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PREFACE

THE main purpose of this booklet is to provide
practical working formulas for the design and in-
vestigation of reinforced concrete members, and
means for applying these formulas with a mini-
mum of laborious computations.

Furthermore, the proposed formulas are derived
for general application to beams subjected to direct
longitudinal stress in conjunction with transverse
moment, to eccentrically loaded columns and to
arches. The paper also presents some labor-saving
devices for use in proportioning members, and the ap-
plication of the formulas to various beams, columns
and arches is demonstrated by definite examples.

The multitudinous curves and tables which have
been offered for the use of the designing engineer
since the advent of reinforced concrete would form
a unique and voluminous collection if all could be
gathered together; and of course the only excuse
for their existence is the complex and'cumbersome
nature of the theoretically evolved formulas. One
of the objects of this paper is to so simplify the
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iv PREFACE

formulas, without in the least detracting from their
mathematical accuracy, as to make it entirely un-
necessary to resort to special curves and tables for
the various assumptions as to properties, stresses,
dimensions, percentage of reinforcement, manner
of loading and supporting, etc., etc., in an effort
to avoid the laborious operations involved by the
present formulas. Such a set of special tables and
curves, covering all the various assumptions met
with in current practice under varying conditions
and circumstances, attempts too much to be easily
handled, and often leads to confusion and errone-
ous results if followed blindly without a true con-
ception of their limitations and without first check-
ing the accuracy of their construction. Moreover,
much time is always lost in finding the curves or
tables applicable to any special case, with the pos-
sibility that the ones selected might not after all be
the proper ones to apply under the circumstances.
For work of a varied nature, the methods here-
inafter developed effect a large saving of time over
prevalent methods of computation, even when the
latter are aided by the tables and diagrams offered
for that purpose. M.D.C.

Yonkess, N. Y.,
July 1st, 1915.
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SIMPLIFIED REINFORCED
CONCRETE MATHEMATICS

CHAPTER 1
DERIVATION OF FORMULAS

F1c. 1 represents a portion of a reinforced con-
crete beam or arch before applying load. Fig. 2
represents the same member as deflected by bend-

.\‘Reinfbrcmq Steel
FIG. » Fi6.2

ing moment; the sections AB and GJ, which are
perpendicular to the neutral surface, NN, taking
the positions 4’B’ and G'J’ respectively, assuming
A’B’ and G'J’ to remain plane sections after deflec-
tion. Let us assume, for simplicity, that the sec-
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tions AB and GJ are 1 inch apart, so that the
deformations indicated by A’G’ and B'J’ will be
unit deformations. Also, said deformations may be
considered as being produced by the stresses devel-
oped at section AB; that'is, the stresses are con-
sidered as being constant through the distances 4G’
and B'J'.. A is on the tension side of the member
and B is on the compression side.

F
T ,Resultant of Compressive
U &b ¢ Forces e,
. 1€ b ﬂ
:tj m n 4
1Axi: Ll
: NeutralAxis [_.‘.j v+
Tg2pCL.OfSteel -~y L j;
e
F16.4

In order to make the following discussion general,
it is first applied to a reinforced concrete member
subjected to a direct longitudinal stress in con-
junction with bending moment. The bending mo-
ment may be produced by a transverse loading or
by the eccentricity of the longitudinal force, F,
acting at a distance, H, from the center line of the
reinforcing steel as indicated in Fig. 3, or by a com-
bination of such loadings.
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Nomenclature

. D,=unit deformation of concrete,=BJ—B'J’.
D,=unit deformation of steel,=A4'G’'—AG.
C=maximum unit compressive stress in con-
crete at section AB in pounds per square
inch.
S=unit tensile stress is steel at section AB in
pounds per square inch.
M =transverse bending moment at section 4B in
inch-pounds.
E.=coefficient of elasticity of concrete in com-
pression.
E,=coefficient of elasticity of steel in ten-
sion.
E,
r=—.
b=width of member in inches.
d=depth of member to center line of steel in
inches, as indicated in Fig. 3.
h=total depth of member in inches, as indicated
in Fig. 3.
p=percentage of steel reinforcement=area of
steel in tension in section AB in square
inches <+ bd.
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a=cross-sectional area of steel in tension in sec-
tion AB in square inches=pbd.

F=total direct stress normal to section 4B in
pounds.

H =perpendicular distance in inches between the
force F and the intersection of center line
of reinforcing steel with section 4B as indi-
cated in Fig. 3.

2 is a decimal coefficient as indicated in Fig. 3.

Signs

Observe the following rules as to signs:

F is + when compression and — when tension.

External moments tending to produce tension in
the steel are considered as 4 moments; opposite
moments are —.

We will then give H the proper sign to make the
sign of the moment FH satisfy the above assump-
tions. Referring to Fig. 3, it is seen that these
conditions give H the + sign when measured
from O; towards the compression side of the
member and — when measured in the opposite
direction.
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Assumptions

1. Concrete tensile resistance below the neutral v
axis not considered.

2. Plane cross-sections before deflection remain
planes after deflection.

3. E. and E, remain constant for the various
working values of C and S respectively.

4. Assumptions 2 and 3 lead to the assumption
that the unit concrete stress decreases uniformly
from the maximum value, C, at the compression
side of the member to zero at the neutral axis.

Fundamental Stress Relations:

Let us first review the fundamental relations
existing between the compressive stress in the con-
crete and the tension in the embedded steel.

From the definition of the coefficient of elas-
ticity,

C S

Ec:ﬁ and E.=l—);,

C S
Dc—E; and D. =E.

whence,
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Referring to Figs. 1 and 2, NN and N’'N’ repre-
sent the neutral axis, on which A’B’ and G'J’ are
the same distance apart as AB and GJ. Hence it
is seen that

D, xd x
. D. C
Then, since we have proven 5=r§, we have
i-x C
T-—f§. e o e e (a)

This relation holds whatever the condition of
loading.

Attention is called to the fact that whenever the
conditions of the problem are such as to fix the
value of the quantity, », then for a given r the quan-
tities C and S bear a definite ratio to each other;
that is, we cannot under such conditions assume C
and S independently of each other.

Necessary Conditions for Equilibrium:

To produce equilibrium on section 4B we have
the following three necessary conditions:

The algebraic sum of the vertical forces acting
on section AB (those lying in the plane 4B) must
= zero.
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The algebraic sum of the horizontal forces (those
normal to 4B) must=2zero.

The algebraic sum of the moments about any
point, of the forces acting on section 4B must=

zero. :
We will refer to these equilibrium conditions as

conditions 4, B and C, respectively.

Equilibrium Condition A
Equilibrium condition 4 is taken care of in the
consideration of the shear on the section. The
total resultant shear of the external forces in the
plane AB must be resisted by the shearing stresses
in the concrete and steel cut by section 4B.

Equilibrium Condition B

Referring to Fig. 3, the total compression in the
concrete on section AB=

bC(I —x)d x
2

=cph =%
2

Total tension in steer on section AB=Sa=Spbd.
Then, making F + when compression and — when
tension, we have

F= de";—x—Spbd.
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Substituting for C in the above its value in terms
of S as given by Eq. (¢) we have,
Si—

F=2 xbdr—x
r x 2

— Spbd.

(1—x)?
2rx

de[ —p] =F,

(I—x)z_ _F
2r% ""3%’

(I—x)2= rF

Py f?-l-% o o e (b)

Equilibrium Condition C
Taking moments about O, Fig. 3, and ignoring
all possible tensile stress in the concrete, it is seen
that the resisting moment=the total concrete com-
pression times the arm

[d-g(r —x)] =c§df:—"[d—§(1 —x)]




DERIVATION OF FORMULAS 9

As stated before, the total external moment
about the point O; may consist of the transverse
bending moment M, or the moment FH, or a com-
bination of M and FH.

Observing the rules given under the table of
assumptions as to moment signs, we may equate
the external moment and the resisting moment as
follows:

Cbdz
from ‘which

C=ets) 3y oy

(1—x)(2+x) M+FH
; =—GE " " - ()

If M+FH should be negative, the steel must
be placed in the opposite side of the member, all
moment signs must be reversed, and the distance
H must be correspondingly corrected by the amount
(2d—h).

We now have the three fundamental formulas
as follows: B

1—x C
=f—

. S,.....(a)

resulting from conditions of relative elasticity of
concrete and steel.

(1—%)?
2% —P+de’ s 0
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resulting from equilibrium condition B.
(1—x)(2-+x) _M+FH ©
6 Cbaz ° = " °
resulting from equilibrium condition C. (In terms of
concrete stress.)
Every design must satisfy all three of these equa-
tions.
Multiplying (a) by (¢) we have
(1—2)2(2+x) =r(M+FH) @
6 Sbaz ' T
resulting from equilibrium condition C. (In terms
of steel stress.)
Eq. (d) can also be derived directly from
equilibrium condition C by taking moments about
O: instead of O;.

For simplicity, let us represent the above four
functions of x as follows:

oD,
x

(L‘xi=r

2%
(1—2)(2+2) _

6

(—2)(2+2) _,
6x )

’

Y,
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Then from (a) we have
D —tg- . . . . L] . . (I)
from (b) we have

T= rp+ (2)

Sb d’ L] . .‘ . .
from (¢) we have

M+FH.

Y-‘—‘—'CbT, ....o(3)

from (d) we have

r(M+FH)

Z= dez......(4)

In these four equations D, T, ¥ and Z are dif-
ferent functions of the same variable, x, and tables
or curves or parallel scales may be prepared so that
when the value of any one of these functions is
known, the corresponding values of the other three
can be read off directly without further computa-
tions.

From the above Egs. (1), (2), (3) and (4) we
arrange the following in shape for immediate use:
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=M
S='-§-=L(A§+£H)—; « o . . (6)
M+FH=Yde2=Zfbd2 N ¢
bd2=M4I;gH=r(MZ-|:9FH); "
Pl L
a=pbd=%d-—§. c e v o . (10)

The above formulas are the general equations
applying to a reinforced concrete member subjected
to direct stress in conjunction with bending mo-
ment. They may be applied to arches, to eccen-
trically loaded columns, to rectangular beams,
and also to T-beams if the neutral axis of the latter
lies in the compression flange, b being the width
of flange. If the neutral axis of the T-beam lies in
the web of same, the above formulas must be altered
accordingly for a rigid T-beam analysis. If the
neutral axis lies in the web but a short distance
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below the lower surface of the flange, the error
resulting from the application of the above formulas
will be correspondingly slight, consisting of two
small triangular prisms of compression, each of a
length=%(b—gv) (see Fig. 4), erroneously as-
sumed to be acting between the lower surface of
the wings and the neutral axis of the beam.

In a reinforced concrete floor system composed
of slabs supported by beams and placed mono-
lithically with them, those portions of the slabs
immediately adjacent to the beams are sometimes
assumed as acting in conjunction with the latter,
forming T-beams. In such cases, however, b should
not exceed certain limits. Some authorities give
rules for determining the width, b, which it is safe
to assume as acting in conjunction with the stem.
This maximum allowable value of b is variously
given in terms of one or more of the following
elements: the width, ef, of the stem; the thick-
ness, mg, of the slab; the spacing, center to center,
of the stems; the span of the stems. Some author-
ities suggest certain empirical formulas for the
design of T-beams. Others work out complicated
formulas for their theoretical consideration.

Some of the theoretical formulas neglect the con-
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crete compression below gv, thus assuming the com-
pression diagram to be a trapezoid. Others assume
the unit concrete compression to decrease from a
maximum at m and 7 to zero at ¢ and 2.

In any case, if the beam is designed as a T-beam,
care must be taken to keep the unit horizontal shear
on sections gv, gm, and vn below safe limits and to
make sure there is sufficient width of concrete in
the stem to provide bond for the steel and to enable
provision to be made for the web stresses.

In view of the uncertainties involved and the
complications introduced by the theoretical formulas,
the writer is of the opinion that the proper place
to give consideration to the T action is in the
adoption of moment formulas and unit stresses;
and to design the beam mnfe by the formulas herein
set forth (if mnfe is a monolithic section) and to
design the slabs in the same manner with their
spans normal to the beams.

If there is no transverse moment, the term M
in Egs. (1)-(10) vanishes.

If F acts in line with the resultant of the com-
pressive forces,

1—%

H=d—é(1 -2) =d<1 ——) = ﬂ
3 3 3
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If F acts in line with the neutral axis, H =xd.
If F acts at mid depth of the total beam,
H=d— h_2d —h.

2 2

If F is a general end reaction of the beam, acting
longitudinally and distributed over the cross-sec-
tion of the beam in proportion to the coefficients
of elasticity of the materials, the steel takes r
times the total stress which an equal cross-sec-
tional area of concrete would take and F would
be located in line with the resultant of the resisting
forces.

If desired, the value of H resulting from any of
the above assumptions as to the location of F may be
substituted directly in place of H in the formulas.

If H=zero, we have the direct stress acting in
line with the reinforcing steel and the term FH
vanishes.

If there is no direct stress F=zero and Eqgs.
(1)-(10) reduce to the following:

rC

D=-§-; e e s s 4 e (I)

T=rp;. . . . . . . (10
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Y=%;......(m)
z=§%—2; , )
S=%=%; (VD)
M—Yde2=§%d—2, (VII)
bd‘*’=%=%; . . .(VIIi)
¢=%=5%; e .. (@@
a=pbd=-T;bii. R o

The above equations are seen to involve opera-
tions of multiplication and division only, thereby
enabling the work to be rapidly performed on the
slide rule.
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In Eq. (VIID, bdzé%, it is to be borne in

mind that M =the total transverse bending moment
in inch-pounds to which the member is subjected,
including the moment resulting from the dead weight
of the member itself. The size of a beam or slab
is sometimes computed tentatively for the live
load only, after which the dead weight is added and
the size recomputed: or the dead weight may be
taken account of in the first computation as fol-
lows:

Let M=M.+Mp; in which M, is the live load
moment and M, is the moment resulting from the
weight of the member, both acting transversely.
Let wp=uniformly distributed dead load in pounds
per running foot of beam, or in pounds per square
foot of slab area; slabs to be considered as a series
of beams side by side, each 12 inches wide.

Then

bh bd
wp= [—IHX 150] + [mx.or X (490— 150)] ;
assuming p=1 per cent, concrete=150 lbs. per
cubic foot, steel=490 lbs. per cubic foot. Hence

wp=1.04 bh+.0236 bd.
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In designing beams, we will assume that A=1.1d
and that for slabs A=1.3d.
Then for beams,

wp = 1.144bd +.0236bd = 1.1676bd.
For slabs,
wp =1.352bd +.0236bd = 1.3756bd.

In computing the weight of a beam, varying
ratios between b and d may affect this dead weight
by more than so per cent for members of equal
strength. We may put the dead weight in the
designing formulas for beams by assuming a ratio
between b and d, which will conform to usual prac-
tice, and revising this ratio and the assumed dead
weight, if necessary, after determining the tentative
dimensions of the beam.

Let us assume that for beams, b=o0.7d.

For slabs b=12.

Hence we have for beams,

wp=2817d%. . . . . . (XI)

(XT) is to be used only when b=o0.7d.

For slabs,
wp=16.51d. . . . . (XII)

For horizontal slabs and beams wp acts transversely
and Mp=Kwpl?; in which K is a coefficient de-
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pending upon the manner in which the member is
supported and /=span of beam or slab in feet.
Then for beams,

Mp=S8uKP@. . . . (XII)

(XIII) is to be used only when d=0.7d.
For slabs,

Mp=16.51KRd. . . . (XIV)
Hence, from Eq. (VIII); we have for beams
_ My, 081 KPd
o1P=yct—vc
for slabs,
_M.  16.51K1%d
2P=yet—vc
whence for beams
B 1.167KPd? _ My
YC  oq¥C
Ko\ _ M.
dz(d _I—/:C_>_—_o.7YC’ . . . (XV)
in which
KB= I.I67K.
For slabs,
: d2_1.376Kl2d= M,
YC 12¥C’

K&\ My
d( ‘W)"Tyc’ ... (XVI)
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in which
Kg = 1.3 76K .

Various values of Kp and K are given by Table I.

In (XV) Mp=the total live-load moment sus-
tained by the beam.

In (XVI) M, =the moment resulting from the
live load on a portion of the slab 12 inches wide
and ! feet long. -

Eq. (XVI) may be expressed in the form of a
quadratic and solved for d, but the resulting equa-
tion is more cumbersome than (XVI) and no more
easily solved.

Pertaining to Table I:

K =numerical coefficient of wi?;
W =concentrated live load at middle of span in
pounds;
w=uniformly distributed live load in pounds
per running foot of beam, or in pounds
per square foot of slab area;
l=span of beam or slab in feet;
+moments produce compression at loaded
side of member;
—moments produce tension at loaded side of
member.
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If L=uniform live load in pounds per square
foot of supported floor space and s=spacing of
floor beams in feet, center to center, then w=_Ls.

Slabs to be considered as beams 12 inches wide
spaced 1 foot center to center.

For beams continuous over several supports
precise expressions may be derived for the bend-
ing moment at each support, though these moments

are sometimes assumed as all being %i-zft.-lbs., as

indicated by Case 5 in Table I.

If a slab is a rectangle whose length in plan is
twice its width or more than twice its width, the
above moment for Case 6 becomes about the same
as that for Case 2, while the moment for Case 7
becomes the same as that for Case 4 or Case s,
the span, /, in the case of rectangular slabs always
being the short side of the rectangle. The main
reinforcing bars of the slabs are placed parallel to
the shorter span, though some steel is placed parallel
to the longer span to resist shrinkage and tempera-
ture stresses.



CHAPTER II

LABOR-SAVING DEVICES—REINFORCED CONCRETE
SLIDE RULE

F16. 5 represents the application of a scheme
devised by the author for the purpose of facilitating
the mathematical operations involved in rein-
forced concrete design. The device is nothing
more than a series of four concentric circular
scales, the graduations of which represent values
of the four functions of x denoted in formulas (1)
to (10) by the letters D, T, ¥, and Z. The scales
of Fig. 5 are lettered to indicate the function repre-
sented by each and are so graduated that the cor-
responding values of the functions represented are
radially opposite each other; that is, any radial
line drawn from the center, O, will cover corre-
sponding values of these functions. In practice,
a straight line scratched on a piece of transparent
sheet celluloid serves very nicely to define this
radial line. Or the reader may mount Fig. 5 or a
copy of it on a piece of cardboard, piercing a

hole through the cardboard at the center, O, and
23
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drawing through this hole a black thread for defin-
ing the radial lines. It is seen from Fig. 5 that upon
evaluating any one of the functions, D, T, ¥, Z,

the other three become known at once. The grad-
uations of scale D of Fig. 5 are uniformly spaced.
By letting the graduations of scale D represent
values of the function, D, the correct locations of
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the graduations of scales, T, ¥ and Z are determined
by preparing a table of the corresponding values of
the four functions

1—x (1—2)2 (1—x)(24x) and (1—2)2(2+4x)
x ' 2x 6 6x

H

represented by D, T, ¥, and Z respectively.

Fig. 6 pictures the relations of these four functions
graphically.

The foregoing formulas are mathematically cor-
rect for the assumptions given and are so simple
and so easily applied, with the aid of Fig. s, as to
justify their use in all practical work. Fig. g5 is per-
fectly general in its application, and may be used
for any desired stresses in the concrete and steel
and for any coefficients of elasticity, without the
aid of special tables or diagrams for special as-
sumptions, and without performing any mathe-
matical operations other than those which may be
rapidly read from a slide rule.

The principle of the parallel scales of Fig. 5 may
be carried still further by utilizing one of the scales
of a logarithmic slide rule in place of one of the said
parallel scales, resulting in a reinforced concrete
slide rule; which is simply the familiar logarithmic
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D_x-;x T (1::)’ Y (1—x)6(2+z) z (r—xz;:z+x)
.04 .00077 .01898 .00076
.05 .00119 .02343 .00117
.06 .00170 .02777 .00167
.07 .00229 .03200 .00224
.08 .00296 .03612 .00289
.09 .00372 .04015§ .00361
.10 .00455 .04408 .00441
.11 .00545 .04791 .00527
.12 .00043 .05166 .00620
.13 .00748 .05531 .00719
.14 .00860 .05889 .00824
.15 .00978 .06238 .00936
.16 .01103 .06579 .01053
.17 .01235§ .06913 .0I17§
.18 .01373 .07239 .01303
.19 .0I517 .07558 .01436
.20 .01667 .07871 .01574
.21 .01822 .08176 .01717
.22 .01984 .08475 .01865
.23 .02150 .08767 .02016
.24 .02323 .09053 .02173
.25 .02500 -09333 .02333
.26 .02683 .09608 , .02498
.27 .02870 .09877 .02667
.28 .03062 .10140 .02839
.29 .03260 .10398 .03015
.30 .03462 . 10651 .03195
.31 .03668 .10899 .03379
.32 .03879 .II142 .03565
.33 -04004 .11380 03755
.34 .04313 .11614 .03949
.35 04537 11843 .04145
.36 .04765 . 12008 .04344
.37 .04996 .12288 .04547
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I I—x)* 1—-%)(2+x 1—x)%(2+ %
D=2 rat ”) y = )é+ ) || 2z gs(+)
.38 .05232 .12504 .04752
.39 .05471 .12717 .04960
.40 .05714 .1292§ .05170
.41 .05961 .13130 .05383
.42 .06211 .13331 .05599
.43 .06465 .13528 .05817
.44 .06722 .13722 .06038
.45 .06983 .13912 .06260
.46 .07247 . 14009 .06486
.47 .07514 .14283 .06713
.48 .07784 .14463 .06942
.49 .08057 . 14640 .07174
.50 .08333 .14815 .07407
.51 .08613 .14986 .07643
.52 .08895 .I5155 .07881
.53 .09180 .15321 .08120
.54 .09468 .15483 .08361
.55 .09758 .15644 .08604
.56 . 10051 .15801 .08849
.57 .10347 .15956 -09095
.58 . 10046 .16109 .00343
.59 - 10047 .16259 -09503
.60 .11250 .16406 .09844
.61 .11556 .16552 .10097
.62 .11864 .16695 .10351
.63 .12175§ .16835 . 10606
.64 .12488 .16974 .10863
.65 .12803 .17110 LI1122
.66 .13120 .17245 .11382
.67 .13440 17377 . 11643
.68 .13762 .17508 . 11908
.69 .14086 .17636 .12169
.70 .T4412 .17762 .12433
.71 .14740 .17887 .12700
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-z 1—x) 1—2%)(2+ = 1— %)3(24 x|
D=1 T = ’x) y =t 35( ) |zl )6: )
.72 .1§5070 .18010 .12967
.73 .15402 .18131 .13236
.74 .15736 .18250 .13505
.75 .16071 .18367 .13775
.76 .16409 .18483 .14047
77 .16749 .18597 .14320
.78 .17090 .18710 .14594
.79 .17433 .18821 .14869
.80 .17778 .18930 .15144
.81 .18124 .19038 .15421
.82 .18473 .10144 .15698
.83 .18822 .19249 . .15977
-84 19174 19353 .16257
.85 -19527 -19455 .16537
.86 .19882 .19555 .16817
.87 .20238 .19654 .17099
.88 .20596 .19753 .17383
-89 .20955 -19849 .17666
.90 .21316 .19944 .17950
.91 .21678 .20039 .18235
.92 .22042 .20132 .18521
.93 .22407 .20224 .18808
.94 .22773 .20314 .19095
.95 .23141 .20403 .19383
.96 .23510 .20492 .19672
.97 .23881 .20579 .19962
.08 .24253 .20665 .20252
.99 .24626 .20750 .20543
1.00 .25000 .20833 .20833
1.01 .25376 .20916 .2112§
1.02 .25752 .20098 .21418
1.03 .26131 .21079 .2171X
1.04 .26510 .21158 .22004
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slide rule with the addition of three auxiliary scales
on the face of same as illustrated by Fig. 7. Scales
1, 2, 3 and D are the usual slide-rule scales, and
scales T, ¥ and Z the added scales for reinforced
concrete work. This device enables us to evaluate
the four functions D, T, ¥, and Z simultaneously;
the lettered scales of Fig. 7 representing the same
functions of x as the similarly lettered scales of
Fig. 5. Scales T, ¥ and Z are so constructed that
when the index line () on the movable rider covers
a particular value of the function D on scale D,
it covers at the same time the corresponding values
of the functions T, ¥ and Z on scales T, ¥ and Z
respectively. . Hence, the only difference between
the four lettered scales in Figs. 5 and 7 is that in
the former the graduations of scale D are uniformly
spaced and in the latter they form a logarithmic
scale; while the accompanying scales T, ¥ and Z
are graduated accordingly.

The principle of the reinforced concrete slide
rule is apparent from its construction. In the fol-
lowing references to the slide rule, the term ‘“ index ”
as applied to the scales refers to the graduation
~“1” on those scales; while the rider index is the
line (7) on the movable rider.
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Suppose we wish to design a reinforced con-
crete beam with the slide rule illustrated in
Fig. 7. We must first, of course, adopt the values
of C, S, and r upon which the design is to be
based.

Let C=600 lbs. per sq.in.;
S =12,000 lbs. per sq.in.;
r=15;
M = 40,000 in¢h-lbs.

Then from Eq. (I)

D=_r£=15X6oo
S 12,000

To perform this operation on the slide rule, we
set the left index of scale 3, Fig. 7, opposite 15 on
scale D; place the rider index over 600 on scale 3;
leaving the rider in this position, run scale 3 under
the same until 12,000 on scale 3 is under the rider
index. Then the correct value of D will be that
reading on scale D which is opposite the index of
scale 3. Hence if the rider index is placed over the
index of scale 3 in the final position of the latter it
will cover the correct values of D, T, ¥, and Z on
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scales D, T, ¥ and Z respectively. Having these
values, they may be substituted for the symbols
D, T, Y, Z in formulas (I) to (X) or (1) to (10).
The slide and rider of Fig. 7 are set for the above
operation, giving

D=o0.75, T=o0.161, Y =0.184, Z=0.138.
From (VIII) bd’-———“oL.og——‘;éz.

Knowing bd?=362, we can utilize the slide rule
to find different combinations of b and d to satisfy
this value of 5d? as follows: Place the rider index
over 362 on either portion of scale 1. With the
rider in this position, the rider index will cover the
value of d on scale 3 which corresponds to that
value of b found on scale 1 opposite the indices
of scale 2; care being taken properly to place the
decimal points. Hence, by running the slide under
the rider index with the latter set as stated, the
corresponding values of & and d are read directly
from scales 1 and 3 respectively, as follows:

0] 6] 4
6/7.8]09.5
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In this way, suitable values of & and d are easily
selected; for instance, b=6", d=8"".

Fig. 5 used in conjunction with an ordinary slide
rule will prove nearly as great a time saver as a
reinforced concrete slide rule.



CHAPTER III
ILLUSTRATIVE EXAMPLES

Problems

THE ease and rapidity with which reinforced
concrete computations may be performed with the
aid of Fig. 5 is demonstrated in the solutions of
the following specimen problems. The four typ-
ical problems stated in Table II will cover the more
common cases of reinforced concrete beams sub-
jected to transverse bending moment only.

The following four problems, numbers 1, 2, 3,
and 4, illustrate the four typical cases covered by
Table II.

ProBLEM 1. To design a beam.

Assume a reinforced-concrete floor system as
follows, uniformly loaded with 350 lbs. per square
foot exclusive of weight of floor: beams 6 ft. apart,
center to center; span of beams 15 ft.; beams
constructed monolithically over supports; spaces
between beams covered- by slabs of uniform thick-

ness resting on the beams but not cast monolithic-
34
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TABLE II
Problem. Colx{xaptz?u, In%)erql;:l;rt?gn. Fog:eulz:lil:%ir er.

(1) To design a| M,C,S,r b,d,a |(I), (VIII}, or

beam. (VIII), as re-

. . vised by (XV)

o ’ and (XVD),
(X)s.

(2) To investigate | M, b,d,a,r C S (IX): (), (V)s,
the stresses in (VD).

a given beam.

(3) To compute the | b,d,a,r M (IX),, (II), (VII)
safe load on a | Maximum C or (IX),, (II),
given beam. | Maximum S (VII);,  which-

ever series gives
the smaller value
of M.

(4) To compute the | M, d,d,r e (I1II), (X); or (IV),
necessary re- | Maximum C (X): whichever
inforcement | Maximum S series gives the
in a beam of greater value of
known  di- a.
mensions.

ally with them; slabs cast separately between
joints on center lines of beams.

Let C=500, S=16,000, r=15.

From (I)

D=15><500=
16,000

.469.
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From Fig. s,
T=.075, Y=.143, Z=.06%.

Design of Slabs. Call span of slabs 6 ft.
Use Case 2, Table 1.

Myo=1.50P=1.5X350X36=18,900;
Ks=2.004.
From (XVI),

d<d_2.o64><36) ___ 18,900
.143 X500/ 12X.143X 500’

d(d—1.04) =22;
d=35.3 h=1.3d=6.9,
h—d=1.6 ins. concrete below steel.
Make h=17 ins., d=35.5 ins.
From (X)2

a=.o75><12><5.5

s =0.33 sq.in. steel

for portion of slab 12 ins. wide, =.0275 sq.in.
steel per inch width of slab. Hence we can use
4-in. bars g ins. apart or $-in. bars 5 ins. apart.
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In designing the beams we must add the dead
weight of the slabs per square foot to 350 to obtain
the total load carried by beams.

From (XII) wp for slabs=16.51 X §.5=90.8, say g1.

Then for beams

w=(350+91) X6=2646 Ibs.
For the beams use Case 5, Table I.

Mi=1.20P =1.2 X2646 X 225 = 714,000}
K3= 1.4.
From (XV)

dz(d_1.4><225)= 714,000 |
143X 500/ .7X.143 X500’

d?*(d — 4.41) =14,270;
d=25.8, say 26 b=o.7d=18.1, say 18.
From (X)2,

a=.o75><18><26
I

S =2.34 sq.ins. steel.

Suppose we decide to use six $-in. bars=3.375
sq.ins.
Suppose further that we do not wish d to be
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greater than 24 ins. Then, since d? must approx-
imate 18(26)? we have

_18(26)%
——(232—— 2I1.1.

Then assume the new beam as follows:

b

b=21, d=24, k=26, a=3.375, r=1;,

and investigate this beam as
ProBLEM 2. To investigate the stresses in a

given beam.
Mp=Kwpl.

From Case 5, Table I,

K=1.2;

bk a
Wp= [HZX 150] + [;4:)((490— 150)]

=569+8=577;
Mp=1.2X3577X225=155,800;
M =M.+ Mp="714,000+155,800 =869,800;
From (IX).,
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From (II),
T =15X.0067 =.1005;
From Fig. s,
D=.561, Y=.158, Z=.088;

From (V)2

869,800

=.158X21 X (24)? =4553

From (VI),

S=5%5-=12,17o.

ProBLEM 3. To compute the safe load on a
given beam.

Let b=9, d=11, a=1sq.in, r=12,

Maximum allowable C =600,

“ “ S =14,000.
From (IX)2,
p=9X11 =.,0101;
From (II),

T=12X.0101=.1212;
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From Fig. s,
D=.629, ¥Y=.168, Z=.106;
From (VII),,
M =.168 X 600X 9 X121 =109,800;
From (VII)g,

M=.106X14,ooo><9><121
12

=134,700.
Hence

M =109,800.
From (VI),,

_I2 X 600
.629

=11I,450.

Hence we cannot exceed 11,450 for S under the
present circumstances without exceeding 6oo for C.
From this moment of 109,800 in.-lbs. we must
- subtract the moment produced by the dead weight
of the beam itself to obtain the safe live-load mo-

ment, M;.
MD = Klez.

Assume the beam to be a cantilever 7 ft. long.
Then from Case 1, Table I, K=6.
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Let A=12.5. Then
bk a
wp= ['I—‘;ZX ISO] + [’I'EX(49°- I50)]

=117.2+2.36 =119.56.
Then
Mp=6X119.56 X49=35,150.

s Mp=109,800—35,150="74,650.

If the live load is uniformly distributed we have
from Case 1, Table I, M= 6wi?.

Hence w=y—=—2:——2 54 lbs. per running foot
of beam.

PrOBLEM 4. To compute the necessary rein-
forcement in a beam of known dimensions.

Let b=12, d=15, r=16.

Maximum C=400. Maximum S=12,000.

Compute M from the following loading.

Assume a uniform live load of 1500 lbs. per run-
ning foot on a fixed beam 10 ft. long and an addi-
tional concentrated live load of 1000 lbs. at middle
of span. Then from Case 4, Table I,

M= (1500 X 100)+ (1.5 X 1000 X 10) = 165,000;
Mp=Kle2.
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From Case 4, Table I, K=1.0.
Assuming p=1 per cent and k=17, we have

[k bd
wD—[IMXISO]+[mX.OIX(490 150)]

=212.5+4.25=216.75.
Hence
Mp=1X216.75X100=21,675.
M=M,+Mp=165,000+421,675=186,675.
From (III),

__ 186675
400X 12 X225

=.173.
From Fig. 5,

D=.665, T=.133, Z=.116.
From (IV),

__ 16X186,675
12,000 X12X225

=.092.

From Fig. g3,
D=.573, T=.105, ¥V =.160.
It is apparent from Eq. (X). that the larger of
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the above values of T will result in the greater
value of a.

Hence from (X)2,

a =ﬂ% =1.496 sq.ins.

Since T'=.133, C=400 and D=.665.

Then from (VI),,

S___16><4oo

665 =g620.

The conclusion is, of course, that we cannot rein-
force the beam in question under the conditions
imposed so as to stress the steel to more than g620
lIbs. per square inch tension without compressing
the concrete to more than 400 lbs. per square inch.

ProOBLEM 5. To compute the required dimensions
of a beam containing a known area of reinforce-
ment.

Known conditions:

M, a,r;

Maximum allowable value of C;

Maximum allowable value of S;
Required information:

b, d.
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In this problem, although the value of a is given,
p cannot be computed until we have b and d. Fur-
thermore, we do not know the actual values of C
and S.

Hence none of the functions D, T, ¥, Z can be
computed directly and the simplest manner of
approaching this problem is to assume a value for
p which, in the light of previous experience, appears
reasonable. Then compute bd from (X); and
choose values of b and d to satisfy the same. If
these dimensions produce values of either C or S
above the allowable maximum, we must assume
new values for b and d.

Let M =260,000, a=2 sq.in., r=12.

Maximum C=650;

Maximum S =18,000;

Assume p=.o1. Then from (X);,bd=é=2oo.

Assume b=o0.7d. Then .7 d?=200. .

d2=286, d=17, b=.7d=12, bd?=3468.
From (II),
T=12X.01=.12.

From Fig. s,

D=.624, Y=.167, Z=.105.
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From (V)s,
_ 260,000 -
.167 X 3468 449

From (VI),

S =I—2.%<%=863o.

Second Trial. Let b=10, d=15. Then

, bd?=2250.
From (IX),

2
=——=.0133.

150
From (II),

T=12X.0133=.160.
From Fig. s,

D=.748, Y=.183, Z=.1375.
From (V)s,

=._2.6_°’_°_.09_=6 I
.183 X 2250 31

From (VI)i,

S=I—2%?%I =10,120.

Hence b=10 and d=15, will satisfy the con-
ditions.
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The results show that the dimensions are deter-
mined by the limiting value of 650 for C since other-
wise S could have been greatly increased.

ProBLEM 6. Let us apply to the beam of Problem
1, in addition to the loading there given, a direct
tension of 5000 Ibs. applied on the compression side
of the beam at a distance of 18 ins. from the center
line of the steel.

From the rules for signs already established for
F and H, we note that F=—35000, H=+18 and
FH = —go,000 in.lbs. Hence

M 1= 714,000 — 90,000 = 624,000.

From (1)

D= %i—? =.469.
Hence
T=.075, Y=.143, Z=.067, as before,
also
Kp=1.4 as before.

Then from (XV)

d2<d— 1.4><225>= 624,000 :
.143 X500/ .7X.143 X500

d?(d—4.41) =12,470;
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d=24.8, say 25;
b=o0.7d=17.4, say 17.5.

From (10)2

R
a=.o75><17.5><25+ 5000

15 16,000 25

the result being to decrease the concrete section
and increase the steel of the beam computed in
Problem 1.

ProBLEM 4. Investigate the stresses in a hori-
zontal section of a short reinforced concrete column
18 ins. square, with 5 vertical reinforcing bars, each
4 in. square, along each side of the column 2 ins.
from face of concrete. The load on the section
is 50,000 lbs. applied 4 ins. outside of one of the
vertical faces by means of a bracket. The above
arrangement gives 16 vertical bars in the column.
The bars between the neutral axis and the load will
take 7 times as much compression as the concrete
replaced by same and all the bars on the other side
of the neutral axis will be stressed in tension pro-
portionally to their distances from the neutral
axis.

We will assume in our investigation, however,
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that the steel in compression takes the same stress
as the replaced concrete and that the tension due
to the eccentric loading is all taken by the five
bars furthest from the load.

b=18, d=16, a=5X(})?>=1.25,
M=o, F=+350,000, H=+20, FH=+1,000,000.
Let r=12. Then from (9)2

_ 125 _
P= a6~ oo

From (2) it is seen that the expression for T in-
volves S, which is unknown.

Substitute in (2) the value of S as given by (6)2
rFH
=i Then from (2)
rF Zbd? . Zd
T=rttig ;rE=""E

=12 x.§o434+:—:z
=.0521-+40.8Z.
T —0.8Z =.0521.
Then we must find values of T and Z which will
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satisfy this equation and also the relation represented
by Fig. s. :

T=.165 and Z=.141 satisfy these conditions.

Whence, from Fig. s,

D=.763, Y =.185.

From (5)2
1,000,000
- .185X18 X (162 1173
From (6):
S= 12 X1173

=18,450,
763 5

the results indicating that the assumed loading
is excessive, in view of its eccentricity.

Assume the same load, 50,000 lbs., applied at the
axis of the column. Then all the concrete and steel

is in compression.
The unit compressive stress in the steel

=rC.

Total stress taken by steel
=16X(3)2X12XC=48C.

(Assuming r for compression =r for tension.)
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Total stress taken by concrete=
[(18)2—16 X (})?]C =320C.
Hence 50,000 =48C+320C,
368C =350,000 C=136.

Whence compressive stress in steel =12 X136 =1632
lbs. per square inch.

The Design of Arches

Figs. 8 and g represent a reinforced concrete con-
duit for carrying water under pressure. The dotted
lines thereon represent the pressure lines of same,
while the heavy solid lines represent the theoretical
location of the steel reinforcement as dictated by
the assumed pressure lines. We will not here go
into the question of the proper location of these pres-
sure lines, but will illustrate the application to such
a problem of the foregoing formulas in connection
with Fig. s.

The pressure line in Fig. 8 is constructed from
the following loading: External ground water pres-
sure; dead load of earth covering; weight of masonry;
no internal water pressure.

The pressure line of Fig. g is constructed from the
following loading: Internal water pressure; weight
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of masonry; no external ground water; no earth
cover.

These loadings result in the usual arch com-
pression line in the case of Fig. 8, but in Fig. g the
pressure line represents tensile forces as indicated
hy the arrows at crown and invert.

Fi6.8 F16. 9

In designing conduits for carrying water under
pressure the question of leakage becomes a matter
of importance and in some instances it becomes
advisable to limit the unit steel stress to a figure
that will avoid tension cracks in the concrete. The
concrete in immediate contact with the steel on the
tension side of a member is subjected to a unit
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tensile stress equal to the unit tensile stress in the
steel divided by r. Let C. represent the unit ten-
sile stress in the concrete immediately surrounding

the steel. Then Cg=§, or S=Cy.

For the problem in hand, let us allow C;=200 and
assume r=15.

Then maximum allowable S =200X15=3000.

Let maximum allowable C=3500, r=15, b=12.

Let us investigate the imaginary joint, 8, with
reference to the amount of steel reinforcement
needed therein for each of the above loadings, keep-
ing the concrete compression below 500 lbs. per
square inch, and the tension in the steel below
3000 lbs. per square inch. d at joint 8 =34 ins.

The force acting on joint 8 is Fs. This problem
falls under (4) of Table II. Care must be taken
to give F and H their proper signs as called for by
the table of assumptions.

Suppose it is found from the force diagram for
Fig. 8 that Fg=14,020 lbs. for a portion of the con-
duit 1 ft. long. Then Fgisresolved into F, = 414,000
Ibs., normal to joint 8 and producing bending mo-
ment about the arm H; and V, =310 lbs., producing
shear on joint 8. H in Fig. 8 =+28 ins.
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In like manner, supposing that Fgs in Fig. 9=
7000 lbs., F for this case=—6oco lbs., while
V =3600 lbs., H= —;35 ins.

There being no transverse bending moment to be
considered, M in formulas (1) to (10) disappears.

Let us first compute the steel called for by the
assumptions of Fig. 8.

It seems reasonable from the conditions of the
problem that the steel stress will be the determining
factor in the design. Hence we will start out with
Eq. (4) rather than (3):

From (4)
=rFH= 15X14,000X28 _

Sbd?  3000X12X(34)%

VA 141

From Fig. s,
D=.762, T=.165, Y =.1835
From (10)2

a=.165><12><34_14,ooo
15 3000

=4.488—4.667= —o0.179
From (5)

C='—7—6'“’Tx5339-°= 152 lbs. per sq.in.
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Hence it is seen that we cannot reinforce joint 8
under the given conditions so as to stress the con-
crete to more than 152 lbs. per square inch compres-
sion without exceeding 3000 lbs. per square inch
tension in the steel, and hence exceeding 200 lbs.
per square inch tension in the concrete surrounding
the steel.

The above solution of joint 8 is seen to give a
negative value for a. Hence no steel is required at
that joint for the present loading. This result is
brought about by the compressive effect of the
direct stress. If there is no steel in the section the
above computations based on its presence are erro-
neous. To get the concrete stress if there is no steel
present, we may proceed upon two assumptions:
first that the concrete is capable of taking both ten-
sion and compression; second, that the concrete
can take compression only. '

In the first case, the tension and compression are
computed directly from the bending moment re-
rulting from the eccentric loading; the maximum

6F<ﬁ-d+3>
. . . 2 F
unit compression being T-’_ﬁ =95.5

(assuming k=d+3), while the maximum unit ten-
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6F (g_‘”H) F h .
— T %S <;—d+H> is the
eccentricity of the force F.

In the second case, the center of gravity of the
concrete compression diagram must always be
opposite the force F. Since we are ignoring the ten-
sion which is shown by Case 1 to be present, the
compression diagram will be a triangle and the

total compression will equal F.

sion=

Area of compression tﬂangle=c;>—<—‘%i-:H—).

Total compression

_bXCxX3d—H)_ 18C
2 2

=108C.

108C=F and C =-I§8-= 129.6 lbs. per sq.in.
While steel reinforcement is seen to be unneces-
sary at the inner side of this joint for the present
loading as a means of strength, it may nevertheless
be advisable for the purpose of preventing the for-
mation of leakage cracks in the concrete.
The steel required at joint 8 for the loading
assumed in Fig. ¢ is computed as follows:
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S'=3000 or less;
C=3500 or less;
F = —6000;
H=-3s;
b=12;
d=34;
r=1s.

From (4)

_rFH _ 15X6000X35

Z= =
Sbd®?  3000X12X34X34

=,076.

From Fig. s,
D=.508, T=.085, Y =.149.
From (5)1,

C= =102.

.508 X 3000
I
From (10)2,

a=.085X12 ><34+6ooo
15 3000

=2.312+42.000=4.312 sq.ins.;

say three 1}-in. square twisted rods per lineal foot
of conduit. '



CHAPTER IV

GENERAL NOTES ON REINFORCED CONCRETE
DESIGN

THE author does not wish by any means to infer
that the subject of reinforced concrete design is
wholly a question of mathematics. Mathematics,
however, is the tool by which the members are to
be proportioned after the various constants and
assumptions are decided upon and, as such, should
be made as efficient and simple a tool as possible.

The following discussion of some of the more im-
portant general factors and principles, as affecting
the mathematical aspects of the question, touches
upon those matters more or less superficially, and
may seem in parts rather elementary, but is in-
cluded as a caution against a tendency, apparent
in the work of some designers, to regard the mathe-
matical formulas as the essence of the design;
whereas the formulas should be considered as merely
vehicles by which to express and apply the theo-

retically correct mathematical factors as modified
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by practical conditions and by proper consideration
of the more general non-mathematical factors.

As stated in the table of assumptions, the fore-
going reinforced concrete formulas assume no ten-
sion to be carried by the concrete. This is actually
the case when shrinkage or temperature cracks
occur across the lower portion of a reinforced con-
crete beam. Such a crack, however, would not
necessarily interfere with the compressive functions
of the beam. If the concrete below the neutral
axis of a beam is intact, the embedded tension steel
will be stressed less severely under a given loading
than the foregoing formulas would indicate until
the loading is increased to a point where the con-
crete in maximum tension is ruptured. Then the
said formulas would give theoretically correct
results at the point of rupture. Hence, so long
as the concrete is taking tension, the formulas
here set forth give results erring somewhat on the
side of safety; but the assumptions upon which
they are based are used quite generally, since
the designer can never feel certain that the con-
crete in his beam will be capable of resisting
tension.

One possible combination of loadings may call
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for steel in one side of a reinforced concrete member
at some particular section, as AB, while another
possible loading may call for steel at the other side
of the section; but in the investigation of the section
for either of these loadings the presence of steel
due to the other loading is usually ignored, since
it is on the compression side of the member as
regards the loading in question and hence can act
only in compression as far as that loading is con-
cerned. The only error involved in this treatment
is a slight one on the side of safety, since the steel
on the compression side, instead of taking the same
amount of compressive stress as an equal cross-
sectional area of concrete, takes r times that stress;
but the area of steel in compression is such a small
fraction of that of the concrete that the error is
negligible. If it is desired to take this compression
steel into consideration, let a’ represent the cross-
sectional area of the steel in compression. Then
assuming that the unit concrete stress immediately
about the compression steel=C and that E, and E,
are constant for both tension and compression,
we have rCa’ as the total stress taken by the com-
pression steel. Ca’=compression taken by an equal
area of concrete. Then Ca'(r—1)=compression
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added by the steel. Hence, equilibrium condition
B becomes,

F=de‘—:-’f+c¢z'(r— 1) —Spbd

and equilibrium condition C (taking moments
about O;, Fig. 3), becomes

deiz—x[d—g(x —x)] +Ca'(r—1)(2d—k) =M +FH;

thus changing Egs. (2), (3) and (4) accordingly,
and all equations derived therefrom.

The complications introduced by taking account
in the preparation of formulas, of all the slightly
modifying conditions, many of which are illogical
and of insignificant influence, are fully shown by
illustrative formulas worked out on such assump-
tions in the standard reinforced concrete text
books.

All students of reinforced concrete should of course
study the standard text books on the subject, so
as to thoroughly understand the limitations and
peculiar characteristics of the combined materials
known as reinforced concrete. Such matters as
the study of published tests on reinforced concrete
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specimens, temperature stresses, permeability to
water, bond between concrete and steel, proper
time for removing forms, shear, web reinforcement,
etc., etc., and any special considerations called for
by the particular case in hand, such as the composi-
tion and proportions of concrete aggregates, methods
of mixing and placing the concrete, capacity of
plant for one day’s work as affecting the location
of construction joints, sizes of reinforcing bars,
quality of steel, methods of loading the finished
structure, vibrations, etc., are all questions to be care-
fully looked into by the designer as affecting the
assumptions used in proportioning members, and the
writing of the specifications under which the work
is to be carried out.

In reinforced concrete design, it is particularly
true that “ a little knowledge is a dangerous thing,”
and no one should undertake the responsibility
for the design of a reinforced concrete structure
without first availing himself of the published ex-
periences and researches of others in that line of
work. Such a grounding is of first importance as
affecting the general features of the design. When
it comes to detailing the dimensions of the various
beams, slabs, columns, arches, etc., the designer
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should appreciate the limitations of actual construc-
tion work under practical conditions as affecting
the refinement to which theoretical formulas should
carried. For instance, anyone observing the opera-
tion of placing reinforced concrete under ordinary
conditions cannot reflect upon the matter of the
straight-line compression diagram versus' the para-
bolic diagram resulting from a consideration of the
slight variation in the value of E. for different
unit stresses, without being struck with the absurd-
ity of introducing into the practical formulas for
determining dimensions of members the complica-
tions called for by the parabolic assumption;
especially in view of the slight gain in theoretical
accuracy thereby attained within the usual limits
of the working stresses. The difference in the actual
strengths of two average beams constructed under
everyday practical conditions, if subjected to actual
tests, would far overshadow the effect of many of
the proposed refinements in the designing formulas.
The practical conditions governing ‘the construction -
and operation of any particular piece of work are
of first importance in writing the specifications
and in determining the justifiable working stresses
to be used in the design, the value of 7, etc., and on
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these points the judgment of the designer comes
into play. The proper working stresses and the
correct maximum bending moments for members
connected and loaded in various possible manners
are something the reader will not find in the formu-
las, which take up the matter of detailing the
members from the point where the working stresses
and the bending moment assumptions have been
decided upon.

Web Reinforcement

The importance of a mechanical bond between the
steel and concrete is now generally conceded; the
simplest means of accomplishing this being to use
square reinforcing bars and have them twisted to
guard against slip of the steel in the concrete and to
assure the proper co-operation of the materials.

Another point to be taken care of is the matter
of shear and diagonal tension in the web of the
beam; that is, the stresses occurring in that part
of the beam between the steel reinforcement and the
compressed concrete, and through the medium of
which the steel and concrete co-operate to form a
united beam. It is customary to provide for these
stresses by placing vertical or inclined bars at in-
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tervals in the web of the beam. The theoretical
position of these web bars is at an inclination of 45
degrees, inclining away from the center of the beam.
Various rules, some empirical and some theoretical,
are put forth for obtaining the size and spacing
of this web reinforcement. A theoretical considera-
tion of this matter leads to an assumption of truss
action in the interior of a reinforced concrete beam;
the concrete in compression acting as the compres-
sion chord, the steel forming the tension chord and
the central portion of the beam playing the part
of the web members of the truss.

A common form of failure of reinforced concrete
beams is by horizontal shearing just above the
plane of the tension reinforcement. The horizontal
shear in this plane between any two points of the
beam may be determined as follows: Choose the
points, 4; and A3, at a distance, Z;, apart longi-
tudinally of the beam; compute the moments and
flange stresses at these two points,and the differ-
ence between the total flange stresses at 4, and 4.
will be the increment of stress, or the total longi-
tudinal shear between these points. This longi-
tudinal shear must be taken care of by the web
concrete in the said distance, Z, aided, if need be,
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by web reinforcement. The reader w1ll ﬁnd thls
matter of web reinforcement fully discussed in any
of the standard reinforced concrete text books.

The matter of most advantageously distributing
the reinforcing metal in the beam so as to bring
it all into play in its proper place always calls for
consideration in detailing the reinforcement. For
instance, consider a continuous beam running over
several supports. If the beam is uniformly loaded
there will of course be a maximum positive bending
moment at the middle of each beam and a maximum
negative bending moment over each support, and
between these maximum moment points will be
points of contraflexure where the bending moment
is zero, but where the shear must receive proper
consideration. Some of the reinforcing steel of
each beam is ordinarily bent up at properly selected
points between the middle of the beam and its sup-
port and thence run over the support in the top of
the beam.

In such an arrangement, the inclined portions of
the steel bars act as web reinforcement. The
location of the bends in the steel must be determined
by a study of the progressive change in bending
moments. For a strictly economic design, the steel
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would be dlstnbuted according to the magnitudes
of the various positive and negative moments.

The thickness of concrete to be provided between
the reinforcing steel and the nearest surface of the
beam will be influenced by the purpose to be ful-
filled by the structure, sizes of aggregate, method
of placing, etc., 1 to 3 ins. being the usual limits
of this dimension.








