The Library is currently about 170 gb of data made up of over 10,000 PDF files.

There is a certain irony, as several people have pointed out, of collection digital copies of books that are accessible only through electronic devices (i.e. computers) in order to have the the knowledge of how to rebuild an 1800’s through early 1900’s technological and industrial infrastructure after a Solar or Nuclear EMP has destroyed most electronic technology. And it’s a good question.

Unfortunately we’re already at about 2.5 million pages of information and still growing. The last time I worked out the figures it would take something like 400 cases of paper and several hundred toner cartridges for a common Laser Printer to print out a single copy of the library. I calculated the costs, a retail prices at about $30,000 just for the paper and toner. That does not even take into account binding the books or putting up shelves on which to store them.

So how do you store something that’s too expensive to print, too large to store physically and could all be erased in an instant from a hard drive by an EMP event?

There are several solutions listed below. They are by no means the only solutions as I’m sure people have already come up with others that they just haven’t shared.

In the event that the Library is ever actually needed it’s going to be after a collapse and after the survivors have made it through the initial emergency, the die-off, have established self sufficient communities capable of surviving for the long term in food, shelter and security. Once that point is reached they are going to start making long term plans on how to start rebuilding, organizing, developing trade and industry again and restoring a technological infrastructure for when salvage e is no longer a viable source of supply.

1. STORING the Data
Optical Disk Storage (DVD/CD)
100+ gigabytes equates to roughly a couple dozen DVDs full of information if you store them in the most space efficient manner rather than separating them by category. For the sake of argument, lets say 24 DVDs. If you used CDs instead it would require about 150 cds.

24 DVDs cost a few dollars and most modern computers have DVD writers on them. I’ve made several sets of Library DVDs. I even took the extra step of printing attractive labels on them with the categories they each contained. When completed the set, in protective cases, was a couple inches high.

The bottom line is that storing the entire Library on DVDs is cost effective, simple and easily duplicated. It’s quite simple to make multiple copies to store in separated locations or with other people. The DVDs have a long lifespan if not physically damaged though naturally multiple copies provide extremely inexpensive insurance.

This is the method I most recommend since it’s EMP proof, inexpensive and easily duplicated and distributed to others. As long as the discs are protected from heat and physical damage they should have a long lifetime.

Hard Drive Storage

100+ gigabytes is a rather small amount of space relative to most modern hard drive. It’s becoming increasingly hard to even find hard drive under 100gb. Most laptops made in the last few years have hard drives in the hundreds of gigabytes.

There are a wide ranged or portable hard drive that are inexpensive. You can buy a small portable hard drive with capacities of 500gb for about $50-$70. By shopping around and looking at used equipment you can find them even cheaper. For those technically minded you can buy small cases for the 3.5 inch laptop drives for around $10 and then salvage the hard drive from a dead laptop to make your own.

Regardless of whether you use the hard drive in a laptop or a separate portable hard drive you will have to make plans to protect the hard drive from the effects of an EMP caused by a solar flare or by a manmade EMP attack. That issue is addressed further along.

Flash Drives
Most flash drive currently in use are only a few gb in size though there are a few that are large enough to hold the Library. There is at least one 128gb flash drive on the market for under $100 and will undoubtedly be more in the near future and the prices will decline. A large capacity Flash Drive is certainly a viable alternative for storing the Library though Flash drive are significantly more fragile that hard drives of DVD/CDs. Just as with a hard drive the media would need protection from EMP effects.

2. ACCESSING the information
Realistically the only truly effective method of accessing the books in the Library stored in Digital form is with a computer. E-Readers are a possible option but most are limited in size and make reading of scanned books difficult. Almost all E-Readers lack printing capability.

In the aftermath of an EMP event, either natural or manmade, there are unlikely to be many functional computers remaining. With work and some technical skill it would likely be possible to rebuild a few with parts that happened to escape the devastating effects of an EMP event though even that is speculation. Even in the worse case EMP event there are going to be some salvageable computers… motherboards and other components stored in static bags, laptops in metal enclosures that unintentionally serve as Faraday cages, etc.

The best approach to ensuring that a computer is available is to set aside a laptop in a protected EMP proof storage location. There are a couple of options for laptops. When you replace an older laptop turn the older one into an emergency backup. Look for older used laptops. Used laptops can often be found very inexpensively. They may not be adequate for current generation computing but could be more than adequate to load and read a PDF file from a DVD or portable hard drive. Keep an eye out at yard sales, local thrift stores, printed and online classified ads. You might be surprised at what you can find.

EMP effects from a solar flare on the scale of the Carrington Event of 1859 are capable of destroying virtually all electronic devices which use solid state electronics. About the only electronic devices which would survive are those using early to mid 1900s tubes (essentially WWII technology) and those protected by a Faraday Cage. There are a few classes of military devices which were designed to withstand some of the EMP effects of a Nuclear War environment but it’s use has declined over time with the lessening danger of nuclear conflict.

If a solar flare comparable in size to the Carrington Event were to occur today it is safe to assume that virtually every single unprotected electronic device would be damaged beyond usability or outright destroyed.

So in order to make use of the Library in a worse case disaster you will have to safely store the computer equipment needed to read it.

3. PRINTING
Storing a printer is certainly optional. Ideally a small laser printer in a Faraday Cage but that is more than most folks could reasonably afford. The advantage to a laser printer is that the toner cartridges have a fairly high capacity and can be refilled fairly easily with toner from other cartridges in an emergency.

An older ink jet printer might be an attractive option except for the matter of ink cartridges which have low capacity and limited shelf life after being opened. The best option for storing an ink jet printer is to buy one or two sets of cartridges for that printer and store them unopened. The printer itself should be stored without cartridges in it. Additionally you should take the time to research the various methods of refilling ink jet cartridges and buy the materials and supplies to refill them multiple times.

Regardless of which option to choose, be sure to include CDs containing the print drivers for them and be sure that you have the proper print drivers for whatever computer you have stored.

While storing a printer might seem a bit extreme, imagine being in a situation where you and others needed the knowledge in the books of the Library and the only alternative to reading them on a single fragile computer was to transcribe them by hand.

As with computer technology itself there is a good chance that there will be some salvageable or repairable printers available. The key factor there will be printing supplies for them. Paper deteriorates and cases of paper will not be high priority items for most people to store. Salvaging paper supplies as soon as possible will be critical. The same applies to toner and ink depending on the printer type. Once the existing salvageable supplies of those items are used up it will be a long. long time before they can be replaced.

Theoretically if a book in the library is accessible using a salvaged computer or laptop it could be transcribed manually but that is a labor intensive effort. Setting type by hand to print a book is even more labor intensive.

4. ELECTRONIC PROTECTION
Faraday Cages
The only really effective means of protecting electronic equipment from EMP effects is by storing them inside a Faraday Cage. Faraday Cages have been used for decades and can provide 100% protection from electrical fields which would otherwise damage or destroy electronics.

Fortunately they are quite simple to build and use. A Faraday cage is essentially nothing more than a metal shield that completely surrounds a volume of space. It’s not armor plating. It does not require special materials or unusual construction techniques. The simplest Faraday Cages are made of metal mesh (e.g. screening material) or sheet metal.

There are two approaches to building a Faraday Cage. The oldest and most traditional is to build a literal “cage”, a rectangular box shape made of metal mesh. A roll of metal window screen works quite well and can be made any size one wishes.

The simplest way however is using sheet metal and requires no construction of metal working skills at all. Galvanized metal trash cans with removable lids have been around for around a hundred years. They can be purchased in various sizes at most hardware stores and are relatively inexpensive. ($15-$30 range)

The key to turning a galvanized trash can into a functional Faraday Cage is to line it so that the contents do not contact the metal of the can and to ensure that the seam between the lid and the body of the can seals with continuous metal to metal contact.

Below are some links to constructing Faraday Cages from galvanized metal trash cans as well some recommendations for additional items to store in them. You can easily find additional information webpages and videos by searching the term Faraday Cage.

http://modernsurvivalblog.com/emp-electro-magnetic-pulse/building-a-faraday-cage/

http://4dtraveler.net/2013/05/31/emp-part-2-of-2-what-to-store-in-your-faraday-cage/

http://www.theelitemind.com/articles/?p=134

Conclusion
A set of Library DVDs and/or a copy on a portable hard drive or a laptop hard drive and an older laptop provides a library of thousands of books worth of information. Even better would be to store an extra printer in a Faraday Cage for printing out books as required if the situation ever dictated needing the Library. Cases of paper would survive most disasters and could be salvaged. Working computers and printers might not.

We have Faraday Cages constructed in this fashion stored in a corner of the attic. They contain several older laptops, multiple copies of the Library as well as a variety of other electronic emergency supplies such as wind up flashlights, solar battery chargers, two way radios, CBs, shortwave radios, extra printers and other items. None of the items are ones we miss since they are mostly surplus items or items we would not normally need. However should the situation ever arise when we did need them they could easily mean the difference between life and death, comfort and hardship not only for ourselves and others but for our community.

The Librarian