.

An important benefit of the shift to electronics has been the addition of RTTY gear to major DXpeditions. Clipperton FO0, Peter I 3Y1, and Howland Island KH1 are just a few of the many DXpeditions that packed RTTY gear as well as SSB and CW equipment.

The portability of modern RTTY gear has also led to a new phenomenon: the RTTY mini-DXpedition. Many countries, especially in the Caribbean, had seen little or no RTTY activity until a few short years ago. Now vacationers heading for some sun can pack some RTTY gear along with their portable transceivers, and generate some fierce digital pile-ups from their seaside QTH.

The increasing popularity of RTTY contests, especially the new CWQWW RTTY test at the end of September, has prompted contest operators, such as the HDBX digital trip to the Galapagos Islands in 1987. These DXpeditions greatly increase the number of countries available on the digital modes.

Getting Started

RTTY DXing shares many aspects with SSB and CW DXing. A DXer needs a station of at least average capabilities, better if possible, including a good rig and antenna farm. It is more difficult to copy ("print") weak stations on RTTY than on SSB or CW, so a good station proves more important in digital DXing than in other modes. Ideally, the rig should be very stable, as even a slight frequency change can garble transmissions. The ability to use a narrow CW filter while in the lower sideband mode is another DXing advantage. The rig should also be capable of continuous transmissions for extended periods. RTTY demands a great deal of stamina from a rig and its power supply.

RTTY DXers will probably want an amplifier, for the reasons given above. Again, continuous duty is a requirement, so amps with marginal power supplies may not be up to the task. The Drake L4B, Henry 2K, and Alpha amps are good choices.

There's a wide choice of computer and dedicated RTTY gear. I use a simple Commodore C-64, and AEA Pakratt PK-64 with HF modem, for example. In any case, read the instructions carefully, and master the QO keys, callsign insertion, receive and transmit buffers, and all the other features of the equipment before trying to chase rare DX.

The single most important piece of equipment in RTTY DXing is exactly the same as that in other DXing: your ear. DXing is at least 90% listening (or watching). Almost all HF RTTY contacts occur in very limited band segments, with 14075–14100 kHz being the most popular. With increasing sunspots, check out the corresponding band segments on 10 and 15 meters, as well as the low band spot DX frequencies of 3590 and 7040 kHz. RTTY is permitted on the raw WARC bands: tune around 10145, 18105, and 24925 kHz.

Coming RTTY DXers will make the most headway toward digital DXCC by scanning 14075–14100 kHz on a regular basis. In addition to listening for DX signals, the DXer should also print QSOs from some of the better known, more active DXers on the band. JA1ACB, TG9VT, VK2SG, W3KV, and KT1N are good stations to copy, as they are usually informed about current RTTY DX activities.

The print publications contain useful RTTY DX information as well. The RTTY Journal includes a DX column by KT1N with lots of DX activity reports. And the weekly DX newsletters often have RTTY reports.

Don't neglect the rest of the band while concentrating on the RTTY segment. By listening to signals on the rest of 20 meters, for example, a DXer can get an idea of the propagation paths and band openings. Many rare RTTY DX stations dislike pile-ups, and tend to answer CQs. So when the band is open to that particular part of the world, a directional CQ might put a new country in the RTTY log.

As with any DXing, keep the calls short and to the point. Avoid sending strings of RYS or repeating the DX station's callsign. Try "1 x 5" calls—the DX station's call once, followed by yours five times. And listen, listen.

RTTY DXing offers one feature not found on the other modes: It is entirely possible to have a valid contact with a station when no operator is present! Some DX stations maintain automatic "mail box" stations and message centers. These stations will log a call and respond to it without need of an operator. A DX RTTYer can confirm TG9VT when John is not in the shack. Many of these RTTY bulletin boards can provide DX information, as well as lists of other such automatic stations. VK2AGE on 14073 kHz AMTOR has a weekly DX bulletin compiled by VK2SG, for example.

The RTTY DXer will also want to make good use of RTTY contests, especially the British Amateur Radio Teleprinting Group (BARTG) spring test, and the CWQWW RTTY fall activity. The relaxed pace of the RTTY contests is a refreshing change from the feeding frenzy of SSB tests, but there's still plenty of excitement available for the digital DXer. Be sure to check out the rules and the scoring systems.

(I'm still trying to figure out my BARTG score.)

The rapid increase in sunspots and the increasing availability of RTTY gear and stations means digital DXing will be great in the next few years. Why not give it a try? See you on the bands.

LASHE's Commandments for QSL Managers

1. By accepting to act as a DX-station QSL manager, the volunteer assumes the responsibility to ensure that everyone who wants a card gets it in one way or another.
2. All cards received must be checked against the log copies received from the DX station, and a QSL card should be made out immediately and returned to the DX station.
3. One of the services of a national society is to provide a QSL bureau for its members. The volunteer should maintain the membership of his national society (IARU member) to ensure proper receipt of QSLs via the bureau.
4. The volunteer should always make sure that the society's bureau is aware of the fact that he is handling QSLs for a station in a difficult position to the world, to ensure smooth cooperation from all parties concerned in his own country.
5. If the national QSL bureau is not automatically accepting QSLs for, or on behalf of, overseas DX stations, the volunteer should take the necessary actions to obtain acceptance before undertaking the responsibility to act as someone's QSL manager. This is very important, as the bulk of the world's QSLs are sent via bureau.
6. For prompt handling of QSL cards, many avid DXers are prepared to pay postage plus the service of a direct QSL, card by air or surface mail. If the volunteer is prepared to provide this service, he should make sure that this information is provided by the DX station, as well as being published in the various DX news bulletins and Ham magazines. A good idea is to advise how many IRCs (International Reply Coupons) are required for air or surface mail, to the volunteer. IRCs cover the cost of surface postage only. He should make it known also if SASEs (Self Addressed Stamped Envelopes) are required.
7. For direct replies, the volunteer should never demand more than needed for actual costs. QSL managers are expected to do their work out of dedication and pleasure. He should be prepared to accept a small loss, which will be compensated to some extent by those people sending excessive postage. Being a QSL manager, however, is most certainly a non-profit operation.
8. Remember: Being someone's QSL manager is a responsibility—not an ego trip!
Amazing Australia

Many nights, there are so many clear signals coming in from VK-land (Australia) that some Californians would say, "VK hardly counts as DX."

Many East Coast hams also find Australia fairly easy to work. Even hams in Europe, who are located the farthest from Australia on this planet, do not include VK in their list of "100 most wanted countries."

But Australia, the world's largest island, is certainly one of the world's most fascinating countries. For starters, it ranks in the top ten nations in a startling 51 features. Some Australians are considered to live with the best physical quality of life and have the most graduates and pupil-to-teacher ratio. Australia has the most new houses built, passenger cars, radio receivers, hospital beds, and airfields per capita. It is also proud of the civil aviation flying distances, advertising expenditures, registered industrial designs, and magazines. And the Australians consume more meat, sugar and rubber per capita than any other country.

Intriguing Contrasts

Within these rankings, reported in New Book of World Rankings by George Kurian, there are some intriguing contrasts. For example, Australia has the world's highest literacy rate for both males and females, yet it also tops the world in rates of rape and other sex offenses. Despite Australia's high ranking as seventh on an index called "New Social Progress," it ranks second in the world for juvenile crime.

Even though Australia is considered to be among the top ten nations of the world in having the best physical quality of life, many of its citizens apparently feel a need to escape from that desirable existence by being one of the leading countries for drug-related crimes.

Population Stats

Many Americans know Australia is about the same size as the continental United States. But some people are surprised to learn that Australia's population is less than 16 million, nearly a million fewer people than in Texas!

There are 17,207 hams in Australia, smaller than the ham population of Pennsylvania. Australia has one ham per 916 residents, compared with one ham for every 529 residents in the United States.

Amazingly, one of every four residents in the nation live in Sydney. Sydney is the country's most populated city, with about 3.3 million people. Australia's capital, Canberra, has about 250,000 residents, roughly the same as Rochester, New York, or Fresno, California.

The unusual facts about Australia, some of which were reported in the February 1988 edition National Geographic, seem unending. It is the only nation that is a continent. Its largest lake, Eyre, is 3,600 square miles, about 1.5 times as large as Delaware — it is bone-dry almost all of the time. Australia has ten times as many sheep as people. It is one of the least densely populated countries in the world with only an average of only five people per square mile. Voting is compulsory. Nearly all of the world's opals come from Australia. And its per-capita income is one of the highest in the world at $11,200 equivalent in US dollars.

Man-made and Natural Wonders

Not statistics, but sights are Australia's major attractions. They range from impressive man-made drama to spectacular wonders of nature.

Pictures of Sydney's unique Opera House show the tops of its curved walls flowing inward to become roofs, uninterrupted by the 90-degree angles. Those walls soar up to 230 feet high, about the height of a 21-story building. The structure is covered with 1,056,000 white tiles made in Sweden. To some people, the building looks like billowing sails of a beautiful ship, to others it looks like a pile of broken eggs.

But the Opera House is much more than its name suggests. Indeed, opera is not even its major production. The structure includes five main performing halls, with the Opera Theater being the second largest in the building. Even though the Opera Theater seats 1,547 people and has another impressive wonder of nature in Australia is the world's biggest collection of coral in the world, the Great Barrier Reef. It extends for 1,250 miles along the country's northeast coast, lies about six to 62 miles offshore and ranges from 10 to 150 miles wide.

The reef, along with Australia's many other superior beaches, draw many locals to become almost year-round swimmers, beach loafers, snorkelers, skin divers, shell hunters, and sun-worshippers supreme. But such pleasures give Australians the unenviable record of suffering from the world's highest rate of skin cancer.

Another spectacular wonder of nature is Ayers Rock, the largest rock in the world. It is located in the middle of the continent with the nearest town of Alice Springs only 280 miles away. Ayers Rock is 1,143 feet high, 5.5 miles around, set virtually alone in a broad, sandy plain. The rock is open for tourists to climb. The Aborigines call it "Uluru" and consider it a very sacred site since many of their legends center on it.

Australian Aborigines have wandered the continent for at least 40,000 years. Anthropologists estimate that about the time European ships reached Australia, the Aborigine population was more than 300,000. Today there are only about 50,000, plus 150,000 part-Aborigines.

Happy Birthday!

This year, Australia is celebrating its 200th birthday. On January 26, 1788, after an eight-month passage from London, a fleet of eleven ships arrived in what is now Sydney Harbour. The vessels had set sail from London with 776 convicts. Britain had decided to reduce crime by shipping convicts to Australia. That continued for 80 years and by the time such banishment was outlawed, 162,000 criminals had been sent to Australia.

Many outsiders find the strangest feature in all of Australia is the language they speak. It is English but not the brand known to Americans. It's fair dinkum (absolutely true) that if you're really up a gum tree (in a quandary) for a QSL card from Australia, give it a burr (try it) by calling "CQ VK-land" — chances are you'll soon be hearing a copper (friend) from Down Under answering, "Goo'dy mate!"
73 Advertiser's Product Index
A convenient service for our Readers.

<table>
<thead>
<tr>
<th>RS#</th>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFIERS</td>
<td>Barker and Williamson</td>
<td>63</td>
</tr>
<tr>
<td>99</td>
<td>Communications Concepts</td>
<td>71</td>
</tr>
<tr>
<td>263</td>
<td>Dentron</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>ICOM</td>
<td>Cover II</td>
</tr>
<tr>
<td>111</td>
<td>Yaesu</td>
<td>Cover III</td>
</tr>
<tr>
<td>165</td>
<td>Yaesu</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTENNAS, TOWERS, CABLE AND ACCESSORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
</tr>
<tr>
<td>89</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>236</td>
</tr>
<tr>
<td>302</td>
</tr>
<tr>
<td>303</td>
</tr>
<tr>
<td>304</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>263</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>291</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>269</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>167</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>183</td>
</tr>
<tr>
<td>68</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>319</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>252</td>
</tr>
<tr>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOKS, MAGAZINES, QSL CARDS, TAPESS, COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>329</td>
</tr>
<tr>
<td>271</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>157</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>339</td>
</tr>
<tr>
<td>296</td>
</tr>
<tr>
<td>235</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRODUCT PROCESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISC ACCESSORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
</tr>
<tr>
<td>321</td>
</tr>
<tr>
<td>251</td>
</tr>
<tr>
<td>344</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>291</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>336</td>
</tr>
<tr>
<td>187</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RETAILERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>187</td>
</tr>
<tr>
<td>323</td>
</tr>
<tr>
<td>292</td>
</tr>
<tr>
<td>254</td>
</tr>
<tr>
<td>332</td>
</tr>
<tr>
<td>73</td>
</tr>
<tr>
<td>298</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER HARDWARE AND SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>338</td>
</tr>
<tr>
<td>343</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>311</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>324</td>
</tr>
<tr>
<td>249</td>
</tr>
<tr>
<td>339</td>
</tr>
<tr>
<td>175</td>
</tr>
<tr>
<td>322</td>
</tr>
<tr>
<td>153</td>
</tr>
<tr>
<td>152</td>
</tr>
<tr>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PACET PACK EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
</tr>
<tr>
<td>239</td>
</tr>
<tr>
<td>291</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HAMFESTS, CLUBS, AND GATHERINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>341</td>
</tr>
</tbody>
</table>

88 73 Amateur Radio • June, 1988
QEP's NOT TOO LATE SALE
Your not too late, copper price.

WILL drive up the price of coax even more. Better buy it NOW.

- Belden 9913 low-loss 500 ft Roll $200.00 or 42c/ft.
- Belden 8214 (foam) 500 ft Roll $165.00 or 36c/ft.
- Belden 8267 RG-213 500 ft Roll $200.00 or 42c/ft.

AMPHENOL SPECIALS
PL-239 silver (mica filled) $1.25
UG-21D 'N' (fitted for 9913) 3.50
UG-23D 'N' female cable end 3.95
UG-29A 'N' Barrel (jack-jack) 4.50
UG-578 'N' Barrel (plug-plug) 5.20
UG-58A 'N' Chassis receptacle 3.50
UG-63A 'N' Plug to UHF Jack 8.00
UG-146 'N' Jack to UHF Plug 6.95

Copper-clad 14 ga. (7x22) 7c a foot (any length)
Identical to Belden 8000

VISA & MASTER CARD ACCEPTED
SHIPPING IS ADDITIONAL
Call TOLL FREE
1-800-USA-9913
in NJ 201-887-6424
110-4 Route 10
East Hanover
N.J. 07936
*** SAME DAY SHIPPING ***
TXN JIM N2GKW & BILL KABQEP

FEEDBACK

In our continuing effort to present the best in amateur radio features and columns, we've decided to go directly to the source—you, the reader. Articles and columns are assigned feedback numbers, which appear on each article/column and are also listed below. These numbers correspond to those on the feedback card opposite this page. On the card, please check the box which honestly represents your opinion of each article or column.

Do we really read the feedback cards? You bet! The results are tabulated each month, and Larry (our editor in chief) takes a good, hard look at what you do and don't like. To show our appreciation, we'll draw one feedback card each month and award the lucky winner a free one-year subscription (or extension) to 73. To save some money on stamps, why not fill out the Product Report card and the Feedback card and put them in an envelope. Toss in a damming or praising letter to the editor while you're at it. You can also enter your QSL in our QSL of the Month contest. All for the low, low price of 25 cents!
Notes From FN42
Not a week passes here at Wayne Green Enterprises without at least one exotically-stamped envelope arriving, bearing within a request for a free subscription to 73 Amateur Radio. Many of the requests are made by individuals who have thought to themselves, gosh, they print tens of thousands and probably have hundreds left over. It would cost them only the postage. . .

It doesn't work that way, of course. Magazine prices are set to cover all the costs of production and distribution not covered by advertising income. One item of expense: courtesy subscriptions for a limited number of individuals (or organizations) who have earned them in one way or another or whose subscriptions may lead to greater circulation. The magazine industry is, after all, supposed to be profit-making.

In the amateur radio field there is a nonprofit element, however. It can never be preached too often that amateurs have public service responsibilities, and are licensed with the understanding that they will meet their obligations. 73 Amateur Radio, therefore, does give a number of free subscriptions on behalf of those obligations. It is our hope that amateurs and amateur organizations, particularly in international terms, will also assist hams who, for instance, live in areas or under circumstances where outside help clearly could make the difference between healthy and growing ham activity and perhaps no activity at all.

Underwriting the cost of a subscription to the amateur radio magazine of your choice is one example of assistance that can be given, and from time to time you will see in these pages, an opportunity to do this. See the Nepal item below. In the case of the Republic of China, we are sending 9N1MC a one-year subscription.

Australia. LATE WORD. EXPO88 plans (see April issue) drastically changed—no ham activity at the site, for example. Double check all information before counting on it.

Roundup
Correction. In the box on page 94, February issue, the two addresses in Portugal should be REP—Re Rede dos Emissores Portugueses, Rua D.Pedro V, 4-4 Lisboa, 1000 Portugal (and the reciprocal license fee is around US$30); and Direccao dos Servicos Radioeléctricos, Praça Francisco Sa Carneiro 13, Lisboa, 1000 Portugal.

Israel. Want to learn the international (UN approved) language, Esperanto? Reportedly it can be learned in one-fifth to one-twentieth the time needed for a typical national language. Or, as the Esperantists say, intelligenta persono lernas la lingvon Esperanto rapide kaj facile, Tune in Naftali 4Z4RM’s weekly magazine on-the-air link between 50 meters and VHF repeaters in the north and south of Israel, where Rami Shlaim 4Z4LX will give you a ten-minute lesson. (See the October 1987 international column for his picture.) It also is taught at the Tel-Aviv Youth Center, the home of the 4X4HQ radio club. There is a 350-plus-member International League of Amateur Radio Esperantists (ILERA) which puts out a quarterly magazine, each issue edited in a different country, and has an annual international contest in Esperanto on the HF bands on the third weekend in November. Last year 162 stations in 22 countries participated. Rami represented Israel at last year’s 72nd conference of the Universala Esperanto Asocio (UEA) in Poland where 80 countries were represented, of which 18 had representatives on the Esperanto ham organization.

Republic of Korea (South Korea). Our special Olympic correspondent, HLSAP (see the international column for November, 1987, page 96), wrote a few months ago that he was QRL, following duty with some 30 others as radio men for the Olympic Practice Yacht Regatta in the Bay of Suyong, off Pusan. He will be providing the same kind of volunteer service for the Seoul Olympic Yacht Regatta. Frequencies have been allocated for the Olympics (see box), and we hope to have more details from Byong-joo Cho soon. If you plan to go to Seoul (the Sports Complex and Olympic...
Park are 10 miles from the city, just over the Han River) you’d better make arrangements yesterday. A recent report said that there are about 32,000 tourist rooms in Seoul, and 240,000 visitors are expected.

Nepal. Krishna B. Khatry 9N1MC, Chief Engineer for the Nepalese Ministry of Communications, writes that he is “trying [his] best to promote amateur radio in this country.” [To help, we are sending him a courtesy subscription of 73. The Kingdom of Nepal (Sri Nepal Sahar), about the size of North Carolina, has a population of about 17.5 million; Kathmandu, 125,000, is the capital. Virtually closed to the outside world for centuries, it now is linked to India and Pakistan by road and air, and to Tibet by road.—Ed.] He wrote of the DXpedition license granted to the Japan UNICEF Ham Club of Hokkaido for a ten-day period last December, as part of the celebration of the 43rd birthday of His Majesty, King Birendra Bir Bikram Shah Dev, of Nepal. Station 9N7YDY was operated from Kathmandu. Seven operators were authorized: JA7 BOB and XBG, J8A OW and RUZ, JH1LKH, JH7WKU, and JN1XWO.

Sweden. The proposed Universal Permit Application looks good to Rune Wande SM8BCP and Erik SM8AGD, and they suggest two additions: a place on the form where the applicant can suggest the call he would like to have assigned to him. This can be helpful to some countries where uncertainty is felt about the call to assign. “We have experienced very strange calls in some cases.” And: “If there is a host or a contact person in the country one wants to work ham radio from, it [could break] red tape in many cases.” [See Zimbabwe, below, where 8000 km (5000 miles) away, give or take a few hundred, the same bright idea struck. . . .]

Zimbabwe. Bernard C. Herring Z21EI also endorses our Universal Permit Application as proposed. He makes the excellent suggestion [and see Sweden, above!] that in some countries the whole matter could be smoother for everybody if the application were made for the use of the gear of a resident amateur and, again in some countries, for that use to be under the supervision of the local ham. This could be made easier yet if a local amateur radio organization endorsed the idea and became the contact point for the prospective visitor looking for a local sponsor. [A list of such countries can be added to the Universal Permit Application kit if enough national groups agree to sponsor visitor assistance plans. Let us know!]

OLYMPICS FREQUENCIES

<table>
<thead>
<tr>
<th>Mode</th>
<th>HF, 50 W, CW, SSB, RTTY: 3500-3550, 3790-3800, 7000-7100, 14,000-14,350 kHz; FM also: 28,000-29,700 kHz.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VHF, 25 W, CW, SSB, RTTY, FM: 50-54, 145-146 MHz; same for UHF, 435.075-440.000 MHz.</td>
</tr>
</tbody>
</table>

Photo B. Nepal’s 9N1MC, center, with (L to R) Yasuo Makiyama JA7BOB, Tetsuya Sakabe JA7XBG, Lloyd Colvin W6KG (who operated 9N5QL with W6QL, separately), Masakazu Sezaki JN1XWO, and Toshikazu Kawanishi JA8RUZ.
• Sandrine FA1MSG is the youngest radio amateur in France (13 the day of her exam)! Her A license doesn’t allow many international QSOs, but this is only a beginning!
• This year, our national license is extended to Austria, Liechtenstein, Monaco, Netherlands, Norway, Switzerland, and West Germany, with Belgium possibly next. (With reciprocity, of course.) This may be the beginning of a Europe-wide license, an important step, and maybe even more, why not?
• Packet radio is growing rapidly here. The “hexagon” is now covered by more than 80 repeaters (144,675). Only in the west (the IN square) is there relative inactivity. There are now over 1,000 packetteers and more than 80 BBS’s, on the same frequency. F6ABJ’s Paris BBS is also on 145.275 because of heavy activity. The live-wire group ATEPRA (F66BV, F6ABJ, etc.) has been promoting this new activity.

During the last congress, in Provins, the following standardization was recommended for the SS IDs:
 0—operator . . . 1—BBS . . . 3—QRV 24h/24 with operator . . . 4,5,6—repeater, without operator . . . 7—portable . . . 8—portable without operator . . . 9—mobile, portable . . . 10–13—reserve . . . 14—emergency . . . 15—reserve.

“Gateway” is a very ambitious project by F6ABJ, with an HF station near Paris (7-element beam, 14 MHz, 30 meters ASL) connected with a UHF link to the capital, to make easier intercontinental packet QSOs.
• Chuck AB4Y has left France after a too-short stay here. He was the founder of PIRA, the international amateur radio club in Paris which is so helpful to travelers to Paris. Monthly meetings are held in the famous restaurant, Jenny. Many thanks, Chuck, and a tres bientôt!

HONG KONG
Phil Weaver VS6CT
10A Bonaventure House
91 Leighton Road
Hong Kong

[This is Part 2 of a two-part report; Part 1 was in the April issue—Ed.]

Our Class B licenses continue to expand, and at the end of 1987 we had 373. With 190 Class A, this meant a total of 563, and expansion will continue as exams are now going to be given in Chinese. Until now they have been the same as those given in the U.K. by the City & Guilds of London, in English only.

As 10 meters becomes more active, I am afraid you will be hearing a lot of AM interference from illegal stations in Asia. Hong Kong is not alone in having this problem, where the taxi drivers have discovered a brand new world of communications amongst themselves to the detriment of other amateurs. The two main frequencies they use are 28.405 and 28.515 kHz. The local telecommunications authorities are well aware of the problem and, in conjunction with the police, catch the occasional transgressor, but the problem is endemic, and unless we can get complaints from around the world, there is little more that will be done. The problem exists in Malaysia and Indonesia also, and when the band is open to that part of the world, you will well and truly know about it!

Because of my new job (in charge of the Port of Hong Kong Communications Center—see Part 1—Ed.) I have had to resign from the Committee of HARTS, after seven years, but it was good to leave after an Annual Dinner with 166 people present made it the best ever; and there were over US$7,000 worth of door prizes, thanks to local Kenwood, Way­sun, Goodyear, and Pacifica Products dealers!

HARTS had five transceivers stolen from one of its 2-meter sites, and it will be some time before we can collect the money to get back to normal activity. Private repeaters have been authorized recently, and three licenses have been issued. I am sponsoring one, using English, which will be helpful for those unable to understand Cantonese.

Last August, typhoon Rima swept through the Far East, leaving a trail of smoked radios, toasted antennas, fried amplifiers, and disillusioned amateurs in Bangkok, Macau, and the Philippines. Luckily, Hong Kong was spared.

Finally, I regret to announce that our Telecommunications Authority friend, Mr. T.C. Chan VS6DW, MBE, has retired. He has done so much for amateur radio, from the official side, that his shoes may never be filled: his post will not be filled at this time because there is nobody knowledgeable enough. There will be two people splitting up his work load. We understand he is retiring to Canada; and all of us wish him a happy retirement.

SWEDEN
Rune Wande SM8CO-
Frejavan 10
S-155 00 Nykvarn
Sweden

Common License Approved

The European Common License has been approved in Sweden as of March 1—in part. It is in accordance with the so-called CEPT Recommendation and is valid for amateurs from other countries which also have implemented this kind of license. It means that amateurs from West Germany, Norway, Denmark, Luxembourg, Belgium, Austria, Sweden, Switzerland, France, and Monaco do not need to apply for a visitor’s license when in Sweden—if they are satisfied working only VHF according to CEPT Recommendation Class 2. Unfortunately, the Swedish authorities did not accept the full CEPT plan. The Swedish Telecommunication Authority did accept the full plan, but was overruled by some other government entity. Let us hope that the obstacles, whatever they were, will be cleared away in the near future.

Did you work 7S8AAA? The Swedish Antarctic Research Program (SWEDARP) was assigned the call 7S8AAA, and early this year a group of 12 geology researchers spent a few months in the Antarctic. Kent SM7DSE, a University of Lund professor, was the one who made amateur radio a part of the expedition. He planned to work CW, SSB, RTTY, AMTOR, and HF Packet. They also had a license for 3Y Bouvet, but as of this writing it is uncertain whether they’ll get there this time. QSL cards can be sent via SK0MT, Club Taby Sandarmatörre. If you didn’t work 7S8AAA this time, you will probably get another and bigger chance next year. I’ll keep you posted.

Market Reef SI8MI!

SK0MT has become a very active club. They managed to get a special call for the Swedish part of the Baltic Sea rock known to DXers as Market Reef (prefix Q8). For years the Finnish lighthouse on this tiny rock was on the Swedish side, and the national border was drawn through the rock! In 1985 the border was re-drawn to put the lighthouse back in Finland (see map). On September 26 of that year SI8MI went on the air for the first time, but for only a few hours because of bad weather, and there are no shelters on the Swedish side. There is a good possibility that the call will be heard again this summer, however. Although it does not have DXCC status, it is a rare call QSL via club SK0 MT.

Figure 1. The old border went vertically through the middle of Market reef, which in all is about 400 meters in length and averages about 150 meters wide. The new border cuts left and around the lighthouse, and then cuts back into Finland to give Sweden an area of rock equal to the area that went with the lighthouse.
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers’ repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

<table>
<thead>
<tr>
<th>Tone</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>91.5 ZZ</td>
<td>118.8 2B</td>
<td>156.7 5A</td>
<td></td>
</tr>
<tr>
<td>71.9 XA</td>
<td>94.8 ZA</td>
<td>123.0 3Z</td>
<td>162.2 5B</td>
<td></td>
</tr>
<tr>
<td>74.4 WA</td>
<td>97.4 ZB</td>
<td>127.3 3A</td>
<td>167.9 6Z</td>
<td></td>
</tr>
<tr>
<td>77.0 XB</td>
<td>100.1 Z</td>
<td>131.8 3B</td>
<td>173.8 6A</td>
<td></td>
</tr>
<tr>
<td>79.7 SP</td>
<td>103.5 1A</td>
<td>136.5 4Z</td>
<td>179.9 6B</td>
<td></td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>107.2 1B</td>
<td>141.3 4A</td>
<td>186.2 7Z</td>
<td></td>
</tr>
<tr>
<td>85.4 YA</td>
<td>110.9 2Z</td>
<td>146.2 4B</td>
<td>192.8 7A</td>
<td></td>
</tr>
<tr>
<td>88.5 YB</td>
<td>114.8 2A</td>
<td>151.4 5Z</td>
<td>203.5 M1</td>
<td></td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± .1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

<table>
<thead>
<tr>
<th>TEST-TONES</th>
<th>TOUCH-TONES</th>
<th>BURST-TONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697 1209</td>
<td>1600 1850 2150 2400</td>
</tr>
<tr>
<td>1000</td>
<td>770 1336</td>
<td>1650 1900 2200 2450</td>
</tr>
<tr>
<td>1500</td>
<td>852 1477</td>
<td>1700 1950 2250 2500</td>
</tr>
<tr>
<td>2175</td>
<td>941 1633</td>
<td>1750 2000 2300 2550</td>
</tr>
<tr>
<td>2805</td>
<td>1184 2350</td>
<td>1800 2100 2350</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

Model TE-64 $79.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547/ California: (714) 998-3021

CIRCLE 10 ON READER SERVICE CARD
TINY-2 PACKET CONTROLLER $119.95
READY TO USE - NOT A KIT

- USES TNC-2 EPROMS INCLUDING NET/ROM. FIRMWARE VERSION 1.1.5 PROVIDED
- 32K RAM AND 32K EPROM STANDARD
- SUPPORTS BOTH RS-232 AND TTL COMPUTERS, 300-19,200 BAUDS
- EXTRUDED ALUMINUM CABINET WITH OVEN-BAKED WRINKLE FINISH. ONLY 5' x 7'
- WATCHDOG TIMER, MODEM DISCONNECT HEADER, 12V DC OPERATION.

THE BEST VALUE IN A VHF/HF TNC
PAC-COMM TNC-220 $149.95
WITH TUNING INDICATOR $179.95
- NOW WITH 32K RAM STANDARD, FIRMWARE VERSION 1.1.5
- SELECT EITHER HF OR VHF RADIOS FROM THE KEYBOARD.
- SUPPORTS RS-232 AND TTL COMPUTERS
- IN KIT FORM -- $129.95
- INTERNAL TUNING INDICATOR -- $44.95

WRITE OR CALL FOR OUR NEW CATALOG OF PACKET EQUIPMENT, SOFTWARE AND ACCESSORIES.

TECHNICAL INFORMATION
7:30 AM - 11 PM EASTERN
(813) 874-2980
TELEX: 650-208-1526 MCI
FAX: (813) 872-0696

ACCURACY DIGIMAX PERFORMANCE

10 MHz Oven Oscillator 9 x 8½ x 3½
10 Hz to 1.2 GHz .1 PPM ACCURACY

50 Hz to 512 MHz .1 PPM ACCURACY
TCXO

FOR DEALER LOCATIONS
OR PHONE ORDERS
800-854-1566
6560 Production Avenue
San Diego, CA 92121
California Call 619-576-7171
Toll Free #897120 - DATAMAX-193

TECHNICAL INFORMATION

AC-12 AC-ADAPTER $8.95
T-1200 ENC-BASE 21 ANT. $8.95
BAC12 $54.95
BACS $29.95
LONG BRANCH NJ JUNE 1-5

The Second Annual Convention of Chaverim International, an association of Jewish Amateur Radio operators, will be held this year at the Harbor Island Spa at Long Branch. Cost is $286 per person double occupancy, $436 per person single occupancy.

Talk-in on 1 June 147.05 Asbury Park repeater. Deposit of $25 required. For reservations and information, contact Foster Kawaler NV2W, 46 Megill Circle, Eton town NJ 07724, or Bernie Schreibman, 362 Meadowbrook Ave., Eton town NJ 07724.

ST. PAUL MN JUNE 3-4

The North Area Repeater Association will sponsor a swapfest and exposition at the state fairgrounds in St. Paul. Exhibits, flea market, dealers, prizes, license exams. $4 in advance, $5 at door. Write Amateur Fair, PO Box 857, Hopkins MN 55343, or call 612-586-4000.

BROOKFIELD IL JUNE 4

The Chicago Suburban Radio Association will operate N9BAT from the Brookfield Zoo as part of the West Suburban Council Boy Scouts of America Scout-O-Rama. Operation will be on SSB frequencies 7.240 MHz, 14.260 MHz, and 28.350 MHz, and 2 meter FM 146.55 MHz. For full color QSL card, send your QSL card and large SASE to CSRA N9BAT, Special Event, PO Box 88, Lyons IL 60534.

PITTSBURG KS JUNE 4

VEC exams, indoor flea market, free tables and parking, hamfest at Lincoln Park Pavilion sponsored by the Pittsburg Repeater Organization. Admission $5 per adult, $1 per additional family member over fifteen. Talk-in on 146.34/94 or 147.84/24. Contact Ken Johnston K0VZ, PO Box 1903, Pittsburg KS 66762.

KITCHENER, ONTARIO JUNE 4

The 14th Annual Central Ontario Amateur Radio Fleamarket, sponsored by the Guelph ARC and the Kitchener-Waterloo ARC, will be held at Bingeman Park. Admission $3, tables $5, children under twelve free. Talk-in KSR 146.37/97, ZMG 144.61-145.21, Simplex 52/52. Contact Fleamarket Co-Chairman, Ray Jennings VE3CZE, 61 Ottawa Crescent, Guelph, Ontario CANADA N1E 2A8. 519-822-6342.

BANGOR ME JUNE 4

The Pine State Amateur Radio Club is sponsoring their 2nd annual outdoor hamfest at the Hammond Street Campground. Admission $2, overnight camping June 3-5 available. PSARC annual meeting, election of officers, VEC exams, prizes, free swapfest space and more. Talk-in on 146.34/94. Contact Gerry Bell N1DOX, RDF 1 Box 1377, Bangor ME 04401. 207-942-3654.

MADISON OH JUNE 4-5

The Wireless Institute of Northern Ohio (WINO), sponsored by the Lake County AR Association, will be on the air to commemorate Ohio Wine Month. On June 4 from 2300Z to 0300Z, W.I.N.O will be operating from a local winery on 3860 and 7235 kHz, and on June 5 from 1500Z to 1900Z, they will be on 7235 and 14235 kHz. Call is KOBQ. Legal-size SASE for QSL certificate from KOBQ - WINO Weekend, 10418 Briar Hill, Kirtland OH 44084.

MANASSAS VA JUNE 5

The Ole Virginia Hams will present the Annual Manassas Hamfest and Computer Show at the Prince William County Fairgrounds from 8 AM to 4 PM. Admission $5, children under twelve free. Tailgating $5/space. YA Program, AARL booth, CW proficiency awards, dealers, indoor space. Talk-in on 146.37/97, 146.52. Contact Joe Schlatter K4FTP, 703-329-8598 (evening) or Randy Moler KA4UFF, 703-791-3061, or write Ole Virginia Hams ARC, PO Box 1558, Manassas VA 22110, or call Jack Gunsett K4VP, 703-361-5255.

HUMBOLDT TN JUNE 5

The Humboldt ARC will sponsor its annual hamfest at Baily Park from 8 AM to 4 PM. Admission $1, refreshments, flea market, and parking for RVs. Talk-in on 37/97. Contact Ed Holms W4IGW, 501 N. 18th Ave., Humboldt TN 38343. 901-784-3490.

CHELSEA MI JUNE 5

The 11th Annual Chelsea Swap 'N Shop, sponsored by the Chelsea Communications Club, will be held at the Chelsea Fair Grounds. Donation $2.50 in advance, $3 at door. YLs, XYLs, kids under twelve free. Table space $8, trunk sale space $2. Campgrounds and parking. Call 313-475-1795, Robert Schantz, 416 Wilkinson Street, Chelsea MI 48118.

SORRENTO LA JUNE 6-12

The Ascension ARC will hold its Annual Jambalaya Festival from 1500Z to 2359Z daily on 20-15 and 10 meter bands. Special Event package contains three Jambalaya Recipes, Certificate and Club Card with station, state and country worked, plus Honorary Membership Certificate for three or more stations worked. Send $1 postage and QSL card with calls to A.A.R.C., PO Box 278, Sorrento LA 70778-0278.

LOVELAND CO JUNE 10-11

The Northern Colorado ARC is sponsoring the Tenth Annual SUPERFEST at the Larimer County Fairgrounds in the McMillan Building. Prizes, dealers, VEC examinations, refreshments, and a flea market. Station WOINK will be operating on HF with talk-in on 2 meter, Contact Bud Hayes W8JFN, 3109 N. Douglas, Love­land CO 80537. 303-663-3119.

MIDLAND MI JUNE 11

The Central Michigan Amateur Repeater Association (CMARA) is sponsoring its Fourteenth Annual Hamfest at the Midland Community Center. Donation $3 at door, tables $4 and $8. FCC exams, new and used equipment. Contact David C. Burdeaux W-DD51, CMARA Vice-President, CMARA Hamfest, PO Box 67, Midland MI 48640.

WINSTON-SALEM NC JUNE 11

The Forsyth Amateur Radio Club is sponsoring the Winston-Salem Hamfest & Computer Electronics Fair '88 at the Dixie Civic Fair Grounds. FCC exams (preregistration suggested), door dealer space, prizes, and flea market/tailgating space. Admission $4 in advance, $5 at door. Talk-in on 146.041.64. For preregistration (SASE) contact Dave Ward KA1LYO, 5573 Vienna-Doxier Rd., Pfafftown NC 27040. For dealer information, contact Jim Rodgers N1DRI, Box 11234, Winston-Salem NC 27116, 919-760-2493. For exam information, contact Bob Gates K4IC, Box 60, Cedar Grove Park, Kernersville NC 27284.

RIO DE JANEIRO BRAZIL JUNE 11-12

Hundreds of CW operators in South America will be on the bands this weekend. They welcome other hams who wish to meet them for the World Wide South America CW Contest. WWSA is sponsored by Antenna-Eletronica Popular with the cooperation of Pica-Pau Caraica and other South American CW groups. Antenna, PO Box 1131, 20001 Rio de Janeiro, RJ, BRASIL.

GALESBURG IL JUNE 11-12

If you would be interested in participating in an International Telegraph Speed contest, and want more details on awards, contact Jim Woods, The Blackhawk Chapter of the Morse Telegraph Club, RR #4 Box 22, Galesburg IL 61401.
WINFIELD PA JUNE 12

The Milton and Central Susquehanna ARCs will host the 15th Annual Central PA Ham and Computer Fest at the Winfield Fireman's Fairgrounds from 0800 to 1700 EST. VEC testing (advance registration), good food, contests, Demo BBS, packet radio, and more. Donations $4, YLS, XYLs, and children are free. Tailgating 6' table for $1. Talk-in on 146.97, 147.18, and 146.52. Call or write Jerry Williamson WA3XQX, 10 Old Farm Lane, Allentown PA 18107, 717-742-3027 or Bob Stahl KASPYT, 452 Fourth St., Northumberland PA 17857, 717-473-7050.

COVINGTON KY JUNE 12

The Northern Kentucky ARC will hold its HAM-O-RAAMA 88 at the Erlanger Kentucky Lions Park. Admission $4 in advance, $5 at gate. Children under fourteen free. Prizes, ARRL, packet and emergency forums, vendors, and a outside flea market ($4-space, tables not provided. Talk-in on 147.855/2.25 and 147.975/3.75. For advance registration or more information, contact WA4ABM, c/o NKARC, PO Box 281, Florence KY 41042, 606-371-8545.

WILLOW SPRINGS IL JUNE 12

The Six Meter Club of Chicago is sponsoring The Thirty-First Annual Hamfest at Santa Fe Park. Admission $3 in advance, $4 at gate. Prizes, large swapper's swap, picnic grounds, displays in pavilion, and an AFAMS meeting. Talk-in k9ONa on 146.52 or K9ONAR/37-97. Advance tickets and information from Mike Corbett K9ENZ, 606 South Fenton Ave., Romeoville IL 60441.

AKRON OH JUNE 12

The 21st Annual Goodyear Family Hamfest will be at Wingfoot Lake Park near Akron. Family admission is $4 in advance, $5 at gate. Picnic and flea market ($3 per vehicle), and sheltered indoor dealer area ($6 per table, advance reservation suggested). Prizes for the OM, XYL, children, and Mobile Check-in. Park facilities and concessions. For tickets and information, contact Don W. Rogers WA85XSJ, 161 Hawkins Ave., Akron OH 44313. 216-864-3665.

SOUTH DARTMOUTH MA JUNE 12

The Southeastern Massachusetts AR Association is holding its Semara Hamfest from 9 AM to 5 PM. General admission is free. Dealer admission is $8 in advance, $10 at door. VEC exams by appointment, Nepera packet workshop, working HF stations, and Tail Gate Sale. Hamfest talk-in on 147.000/.6 and 145.900/.6 for backup. Contact (send SASE, please) Peter M. Kodis N1EXA, PO Box 9187, North Dartmouth MA 02747, 617-993-1822.

PHILADELPHIA PA JUNE 15

A technical session featuring recent developments in Amateur Radio will be part of the IEEE International Conference on Communications '88 in Philadelphia. Jim Metzger KA3HWD, will be visiting Amateurs on a tour of the club station where they may use the repeaters (145.25 (KA3HWD/ R), 224.52 (K2PM/R), and 443.10 (KQCF/P) at the Liberty Bell site. For information, write ICC 98, c/o ATT Network Systems, 1800 John F. Kennedy Blvd., Suite 1300, Philadelphia PA 19103 or call 1-800-ICC-888HI or 215-972-1308 (outside the US), weekdays 8 AM to 4:30 PM EST.

NEW YORK NY JUNE 16

The IEEE New York Section Broadcast Technology and Vehicular Technology Chapters are sponsoring "Professional Certifications Programs: An Overview." There will be representatives from the SBE, NABER, NARTE, and possibly the FCC. Admission is free. Time: 6:30 PM at the NYC Technical College, Kiltgard Auditorium at 285 Jay St., Brooklyn. For more information, call Mike Hayden at 212-246-2350, ext. 278, from 9-5 PM.
"Give your repeater something to celebrate!"

The new RC-96 repeater controller for your repeater will make its day. And yours.

For you, remote programming will let you easily make changes to your repeater from anywhere without a trip to the hill. Change codes, autodial numbers, ID messages and more, with reliable storage in EEPROM memory.

Your users will love the outstanding patch and autodialer, with room for 200 phone numbers. The talking 8-meter will let them check their signal strength into the repeater. Plus support for pocket pagers, linking to other repeaters, and a bulletin board.

Your technical crew will appreciate the built-in keypad and indicators. And the ease of hookup through shielded DIN cables. With pots and DIP switches easily accessible at the rear of the unit. They'll be impressed by the gas discharge tube across the phone line and transient suppressors on each I/O signal to keep lightning from taking your system down.

And most important, your repeater will have a new sense of pride in being able to serve you better. You'll even hear it in its voice!

Something for everyone. A real party animal!

The RC-96 Repeater Controller -
the newest choice from ACC.

2356 Walsh Avenue, Santa Clara, California 95051 (408) 727-3330
LETTERS

Rare Finds

We, the radio amateur, are our own worst enemy. Good quality public relations that the public can understand is rare. This is only part of the problem. I became an amateur in 1971 while at college. There was a sense of discovery—an air of mysticism, of being able to take junk parts from the local radio/TV shop and make them talk around the world. There was a sense of comradeship, of adventure. Over the years we have lost out. We have become appliance operators lacking the ability to build even the simplest equipment. Part of the problem comes from ham radio magazines. They seem to think that since technology has advanced, so have the building abilities of amateurs. seldom do I find simple, goof-proof projects using ‘Radio Shack’ parts that are worth any time or effort to build. If 73 magazine could, in addition to or within its current departments include those simple, goof-proof projects for amateurs, it would be providing a service that no one else provides.

Larry G. Sloop WB4UYV
Millers Creek NC

Many of our readers have similar requests, but how many understand we can only publish what writers send to us? Quality projects are few and far between in every US electronics magazine. Get busy, guys! ... de NASE

Russian Views

When I decided to visit the USSR, I started to learn some rudiments of Russian. No, I don't know much, but a minimum, just to ask for my way, for prices, comment about the weather, etc. Our guide did not care about me when he saw that I would not make any trouble for him and that I would not get lost. So, when I wanted to visit hams, all I had to do was to examine the antennas on the roofs, and ring at the flats where the coax ended. The Q-code with my micro-knowledge of Russian made the rest. I found lots of helpful friends there. Being quite Vodka-proof, our friendship became even more cordial and I found that at least my friends were not great party fans. don't care for the B.S. that clutters up the low bands... sure enjoyed the days when you could get into a good technical conversation with another amateur. I know with the high-tech aspect of equipment these days it requires more study and time, but the rewards are worth it. Of course, the experimenters, innovators and real gentlemen of ham radio are out there, it's just more difficult to find them sometimes.

Bill Tipton W4TAL/NNNQLLX
Navy-Marine Corps MARS
Jacksonville AL

70cm Concern

We have received correspondence from VE3CB SAAC News Release alerting us to the fact that the Canadian DOC intends to re-classify a meteorological Clear Air Doppler Radar (CDDR). Its present operating area is 404.37 MHz and it will be relocated in the 430-450 MHz 70cm amateur radio UHF band. This system, we understand transmits high-power, triple beam, broadband radar pulses.

We are very concerned about the proposed move to these transmitting devices on our northern boarders as it will almost wipe out and QRM the entire 70cm UHF amateur band. It will also disrupt all present modes of FM, SSB, ATV OSCAR, packet, and EME communications! Likewise, if this system is allowed to relocate without challenge, it is just a matter of time before the US will be pressured to endorse such a relocation as well. This will put the highly used 70cm amateur radio band into serious jeopardy!

What is the reason given for this Canadian move? We feel it is a longer range plot to overtake the 70cm amateur UHF band. We have already lost a vast amount of usable frequency spectrum to the LINE-A restrictions placed upon us. We cannot afford to lose any more!

Mike Stone WB8QCD
USATVS
Editor SPEC-COM

Who Wants the Hot Potato?

The FCC has said that recognized coordinators will decide the right to use a given repeater frequency. Great in theory, but who is the recognized frequency coordinator?

Several questions come to mind.
1. Who picks the coordinator?
2. Who determines who is a coordinator?
3. What are the qualifications to be a coordinator?
4. What other factors are to be considered when determining who is the frequency coordinator?

Some hams have suggested that the ARRL act as the coordinators’ coordinator. Their answer: No way. Some have suggested the FCC should take a more active role. Their answer: No personnel, no money, and perhaps no care. Let’s throw the names in a hat and have a lottery. Why frustrate the good radio family, give them a lottery? If nobody cares let’s have a ball and we will have the 11-meter mess again.

I don’t see Commission lawyers donating any time to the problem. They want to be paid for their time. Who is going to coordinate the appointment of the arbitrators? What is to be the arbitrators’ qualifications? Will the arbitration be binding? Who will defend the arbitrator if he gets sued? (California, with an arbitration statute gives them immunity, but tell that to a bull-headed amateur.) What about any financial liability? Who is going to develop the forms, rules, procedure, and handle the paper work?

Nice idea but... I guess we might do it the Old West way. He who has the highest mountain and the biggest amplifier gets the frequency or maybe we will go back to the old repeater wars. Oh well, welcome to the new Citizen’s Band radio. Uncle Charlie old buddy, you really have a hot potato, with lots of potential law suits. I suggest you “Tell it to the Judge,” when you are sued, to enforce Part 97.

Joseph Mendioli N6AHU
Atty At Law
Los Angeles CA

QRP Confusion

ARRL recommends 7040 kHz for “RTTY DX” while Mike Bryan representing 73, calls 7040 kHz “the QRP calling frequency...” My guess is that this co-use of the frequency is pretty hard on the little guys, viz., QRP’ers.

Frank R. Prina N2DLN
Springville NY
ASSOCIATED RADIO
8012 CONSER BOX 4327
OVERLAND PARK, KANSAS 66204
(EVERY DAY A HAMFEST)
BUY—SELL—TRADE
ALL BRANDS NEW AND RECONDITIONED

WE’LL BUY YOUR EXTRA RIG
STATIONS—ESTATES ETC.
Call 913/381-5900
FAX 913/648-3020
SEND $2 FOR CATALOG AND WHOLESALE LIST

JOIN ARRL

BENEFITS FOR YOU
QST, QSL Bureau, Awards, Low Cost Insurance, Operating Aids,
Government Liaison and More—Much More!

MEMBERSHIP APPLICATION

Name __ Call ________
Street ________________ Prov./State ____________ PC/Zip _________
City ________________

$25 in U.S. $33 elsewhere (U.S. funds) Licensed amateurs, or age 65 or over, upon submitting proof of age, may request the special dues rate of $20 in the U.S. $26 elsewhere, in U.S. funds.) Persons age 17 and younger may qualify for special rates, write for application.

For postal purposes, fifty percent of dues is allocated to OST, the balance for membership.

Expires ____________
Bank. No. ____________ Expires ____________
The American Radio Relay League
225 Main St. Newington, CT. 06111 USA

HAM RADIO
SELF STUDY COURSE
NOW ONLY $19.95
Plus $2.00 shipping & handling

VISA/MasterCard Accepted
Prepare for the fantastic world of amateur radio. Study at your leisure. No technical background required. Entry level amateur radio operators can now talk on the ten meter band and FM repeaters. Even link their ham radio stations to the public telephone system and personal computers. Privileges never before available to the beginner! Complete FCC license preparation course contains everything you need to know to pass both the written and Morse code examination in a very short time. Written in easy-to-understand language. Contains fully illustrated text book, two long-play code learning cassettes, all 302 word-for-word FCC license test questions, answers...and much more! You can’t miss! Sold with a 10 day money back guarantee. Phone orders accepted. Dealer and classroom instructor discounts available.

WSYI-VEC P.O. BOX #10101
Dallas, Texas 75207 - Tel: 817-461-6443

Field Day Winner

The American Radio Relay League
OVERLAND PARK, KANSAS 66204
(EVERY DAY A HAMFEST)
BUY—SELL—TRADE
ALL BRANDS NEW AND RECONDITIONED

WE’LL BUY YOUR EXTRA RIG
STATIONS—ESTATES ETC.
Call 913/381-5900
FAX 913/648-3020
SEND $2 FOR CATALOG AND WHOLESALE LIST

JOIN ARRL

BENEFITS FOR YOU
QST, QSL Bureau, Awards, Low Cost Insurance, Operating Aids,
Government Liaison and More—Much More!

MEMBERSHIP APPLICATION

Name __ Call ________
Street ________________ Prov./State ____________ PC/Zip _________
City ________________

$25 in U.S. $33 elsewhere (U.S. funds) Licensed amateurs, or age 65 or over, upon submitting proof of age, may request the special dues rate of $20 in the U.S. $26 elsewhere, in U.S. funds.) Persons age 17 and younger may qualify for special rates, write for application.

For postal purposes, fifty percent of dues is allocated to OST, the balance for membership.

Expires ____________
Bank. No. ____________ Expires ____________
The American Radio Relay League
225 Main St. Newington, CT. 06111 USA

73 Amateur Radio • June, 1988 99
Tone Decoder Notes

I'd like to make the following clarifications regarding my 4+1 DTMF decoder (April issue).

The present circuit may not decode tones if the receiver's volume control is set too high. This problem can be reduced by replacing C1 (0.01μF) with a 1kΩ resistor in series with a 0.01μF capacitor. Also, the brightness of LED can be increased by reducing R1. R1 can be as low as 100Ω, depending upon the LED.

If the Midland Technologies PC board is used, note that R9 is wired clockwise to decrease the speaker on time.

Finally, many people spend too much for tone decoder chips. The SSI-202 sometimes sells for $15 or more. The equivalent chip, the RCA CD22204, is sold by RCA distributors in single lots for $4.50. If local distributors do not stock the CD22204, and the builder does not want to wait 12 weeks for delivery, the chip is available through Circuit Specialists (P.O. Box 3047, Scottsdale, AZ 85257) for about $6.

Andrew Mitz WA3LTJ
Kensington, MD

Down Under No-Code

I would like to point out an error in the QTR page in the December 1987 issue (only recently received). Under the heading of "Aussie Novice 2m Phone?", you incorrectly state that "Australia still has no-code license class." Permit me to point out that Australia has had a no-code license class since about 1959, when the "Limited" class license was introduced. It can therefore be seen that Australia has had a no-code license for something like 30 years, along with many other countries.

Basically, the "Limited" call allows full power and modes on all bands above 30 MHz, and indeed, much of the pioneering work on these bands was performed by these "Z" calls. Why are they called "Z" calls? Under the Australian licensing scheme, "Limited" calls were issued with the series "VKnZAA" to "VKnZZZ", subsequently extended to "Y" suffixes, then "X" suffixes, and now "T" suffixes.

David I. Horsfall VK2KIF
Australia

Computerized CW

I have noticed that CW is not one of Wayne's favorite operating modes. (In fact, it probably does not have a spot on a lot of people's lists of operations.) However, I recently discovered the pleasures of CW via my computer. It is a very interesting way to get on the air.

My XYL gave me an AEA PK-232 for Christmas, and I have had a great time with packet, RTTY, and CW. This morning I had a 45-minute QSO with a local ham on 40m CW. We operated at 30 wpm and discussed antennas, the local ham politics, antenna projects, power supplies, etc.

Dust off your computer and try some computerized CW. I'll bet you enjoy it (despite yourself).

Tom Hart AD1B
Dedham, MA

Circuit Correction

I started building your circuit "Beacon Transmitter" in the April 1988 issue and found that there is a slight problem. In order to get the circuit to oscillate, you need to connect pin #6 to pin #2 on both IC-1 and IC-2. The way it is set up now, the circuit is in the monostable mode and needs a trigger to keep it going. With pin #6 and pin #2 connected, the circuit is in the astable mode and the oscillator will be free running.

Duane Tuma KASUMM
Carpentersville, IL

See your favorite amateur dealer or write for a free amateur catalog.

IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6th Avenue, Vancouver, B.C. V5Y 1K3. 604-872-8517.

CIRCLE 23 ON READER SERVICE CARD
Our Antenna & Tower Discounts Are Tops

Hy-Gain, Cushcraft, Rohn, Tri-Ex, and Alliance Package Specials Available

Call and Compare Our Prices

Orders & Quotes Toll Free 800-444-4799
Introducing the only mobiles that double as answering machines.

Now you can stay in touch—even when you're away from your radio.

With Yaesu's 2-meter FT-212RH and 70-cm FT-712RH, an optional, internal digital voice recorder serves as a convenient answering machine for you and your friends. And that's just the beginning!

High performance mobiles.
The FT-212RH features wideband receive coverage of 140-174 MHz (144-148 MHz Tx), while the FT-712RH covers 430-450 MHz. An oversize amber display includes an innovative photo-sensor which increases the display brightness during the day. The function buttons are arranged in a chromatic musical scale—ideal for visually-impaired operators. You get 45 watts output on 2 meters, 35 watts on 70 cm.

An autodailer DTMF microphone with 10 memories, each ready to store telephone numbers up to 22 digits long. And, like our FT-211RH Series mobiles, you'll enjoy surprisingly simple controls, yet highly sophisticated microprocessor-based flexibility. Including 18 memories that store frequency, offset, PL tone, and PL mode (CTCSS unit optional). Band or memory scanning, Offset tuning from any memory channel. Memory channel lockout for scanning. High-low power switch. All in an amazingly small package, shown actual size below.

Digital voice recorder option.
Only Yaesu brings you the advanced technology found in our digital voice recorder option.

You can store messages or your call sign—in your own voice, not a synthesized replica—or give your friends a private code for leaving messages on your radio. All they need is a DTMF microphone! Then you can play back your messages either in-person, or remotely by using another radio with a DTMF microphone. And you've always got security because you can command your radio to respond only to in-person playback requests.

Visit your Yaesu dealer today.
And test drive Yaesu's FT-212RH and FT-712RH mobiles. The only radios with the power to keep you in touch. Always.

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847.

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc.

CIRCLE 111 ON READER SERVICE CARD
It’s a lesson you learn very early in life. Many can be good, some may be better, but only one can be the best. The PK-232 is the best multi-mode data controller you can buy.

1 Versatility

The PK-232 should be listed in the amateur radio dictionary under the word Versatile. One data controller that can transmit and receive in six digital modes, and can be used with almost every computer or data terminal. You can even monitor Navtex, the new marine weather and navigational system. Don’t forget two radio ports for both VHF and HF, and a no compromise VHF/HF/CW internal modem with an eight pole bandpass filter followed by a limiter discriminator with automatic threshold control.

The internal decoding program (SIAM™) feature can even identify different types of signals for you, including some simple types of RTTY encryption. The only software your computer needs is a terminal program.

2 Software Support

While you can use most modem or communications programs with the PK-232, AEA has two very special packages available exclusively for the PK-232....PC Pakratt with Fax for IBM PC and compatible computers, and Com Pakratt with Fax for the Commodore 64 and 128.

Each package includes a terminal program with split screen display, QSO buffer, disk storage of received data, and printer operation, and a second program for transmission/reception and screen display of facsimile signals. The IBM programs are on 5-1/4” disk and the Commodore programs are plug-in ROM cartridges.

3 Proven Winner

No matter what computer or terminal you plan to use, the PK-232 is the best choice for a multi-mode data controller. Over 20,000 amateurs around the world have on-air tested the PK-232 for you. They, along with most major U.S. amateur magazines, have reviewed the PK-232 and found it to be a good value and excellent addition to the ham station.

No other multi-mode controller offers the features and performance of the PK-232. Don’t be fooled by imitations. Ask your friends, or call the local amateur radio store. We’re confident the PK-232 reputation will convince you that it’s time to order your very own PK-232.

Call an authorized AEA dealer today. You deserve the best you can buy, you deserve the PK-232.

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Brings you the Breakthrough!
Promoting the Higher Bands

Apparently, most hams' ideas of DX involve the HF bands. Ask a ham to describe what it's like to operate above 30 MHz, and more often than not you'll hear terms like "two meters," "FM" and "repeaters." We have ourselves to blame for perpetuating such narrow views of hamming. We humans are creatures of habit. Well, when the language gets too bad on the local two meter machine, or when you get hoarse from yelling into a pileup on 20 meters, think long and hard about exploring some of the many (albeit poorly publicized) possibilities on the VHF and UHF bands.

DX and Contests

Beauty, of course, is in the eye of the beholder, and so is DX. Those two letters, which make up the most popular term in the ham radio lexicon, definitely take on new meaning and present fantastically fun challenges above 30 MHz. Whether chasing countries, zones, states, or grid squares, the DXer gets a kick from working a new one. The tally is a testimony to his or her tenacity and skill.

VHF DX is no different.

Six meters usually receives a lot of attention during a few years of every solar cycle. Sporadic E propagation occurs each year, but when the solar index begins to peak, six meters can support worldwide contacts. DXCC and 73's DX Dynasty Award on six are becoming relatively easy to obtain, too, since more countries are adopting amateur radio allocations on this band.

More and more DXpeditions these days take along gear for six meters. For example, both Jim Treybig W6JKV on Aruba and Harry Schools K3SB on St. Pierre will have six meter gear turned on for the June 11-12 VHF QSO Park.

"Do you think any of these guys would work so hard to turn on these bands if there wasn't any DX action and excitement on VHF and UHF?"

"Think long and hard about exploring some of the many (albeit poorly publicized) possibilities on the VHF and UHF bands."

common, even on a bad day. When I lived in the UK, I regularly worked two meters into France, Germany, Switzerland, Scandinavia, and even Eastern Europe using 25 watts from my IC-290H and a single KLM-13LBA antenna. (Get Wayne to tell you about his two meter exploits 40 years ago. Now that's DX.) Although the majority of DX contacts involve SSB and CW, try giving a shout on 145.52 FM simplex once in a while.

Our own Pete Putman K1TB and company will take advantage of the generally good VHF and UHF summer conditions along the East Coast to operate in the June QSO Party from Chincoteague Island (grid FM27). His group plans an impressive operation on 50, 144, 220, 430, 903, 1296, and 2304 MHz. Do you think any of these guys would work so hard to turn on these bands if there wasn't any DX action and excitement on VHF and UHF?

Modest Requirements

No, you don't need to go out and spend a zillion dollars on good VHF/UHF gear. You can get perfectly acceptable results with transceivers, which will take an SSB signal from, say, your HF rig, now, turn to Section 97.61 of the Amateur Radio Service Rules and Regulations. Yes, the 902-928 MHz band is allocated to amateur radio.

Take a look at the 1987-88 ARRL Repeater Directory. You’ll find a handful of 900 MHz ATV repeaters and two-and-a-half dozen FM repeaters scattered from Massachusetts to California. Disappointing, to say the least, but understandable considering the lack of readily available 900 MHz equipment. Certainly the Big Three amateur radio manufacturers don’t support 902 MHz, and I’ve only come across a couple of 33 cm transmitters in the past several years. I don’t get it. We go to all the trouble to get a 902 MHz allocation from WARC, and hardly anyone takes advantage of it! You’d better believe that 902 MHz is next on the commercial interest away from us.

Thus, we have two main goals for the "73 for 33" campaign. We need an individual or group to coordinate and disseminate 33 cm information, and to keep 902 MHz enthusiasts in touch with each other. Then, of course, we need the shakers and movers at 902 to start writing articles promoting the band. Since there is little commercial gear available, I expect quite a few good 33 cm projects to grace the pages of 73. Get busy and start writing!

Is this just a 902 MHz pie in the sky? Well, that’s what a lot of people thought about Wayne’s push for FM repeaters 20 years ago. Sometimes around 1988, when I ask hams to describe the activity on VHF and UHF, I expect to hear things like “digital ATV,” "40 megabaud," and even "902 MHz." Remember, 73 for 33!"
Yaesu's FT-736R. Because you never know who's listening.

Why just dream of talking beyond earth? With Yaesu's new FT-736R VHF/UHF base station, you can discover some of the best DX happening in ham radio. Via moonbounce, Tropo, Aurora, Meteor scatter, or satellites.

You see, the FT-736R is the most complete, feature-packed rig ever designed for the serious VHF/UHF operator. But you'd expect this of the successor to our legendary FT-726R.

For starters, the FT-736R comes factory-equipped for SSB, CW and FM operation on 2 meters and 70 cm (430-450 MHz!), with two additional slots for optional 50-MHz, 220-MHz, or 1.2-GHz modules.

Crossband full duplex capability is built into every FT-736R for satellite work. And the satellite-tracking function (normal and reverse modes) keeps you on target through a transponder.

The FT-736R delivers 25 watts RF output on 2 meters, 220 MHz, and 70 cm. And 10 watts on 6 meters and 1.2 GHz. Store frequency, mode, PL frequency, and repeater shift in each of the 100 memories.

For serious VHF/UHF work, use the RF speech processor. IF shift. IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker. Three-position AGC selection. Preamp switch for activating your tower-mount preamplifier. Even an offset display for measuring observed Doppler shift on DX links.

And to custom design your FT-736R station, choose from these popular optional accessories: Lambic keyer module. FTS-8 CTCSS encode/decode unit. FVS-1 voice synthesizer. FMP-1 AQS digital message display unit. 1.2-GHz ATV module. MD-IB8 desk microphone. E-736 DC cable. And CAT (Computer Aided Transceiver) system software.

Discover the FT-736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because you never know who's listening.

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc. FT736R shown with 220 MHz option installed.
TS-940S

Competition class HF transceiver

TS-940S—the standard of performance by which all other transceivers are judged. Pushing the state-of-the-art in HF transceiver design and construction, no one has been able to match the TS-940S in performance, value and reliability. The product reviews glow with superlatives, and the field-proven performance shows that the TS-940S is “The Number One Rated HF Transceiver!”

- **100% duty cycle transmitter.**

 Kenwood specifies transmit duty cycle time. The TS-940S is guaranteed to operate at full power output for periods exceeding one hour. (14.250 MHz, CW, 110 watts.) Perfect for RTTY, SSTV, and other long-duration modes.

- **First with a full one-year limited warranty.**

- **Extremely stable phase lock-loop (PLL) VFO.** Reference frequency accuracy is measured in parts per million!

Optional accessories:

- AT-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-455C-1 (600 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters
- YK-88A-1 (6 kHz) AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-43S UP/DOWN hand mic.
- MC-60A, MC-80, MC-85 deluxe base station mics.
- PC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-8 pan display
- SW-200A and SW-2000 SWR and power meters
- IF-232C/IF-10B computer interface

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features, and prices are subject to change without notice or obligation.

Kenwood U.S.A. Corporation

2201 E. Dominguez St., Long Beach, CA 90810

P.O. Box 22745, Long Beach, CA 90801-5745